F28M35H52C-Q1

ACTIVE

Product details

CPU C28x, Cortex-M3 Frequency (MHz) 100, 150 Flash memory (kByte) 1024 RAM (kByte) 136 ADC resolution (Bps) 12 Total processing (MIPS) 250 Features 32-bit CPU timers, Dual security zones, FPU32, VCU, Watchdog timer UART 6 CAN (#) 2 Sigma-delta filter 0 PWM (Ch) 24 Number of ADC channels 12 Direct memory access (Ch) 1 32-ch DMA, 1 6-Ch DMA SPI 5 QEP 3 USB Yes Operating temperature range (°C) -40 to 125 Rating Automotive Communication interface CAN, I2C, SPI, UART
CPU C28x, Cortex-M3 Frequency (MHz) 100, 150 Flash memory (kByte) 1024 RAM (kByte) 136 ADC resolution (Bps) 12 Total processing (MIPS) 250 Features 32-bit CPU timers, Dual security zones, FPU32, VCU, Watchdog timer UART 6 CAN (#) 2 Sigma-delta filter 0 PWM (Ch) 24 Number of ADC channels 12 Direct memory access (Ch) 1 32-ch DMA, 1 6-Ch DMA SPI 5 QEP 3 USB Yes Operating temperature range (°C) -40 to 125 Rating Automotive Communication interface CAN, I2C, SPI, UART
HTQFP (RFP) 144 484 mm² 22 x 22
  • Master Subsystem — Arm Cortex-M3
    • Up to 100 MHz
    • Embedded memory
      • Up to 512KB of flash (ECC)
      • Up to 32KB of RAM (ECC or parity)
      • Up to 64KB of shared RAM
      • 2KB of IPC Message RAM
    • Five Universal Asynchronous Receiver/Transmitters (UARTs)
    • Four Synchronous Serial Interfaces (SSIs) and a Serial Peripheral Interface (SPI)
    • Two Inter-integrated Circuits (I2Cs)
    • Universal Serial Bus On-the-Go (USB-OTG) + PHY
    • 10/100 ENET 1588 MII
    • Two Controller Area Network, D_CAN, modules (pin-bootable)
    • 32-channel Micro Direct Memory Access (µDMA)
    • Dual security zones (128-bit password per zone)
    • External Peripheral Interface (EPI)
    • Micro Cyclic Redundancy Check (µCRC) module
    • Four general-purpose timers
    • Two watchdog timer modules
    • Three external interrupts
    • Endianness: little endian
  • Clocking
    • On-chip crystal oscillator and external clock input
    • Dynamic Phase-Locked Loop (PLL) ratio changes supported
  • 1.2-V digital, 1.8-V analog, 3.3-V I/O design
  • Interprocessor Communications (IPC)
    • 32 handshaking channels
    • Four channels generate IPC interrupts
    • Can be used to coordinate transfer of data through IPC Message RAMs
  • Up to 74 individually programmable, multiplexed General-Purpose Input/Output (GPIO) pins
    • Glitch-free I/Os
  • Control Subsystem — TMS320C28x 32-bit CPU
    • Up to 150 MHz
    • C28x core hardware built-in self-test
    • Embedded memory
      • Up to 512KB of flash (ECC)
      • Up to 36KB of RAM (ECC or parity)
      • Up to 64KB of shared RAM
      • 2KB of IPC Message RAM
    • IEEE-754 single-precision Floating-Point Unit (FPU)
    • Viterbi, Complex Math, CRC Unit (VCU)
    • Serial Communications Interface (SCI)
    • SPI
    • I2C
    • 6-channel Direct Memory Access (DMA)
    • Nine Enhanced Pulse Width Modulator (ePWM) modules
      • 18 outputs (16 high-resolution)
    • Six 32-bit Enhanced Capture (eCAP) modules
    • Three 32-bit Enhanced Quadrature Encoder Pulse (eQEP) modules
    • Multichannel Buffered Serial Port (McBSP)
    • EPI
    • One security zone (128-bit password)
    • Three 32-bit timers
    • Endianness: little endian
  • Analog Subsystem
    • Dual 12-bit Analog-to-Digital Converters (ADCs)
    • Up to 2.88 MSPS
    • Up to 20 channels
    • Four Sample-and-Hold (S/H) circuits
    • Up to six comparators with 10-bit Digital-to-Analog Converter (DAC)
  • Package
    • 144-Pin RFP PowerPAD™ Thermally Enhanced Thin Quad Flatpack (HTQFP)
  • Temperature options:
    • T: –40°C to 105°C Junction
    • S: –40°C to 125°C Junction
    • Q: –40°C to 125°C Free-Air (AEC Q100 qualification for automotive applications)
  • Master Subsystem — Arm Cortex-M3
    • Up to 100 MHz
    • Embedded memory
      • Up to 512KB of flash (ECC)
      • Up to 32KB of RAM (ECC or parity)
      • Up to 64KB of shared RAM
      • 2KB of IPC Message RAM
    • Five Universal Asynchronous Receiver/Transmitters (UARTs)
    • Four Synchronous Serial Interfaces (SSIs) and a Serial Peripheral Interface (SPI)
    • Two Inter-integrated Circuits (I2Cs)
    • Universal Serial Bus On-the-Go (USB-OTG) + PHY
    • 10/100 ENET 1588 MII
    • Two Controller Area Network, D_CAN, modules (pin-bootable)
    • 32-channel Micro Direct Memory Access (µDMA)
    • Dual security zones (128-bit password per zone)
    • External Peripheral Interface (EPI)
    • Micro Cyclic Redundancy Check (µCRC) module
    • Four general-purpose timers
    • Two watchdog timer modules
    • Three external interrupts
    • Endianness: little endian
  • Clocking
    • On-chip crystal oscillator and external clock input
    • Dynamic Phase-Locked Loop (PLL) ratio changes supported
  • 1.2-V digital, 1.8-V analog, 3.3-V I/O design
  • Interprocessor Communications (IPC)
    • 32 handshaking channels
    • Four channels generate IPC interrupts
    • Can be used to coordinate transfer of data through IPC Message RAMs
  • Up to 74 individually programmable, multiplexed General-Purpose Input/Output (GPIO) pins
    • Glitch-free I/Os
  • Control Subsystem — TMS320C28x 32-bit CPU
    • Up to 150 MHz
    • C28x core hardware built-in self-test
    • Embedded memory
      • Up to 512KB of flash (ECC)
      • Up to 36KB of RAM (ECC or parity)
      • Up to 64KB of shared RAM
      • 2KB of IPC Message RAM
    • IEEE-754 single-precision Floating-Point Unit (FPU)
    • Viterbi, Complex Math, CRC Unit (VCU)
    • Serial Communications Interface (SCI)
    • SPI
    • I2C
    • 6-channel Direct Memory Access (DMA)
    • Nine Enhanced Pulse Width Modulator (ePWM) modules
      • 18 outputs (16 high-resolution)
    • Six 32-bit Enhanced Capture (eCAP) modules
    • Three 32-bit Enhanced Quadrature Encoder Pulse (eQEP) modules
    • Multichannel Buffered Serial Port (McBSP)
    • EPI
    • One security zone (128-bit password)
    • Three 32-bit timers
    • Endianness: little endian
  • Analog Subsystem
    • Dual 12-bit Analog-to-Digital Converters (ADCs)
    • Up to 2.88 MSPS
    • Up to 20 channels
    • Four Sample-and-Hold (S/H) circuits
    • Up to six comparators with 10-bit Digital-to-Analog Converter (DAC)
  • Package
    • 144-Pin RFP PowerPAD™ Thermally Enhanced Thin Quad Flatpack (HTQFP)
  • Temperature options:
    • T: –40°C to 105°C Junction
    • S: –40°C to 125°C Junction
    • Q: –40°C to 125°C Free-Air (AEC Q100 qualification for automotive applications)

The Concerto family is a multicore system-on-chip microcontroller unit (MCU) with independent communication and real-time control subsystems. The F28M35x family of devices is the first series in the Concerto family.

The communications subsystem is based on the industry-standard 32-bit Arm Cortex-M3 CPU and features a wide variety of communication peripherals, including Ethernet 1588, USB OTG with PHY, Controller Area Network (CAN), UART, SSI, I2C, and an external interface.

The real-time control subsystem is based on TI’s industry-leading proprietary 32-bit C28x floating-point CPU and features the most flexible and high-precision control peripherals, including ePWMs with fault protection, and encoders and captures—all as implemented by TI’s TMS320C2000™ Entry performance MCUs and Premium performance MCUs. In addition, the C28-CPU has been enhanced with the addition of the VCU instruction accelerator that implements efficient Viterbi, Complex Arithmetic, 16-bit FFTs, and CRC algorithms.

A high-speed analog subsystem and supplementary RAM memory is shared, along with on-chip voltage regulation and redundant clocking circuitry. Safety considerations also include Error Correction Code (ECC), parity, and code secure memory, as well as documentation to assist with system-level industrial safety certification.

The Concerto family is a multicore system-on-chip microcontroller unit (MCU) with independent communication and real-time control subsystems. The F28M35x family of devices is the first series in the Concerto family.

The communications subsystem is based on the industry-standard 32-bit Arm Cortex-M3 CPU and features a wide variety of communication peripherals, including Ethernet 1588, USB OTG with PHY, Controller Area Network (CAN), UART, SSI, I2C, and an external interface.

The real-time control subsystem is based on TI’s industry-leading proprietary 32-bit C28x floating-point CPU and features the most flexible and high-precision control peripherals, including ePWMs with fault protection, and encoders and captures—all as implemented by TI’s TMS320C2000™ Entry performance MCUs and Premium performance MCUs. In addition, the C28-CPU has been enhanced with the addition of the VCU instruction accelerator that implements efficient Viterbi, Complex Arithmetic, 16-bit FFTs, and CRC algorithms.

A high-speed analog subsystem and supplementary RAM memory is shared, along with on-chip voltage regulation and redundant clocking circuitry. Safety considerations also include Error Correction Code (ECC), parity, and code secure memory, as well as documentation to assist with system-level industrial safety certification.

Download View video with transcript Video

Similar products you might be interested in

open-in-new Compare alternates
Same functionality with different pin-out to the compared device
TMS320F28386D-Q1 ACTIVE Automotive C2000™ 32-bit MCU w/ connectivity manager, 2x C28x+CLA CPU, 1.5MB flash, FPU64, CLB, Eth Higher end device, new generation

Technical documentation

star =Top documentation for this product selected by TI
No results found. Please clear your search and try again.
View all 19
Type Title Date
* Data sheet F28M35x Concerto Microcontrollers datasheet (Rev. L) PDF | HTML 01 Feb 2021
* Errata F28M35x Concerto™ MCUs Silicon Errata (Rev. P) PDF | HTML 23 Jun 2020
* User guide Concerto F28M35x Technical Reference Manual (Rev. I) 09 Dec 2019
User guide TMS320C28x Extended Instruction Sets Technical Reference Manual (Rev. C) 29 Oct 2019
Application note Calculating Useful Lifetimes of Embedded Processors (Rev. B) PDF | HTML 07 May 2019
User guide TMS320F28002x Flash API Version 1.57.00.00 03 Mar 2019
Application note MSL Ratings and Reflow Profiles (Rev. A) 13 Dec 2018
Application note Dual Motor Ctl Using FCL and Perf Analysis Using SFRA on TMS320F28379D LaunchPad (Rev. A) 20 Mar 2018
User guide Fast Current Loop (C28x) Library 06 Mar 2018
Application note Performance Analysis of Fast Current Loop (FCL) in Servo 06 Mar 2018
User guide TMS320F28M35x and TMS320F28M36x Flash API Reference Guide (v1.53) (Rev. B) 16 Jan 2018
User guide TI-RTOS 2.20 User's Guide (Rev. M) 17 Jun 2016
Application note Calculator for CAN Bit Timing Parameters PDF | HTML 22 Mar 2016
User guide TI-RTOS 2.16 User's Guide (Rev. L) 22 Feb 2016
User guide TMS320C28x DSP CPU and Instruction Set (Rev. F) 10 Apr 2015
Application note Calculating FIT for a Mission Profile 24 Mar 2015
User guide TMS320C28x Floating Point Unit and Instruction Set Reference Guide (Rev. B) 23 Jan 2014
Application note High Voltage Solar Inverter DC-AC Kit 09 Jul 2012
User guide TMS320C28x Floating Point Unit and Instruction Set Reference Guide (Rev. A) 08 Aug 2008

Design & development

Please view the Design & development section on a desktop.

Ordering & quality

Information included:
  • RoHS
  • REACH
  • Device marking
  • Lead finish/Ball material
  • MSL rating/Peak reflow
  • MTBF/FIT estimates
  • Material content
  • Qualification summary
  • Ongoing reliability monitoring
Information included:
  • Fab location
  • Assembly location

Recommended products may have parameters, evaluation modules or reference designs related to this TI product.

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​

Videos