

Copyright © 2011-2013 Texas Instruments, Inc.

Texas Instruments CC2540/41

Bluetooth® Low Energy
Sample Applications Guide

v1.3.1

Document Number: SWRU297

 Page 2 of 30

Copyright © 2012-2013 Texas Instruments, Inc

Table Of Contents

TABLE OF CONTENTS .. 2

REFERENCES .. 5

1 OVERVIEW... 6
1.1 INTRODUCTION ... 6

2 BLOOD PRESSURE SENSOR .. 6
2.1 PROJECT OVERVIEW ... 6

2.1.1 User Interface .. 6
2.1.2 Basic Operation ... 6

2.2 SOFTWARE DESCRIPTION.. 7
2.2.1 Initialization ... 7
2.2.2 Event Processing ... 7
2.2.3 Callbacks ... 7
2.2.4 Sending Blood Pressure Measurement Indications ... 8
2.2.5 Sending Intermediate Measurement Notifications ... 8
2.2.6 Blood Pressure Measurement .. 8

3 HEALTH THERMOMETER .. 8
3.1 PROJECT OVERVIEW ... 8

3.1.1 User Interface .. 8
3.1.2 Basic Operation ... 9

3.2 SOFTWARE DESCRIPTION.. 9
3.2.1 Initialization ... 9
3.2.2 Event Processing ... 10
3.2.3 Callbacks ... 10
3.2.4 Sending Temperature Indications .. 10
3.2.5 Sending Intermediate Measurement Notifications ... 10
3.2.6 Sending Interval Change Indications ... 10
3.2.7 Thermometer Measurement Format .. 11

4 HEART RATE SENSOR .. 11
4.1 PROJECT OVERVIEW ... 11

4.1.1 User Interface .. 11
4.1.2 Basic Operation ... 11

4.2 SOFTWARE DESCRIPTION.. 11
4.2.1 Initialization ... 12
4.2.2 Event Processing ... 12
4.2.3 Callbacks ... 12
4.2.4 Sending Notifications ... 12

5 GLUCOSE COLLECTOR ... 12
5.1 PROJECT OVERVIEW ... 13

5.1.1 User Interface .. 13
5.1.2 Basic Operation ... 13
5.1.3 Record Filter Configuration .. 13

5.2 SOFTWARE DESCRIPTION.. 13
5.2.1 Initialization ... 14
5.2.2 Event Processing ... 14
5.2.3 Callbacks ... 14
5.2.4 Service Discovery .. 14
5.2.5 Service Configuration .. 14
5.2.6 Record Access Control Point ... 15

6 GLUCOSE SENSOR ... 15
6.1 PROJECT OVERVIEW ... 15

6.1.1 User Interface .. 15

TI CC2540 Bluetooth Low Energy Sample Applications Guide v1.3.1 SWRU297 Version 1.3.1

 Page 3 of 30

Copyright © 2012-2013 Texas Instruments, Inc

6.1.2 Basic Operation ... 15
6.2 SOFTWARE DESCRIPTION.. 16

6.2.1 Initialization ... 16
6.2.2 Event Processing ... 16
6.2.3 Callbacks ... 16
6.2.4 Sending Notifications and Indications ... 16
6.2.5 Record Access Control Point Processing .. 16

7 HID ADVANCED REMOTE CONTROL .. 17

8 HID EMULATED KEYBOARD .. 17
8.1 PROJECT OVERVIEW ... 17

8.1.1 User Interface .. 17
8.1.2 Basic Operation ... 17

8.2 SOFTWARE DESCRIPTION.. 18
8.3 HIDEMUKBD APPLICATION .. 18

8.3.1 Initialization ... 18
8.3.2 Event Processing ... 18
8.3.3 Callbacks ... 18
8.3.4 Sending Notifications ... 18

8.4 HID DEVICE PROFILE ... 19
8.4.1 Initialization ... 19
8.4.2 Event Processing ... 19
8.4.3 Callbacks ... 19
8.4.4 GATT Read and Write Callbacks ... 19
8.4.5 Mapping HID Reports to HID Characteristics .. 19
8.4.6 Sending and Receiving HID Reports ... 19
8.4.7 Advertising and Connection Procedures ... 20

9 HOSTTESTRELEASE- BLE NETWORK PROCESSOR .. 20

10 KEYFOBDEMO .. 20
10.1 PROJECT OVERVIEW ... 20

10.1.1 User Interface .. 21
10.1.2 Battery Operation .. 21
10.1.3 Accelerometer Operation ... 21
10.1.4 Keys ... 21
10.1.5 Proximity ... 21

10.2 SOFTWARE DESCRIPTION.. 22
10.2.1 Initialization ... 22
10.2.2 Event Processing ... 22
10.2.3 Callbacks ... 22

11 SENSORTAG ... 22
11.1 OPERATION... 22
11.2 SENSORS ... 23

12 SIMPLEBLECENTRAL .. 23

13 SIMPLEBLEPERIPHERAL .. 23
14 TIMEAPP- BLE WATCH .. 23

14.1 PROJECT OVERVIEW ... 23
14.1.1 User Interface .. 24
14.1.2 Basic Operation ... 24

14.2 SOFTWARE DESCRIPTION.. 25
14.2.1 Initialization ... 25
14.2.2 Event Processing ... 25
14.2.3 Callbacks ... 25
14.2.4 Service Discovery .. 25
14.2.5 Service Configuration .. 26
14.2.6 Handling Indications and Notifications ... 26

TI CC2540 Bluetooth Low Energy Sample Applications Guide v1.3.1 SWRU297 Version 1.3.1

 Page 4 of 30

Copyright © 2012-2013 Texas Instruments, Inc

14.2.7 Clock Time ... 26

15 SERIAL BOOTLOADER ... 26
15.1 BASIC OPERATION .. 26

15.1.1 Build and Flash the SBL .. 26
15.1.2 Build the Project to be Bootloaded .. 27
15.1.3 Download the User Project Image (.bin) ... 27

16 USB BOOTLOADER .. 27
16.1 BASIC OPERATION .. 27

16.1.1 Flash UBL .. 27
16.1.2 Build the Project to be Bootloaded .. 27
16.1.3 Download the User Project Image (.bin) ... 27

17 OVER AIR DOWNLOAD .. 28
17.1 TARGET REQUIREMENTS .. 28
17.2 SERVER REQUIREMENTS ... 28
17.3 OAD DEVELOPER’S GUIDE .. 28

18 GENERAL INFORMATION ... 29
18.1 DOCUMENT HISTORY ... 29

19 ADDRESS INFORMATION .. 29

20 TI WORLDWIDE TECHNICAL SUPPORT ... 29

TI CC2540 Bluetooth Low Energy Sample Applications Guide v1.3.1 SWRU297 Version 1.3.1

 Page 5 of 30

Copyright © 2012-2013 Texas Instruments, Inc

References
Included with Texas Instruments Bluetooth Low Energy v1.3.1 Stack Release (All path and file
references in this document assume that the BLE development kit software has been installed to
the default path C:\Texas Instruments\BLE-CC254x-1.3.1\):

[1] Texas Instruments Bluetooth® Low Energy Software Developer’s Guide (SWRU271B)

C:\Texas Instruments\BLE-CC254x-
1.3.1\Documents\TI_BLE_Software_Developer's_Guide.pdf

Adopted Bluetooth specifications (which can be downloaded from
https://www.bluetooth.org/Technical/Specifications/adopted.htm):

[2] Blood Pressure Profile (BLP) Specification v1.0

[3] Blood Pressure Service (BLS) Specification v1.0

[4] Health Thermometer Profile (HTP) Specification v1.0

[5] Health Thermometer Service (HTS) Specification v1.0

[6] Heart Rate Profile (HRP) Specification v1.0

[7] Heart Rate Service (HRS) Specification v1.0

[8] HID over GATT Profile (HOGP) Specification v1.0

[9] HID Service (HIDS) Specification v1.0

[10] Scan Parameters Profile (ScPP) v1.0

[11] Scan Parameters Service (ScPS) v1.0

[12] Device Information Service (DIS) Specification v1.1

[13] Battery Service (BAS) specification v1.0

[14] Proximity Profile (PXP) Specification v1.0

[15] Find Me Profile (FMP) Specification v1.0

[16] Link Loss Service (LLS) Specification v1.0

[17] Immediate Alert Service (IAS) Specification v1.0

[18] Tx Power Service (TPS) Specification v1.0

[19] Time Profile (TIP) Specification v1.0

[20] Alert Notification Profile (ANP) Specification v1.0

[21] Phone Alert Status (PASP) Specification v1.0

https://www.bluetooth.org/Technical/Specifications/adopted.htm

TI CC2540 Bluetooth Low Energy Sample Applications Guide v1.3.1 SWRU297 Version 1.3.1

 Page 6 of 30

Copyright © 2012-2013 Texas Instruments, Inc

1 Overview
The purpose of this document is to give an overview of the sample applications that are included
in the Texas Instruments CC2540/41 Bluetooth® low energy (BLE) software development kit. It is
recommended that you read [1] before attempting to use these sample applications, as some
knowledge of the CC2540/41 BLE protocol stack and software is required.

1.1 Introduction

Version 1.3.1 of the Texas Instruments CC2540/41 BLE software development kit includes
several sample applications implementing a variety of GATT-based profiles. Some of these
implementations are based on specifications that have been adopted by the Bluetooth Special
Interest Group (BT SIG), while others are based on specifications that are a work-in-progress and
have not been finalized. In addition, some applications are not based on any standardized profile
being developed by the BT SIG, but rather are custom implementations developed by Texas
Instruments. In order to interoperate with other Bluetooth low energy devices (such as a mobile
phone), an application would need to be written on the other device which implements the proper
GATT client and/or server functionality that matches the CC2540/41 sample application. The
status of the implementation of each profile/application is included in this document.

The information in this guide specifically mentions only CC2540 projects; however all of the
applications and configurations (with the exception of those that use the USB interface) also can
run on the CC2541. Be sure to open the correct project file depending on the chipset that is being
used.

2 Blood Pressure Sensor
This sample project implements the Blood Pressure profiles in a BLE peripheral device to provide
an example blood pressure monitor using simulated measurement data. The application
implements the "Sensor" role of the blood pressure profile. The project is based on the adopted
profile and service specifications for Blood Pressure ([2] and [3]). The project also includes the
Device Information Service ([12]).

The project can be opened with the following IAR workspace file:

C:\Texas Instruments\BLE-CC254x-1.3.1\

Projects\ble\BLoodPressure\CC2540DB\bloodpressure.eww

2.1 Project Overview

The project structure is very similar to that of the SimpleBLEPeripheral project. The APP directory
contains the application source code and header files. The project contains two configurations.

- CC2540DK-MINI Keyfob Slave: using the keyfob hardware platform.

- CC2540 Slave: using the SmartRF platform.

2.1.1 User Interface
There are two button inputs for this application.

KeyFob Right or SmartRF Joystick Right

When not connected, this button is used to toggle advertising on and off. When in a connection,
this increases the value of various measurements.

KeyFob Left or SmartRF Joystick Up

This button cycle through different optional measurement formats.

2.1.2 Basic Operation
Power up the device and press the right button to enable advertising. From a blood pressure
collector peer device, initiate a device discovery and connection procedure to discover and
connect to the blood pressure sensor. The peer device should discover the blood pressure
service and configure it to enable indication or notifications of the blood pressure measurement.

TI CC2540 Bluetooth Low Energy Sample Applications Guide v1.3.1 SWRU297 Version 1.3.1

 Page 7 of 30

Copyright © 2012-2013 Texas Instruments, Inc

The peer device may also discover the device information service for more information such as
mfg and serial number.

Once blood pressure measurements have been enabled the application will begin sending data to
the peer containing simulated measurement values. Pressing the left button cycles through
different data formats as follows:

• MMHG | TIMESTAMP | PULSE | USER | STATUS
• MMHG | TIMESTAMP
• MMHG
• KPA
• KPA | TIMESTAMP
• KPA |TIMESTAMP | PULSE

If the peer device initiates pairing, the blood pressure sensor will request a passcode. The
passcode is “000000”.

Upon termination, the BPM will not begin to advertising again until the button is pressed.

The peer device may also query the blood pressure for read only device information. Further
details on the supported items are listed in the GATT_DB excel sheet for this project. Examples
are model number, serial number, etc.

2.2 Software Description

The application is implemented in the file bloodpressure.c.

2.2.1 Initialization
The initialization of the application occurs in two phases: first, the Bloodpressure_Init function is
called by the OSAL. This function configures parameters in the peripheral profile, GAP, and GAP
bond manager. It also sets up the blood pressure service along with standard GATT and GAP
services in the attribute server. Then it sets an OSAL START_DEVICE_EVT event. This triggers
the second phase of the initialization, which can be found within the
Bloodpressure_ProcessEvent function. During this phase, the GAPRole_StartDevice function
is called to set up the GAP functions of the application. Then GAPBondMgr_Register is called to
register with the bond manager.

2.2.2 Event Processing
The application has two main event processing functions, Bloodpressure_ProcessEvent and
Bloodpressure_ProcessOSALMsg.

Function Bloodpressure_ProcessEvent handles events as follows:

• SYS_EVENT_MSG: Service the OSAL queue and process OSAL messages.
• BP_START_DEVICE_EVT: Start the device, as described in the previous section.
• BP_START_DISCOVERY_EVT: Start discovery, search for time service on collector.
• TIMER_BPMEAS_EVT: Perform final measurement
• BP_TIMER_CUFF_EVT: Perform a cutoff measurement
• BP_DISCONNECT_EVT: Disconnect after sending measurement

Function Bloodpressure_ProcessOSALMsg handles OSAL messages as follows:

• KEY_CHANGE: Handle key presses.
• GATT_MSG_EVENT: This will handle reception of time information from collector.

2.2.3 Callbacks
The application callback functions are as follows:

• PeripheralStateNotificationCB: This is the GAP event callback. It processes GAP
events for startup and link connect/disconnect.

TI CC2540 Bluetooth Low Energy Sample Applications Guide v1.3.1 SWRU297 Version 1.3.1

 Page 8 of 30

Copyright © 2012-2013 Texas Instruments, Inc

• bpServiceCB: This is the blood pressure service callback. It handles enabling or
disabling measurements.

• TimeAppPairStateCB: This is a GAPBOND callback to handle pairing states.
• TimeAppPasscodeCB: Returns the passcode of 0.

2.2.4 Sending Blood Pressure Measurement Indications
The application sends indication of the blood pressure measurement when configured to do so by
the peer device.

When the peer device configures the blood pressure measurement for indication the application
will receive a blood pressure service callback. The application starts a timer to begin periodic
simulated blood pressure measurements. When the timer expires the application calls
bpSendStoredMeas to build and send a measurement using the blood pressure service API. The
application expects the peer device to send back an indication confirmation.

2.2.5 Sending Intermediate Measurement Notifications
The application sends notification of the blood pressure measurement when configured to do so
by the peer device.

When the peer device configures the blood pressure measurement for notification the application
will receive a blood pressure service callback. The application starts a timer to begin periodic
simulated blood pressure measurements. When the timer expires the application calls
bloodPressureIMeasNotify to build and send a measurement using the blood pressure service
API.

2.2.6 Blood Pressure Measurement

Flags
Blood Pressure Measurement

Value
Time

Stamp
Pulse
Rate

User
ID

Systolic Diastolic MAP

Size 1
octet 2 octets 2 octets 2 octets 7 octets 2 octets 1 octet

3 Health Thermometer
This sample project implements a Health Thermometer and Device Information profile in a BLE
peripheral device to provide an example health thermometer application using simulated
measurement data. The application implements the "Sensor" role of the Health Thermometer
profile. The project is based on the adopted profile and service specifications for Health
Thermometer (see [4] and [5]). The project also includes the Device Information Service ([12]).

The project can be opened with the following IAR workspace file:

C:\TexasInstruments\BLE-CC254x-
1.3.1.1\Projects\ble\Thermometer\CC2540DB\thermometer.eww

3.1 Project Overview

The project structure is very similar to that of the SimpleBLEPeripheral project. The APP directory
contains the application source code and header files. The project contains two configurations.

• CC25.0DK-MINI Keyfob Slave: using the keyfob hardware platform.
• CC2540 Slave: using the SmartRF platform.

3.1.1 User Interface
There are two button inputs for this application.

KeyFob Right | SmartRF Joystick Right

When not connected and not configured to take measurements, this button is used to toggle
advertising on and off.

TI CC2540 Bluetooth Low Energy Sample Applications Guide v1.3.1 SWRU297 Version 1.3.1

 Page 9 of 30

Copyright © 2012-2013 Texas Instruments, Inc

When in a connection or configured to take measurements, this increases the temperature by 1
degree Celsius. After 3 degrees in temperature rise, the interval will be set to 30 seconds and if
configured, this will indicate to the peer an interval change initiated at the thermometer.

KeyFob Left | SmartRF Joystick Up

This button cycle through different measurement formats.

3.1.2 Basic Operation
Power up the device and press the right button to enable advertising. From a thermometer
collector peer device, initiate a device discovery and connection procedure to discover and
connect to the thermometer sensor. The peer device should discover the thermometer service
and configure it to enable indication or notifications of the thermometer measurement. The peer
device may also discover the device information service for more information such as mfg and
serial number.

Once thermometer measurements have been enabled the application will begin sending data to
the peer containing simulated measurement values. Pressing the left button cycles through
different data formats as follows:

• CELCIUS | TIMESTAMP | TYPE
• CELCIUS | TIMESTAMP
• CELCIUS
• FARENHEIT
• FARENHEIT | TIMESTAMP
• FARENHEIT | TIMESTAMP | TYPE

If the peer device initiates pairing, the the HT will request a passcode. The passcode is “000000”.

The HT operates in the following states:

• Idle – In this state, the thermometer will wait for the right button to be pressed to start
advertising.

• Idle Configured – The thermometer waits the interval before taking a measurement and
proceeding to Idle Measurement Ready state.

• Idle Measurement Ready – The thermometer has a measurement ready and will
advertise to allow connection. The thermometer will periodically advertise in this state.

• Connected Not Configured - The thermometer may be configured to enable
measurement reports. The thermometer will not send stored measurements until the
CCC is enabled. Once connection is established, the thermometer sets a timer to
disconnect in 20 seconds.

• Connected Configured - The thermometer will send any stored measurements if CCC is
set to send measurement indications.

• Connected Bonded - The thermometer will send any stored measurements if CCC was
previously set to send measurement indications.

The peer device may also query the thermometers read only device information. Examples are
model number, serial number, etc.

3.2 Software Description

The application is implemented in the file thermometer.c.

3.2.1 Initialization
The initialization of the application occurs in two phases: first, the Thermometer_Init function is
called by the OSAL. This function configures parameters in the peripheral profile, GAP, and GAP
bond manager. It also sets up the thermometer service along with standard GATT and GAP
services in the attribute server. Then it sets an OSAL START_DEVICE_EVT event. This triggers
the second phase of the initialization, which can be found within the
Thermometer_ProcessEvent function. During this phase, the GAPRole_StartDevice function is

TI CC2540 Bluetooth Low Energy Sample Applications Guide v1.3.1 SWRU297 Version 1.3.1

 Page 10 of 30

Copyright © 2012-2013 Texas Instruments, Inc

called to set up the GAP functions of the application. Then GAPBondMgr_Register is called to
register with the bond manager.

3.2.2 Event Processing
The application has two main event processing functions, Thermometer_ProcessEvent and
Thermometer_ProcessOSALMsg.

Function Thermometer_ProcessEvent handles events as follows:

• SYS_EVENT_MSG: Service the OSAL queue and process OSAL messages.
• START_DEVICE_EVT: Start the device, as described in the previous section.
• TH_START_DISCOVERY_EVT: Start discovery, search for time service on collector.
• TH_PERIODIC_MEAS_EVT: Start a measurement.
• TH_PERIODIC_IMEAS_EVT: Send immediate measurement.
• TH_DISCONNECT_EVT: Terminate connection.

Function Thermometer_ProcessOSALMsg handles OSAL messages as follows:

• KEY_CHANGE: Handle key presses.
• GATT_MSG_EVENT: This will handle reception of time information from collector.

3.2.3 Callbacks
The application callback functions are as follows:

• PeripheralStateNotificationCB: This is the GAP event callback. It processes GAP
events for startup and link connect/disconnect.

• ThermometerCB: This is the thermometer service callback. It handles enabling or
disabling measurements.

• TimeAppPairStateCB: This is a GAPBOND callback to handle pairing states.
• TimeAppPasscodeCB: Returns the passcode of 0.

3.2.4 Sending Temperature Indications
The application enables indication of the thermometer measurement when configured to do so by
the peer device.

When the peer device configures the thermometer measurement for indication the application will
receive a thermometer service callback. The application starts a timer to begin periodic simulated
thermometer measurements. When the timer expires the application calls
thermometerMeasIndicate to build and store a measurement. Once a measurement is ready,
the thermometer will enter connectable state and send advertisements. If the peer device
connects and the CCC is enabled, the thermometer will send the stored measurements. The
thermometer expects the peer device to send back an indication confirmation for each indication
sent.

3.2.5 Sending Intermediate Measurement Notifications
The application sends notification of the thermometer measurement when configured to do so by
the peer device.

When the peer device configures the thermometer measurement for notification the application
will receive a thermometer service callback. The application starts a timer to begin periodic
simulated thermometer measurements. When the timer expires the application calls
thermometerIMeasIndicate to build and send a measurement using the thermometer service
API.

3.2.6 Sending Interval Change Indications
If the CCC for interval change is enabled, the thermometer will send an indication to the peer if
the interval is changed by the thermometer. This can be triggered by pressing the right button
three times which will increase the simulated temperature by 3 degrees and also reset the interval
to 30 seconds.

TI CC2540 Bluetooth Low Energy Sample Applications Guide v1.3.1 SWRU297 Version 1.3.1

 Page 11 of 30

Copyright © 2012-2013 Texas Instruments, Inc

3.2.7 Thermometer Measurement Format
 Flags Temperature

Measurement Value
Time Stamp
(if present)

Temperature Type
(if present)

Size 1 octet 4 octets 0 or 7 octets 0 or 1 octet

Units None Based on bit 0 of Flags
field

Smallest unit
in seconds

None

4 Heart Rate Sensor
This sample project implements the Heart Rate and Battery profiles in a BLE peripheral device to
provide an example heart rate sensor using simulated measurement data. The application
implements the "Sensor" role of the Heart Rate profile and the "Battery Reporter" role of the
Battery profile. The project is based on adopted profile and service specifications for Health Rate
([6] and [7]). The project also includes the Device Information Service ([12]).

The project can be opened with the following IAR workspace file:

C:\Texas Instruments\BLE-CC254x-1.3.1\Projects\ble\HeartRate\CC2540DB\heartrate.eww

4.1 Project Overview

The project structure is very similar to that of the SimpleBLEPeripheral project. The APP directory
contains the application source code and header files. The project contains one configuration,
CC2540DK-MINI Keyfob Slave, using the keyfob hardware platform.

4.1.1 User Interface
When not connected, the keyfob's right button is used to toggle advertising on and off. When in a
connection, the keyfob's left button cycles through different heart rate sensor data formats and the
right button sends a battery level-state notification.

4.1.2 Basic Operation
Power up the device and press the right button to enable advertising. From a heart rate collector
peer device, initiate a device discovery and connection procedure to discover and connect to the
heart rate sensor. The peer device should discover the heart rate service and configure it to
enable notifications of the heart rate measurement. The peer device may also discover and
configure the battery service for battery level-state notifications.

Once heart rate measurement notifications have been enabled the application will begin sending
data to the peer containing simulated measurement values. Pressing the left button cycles
through different data formats as follows:

• Sensor contact not supported.
• Sensor contact not detected.
• Sensor contact and energy expended set.
• Sensor contact and R-R Interval set.
• Sensor contact, energy expended, and R-R Interval set.
• Sensor contact, energy expended, R-R Interval, and UINT16 heart rate set.
• Nothing set.

If the peer device initiates pairing then the devices will pair. Only "just works" pairing is supported
by the application (pairing without a passcode).

The application advertises using either a fast interval or a slow interval. When advertising is
initiated by a button press or when a connection is terminated due to link loss, the application will
start advertising at the fast interval for 30 seconds followed by the slow interval. When a
connection is terminated for any other reason the application will start advertising at the slow
interval. The advertising intervals and durations are configurable in file heartrate.c.

4.2 Software Description

TI CC2540 Bluetooth Low Energy Sample Applications Guide v1.3.1 SWRU297 Version 1.3.1

 Page 12 of 30

Copyright © 2012-2013 Texas Instruments, Inc

The application is implemented in the file heartrate.c.

4.2.1 Initialization
The initialization of the application occurs in two phases: first, the HeartRate_Init function is
called by the OSAL. This function configures parameters in the peripheral profile, GAP, and GAP
bond manager. It also sets up the heart rate service and the battery service along with standard
GATT and GAP services in the attribute server. Then it sets an OSAL START_DEVICE_EVT
event. This triggers the second phase of the initialization, which can be found within the
HeartRate_ProcessEvent function. During this phase, the GAPRole_StartDevice function is
called to set up the GAP functions of the application. Then GAPBondMgr_Register is called to
register with the bond manager.

4.2.2 Event Processing
The application has two main event processing functions, HeartRate_ProcessEvent and
HeartRate_ProcessOSALMsg.

Function HeartRate_ProcessEvent handles events as follows:

• SYS_EVENT_MSG: Service the OSAL queue and process OSAL messages.
• START_DEVICE_EVT: Start the device, as described in the previous section.
• HEART_PERIODIC_EVT: Send periodic heart rate measurements.
• BATT_PERIODIC_EVT: Check the battery level and send notification if it changed.

Function HeartRate_ProcessOSALMsg handles OSAL messages as follows:

• KEY_CHANGE messages: Call function HeartRate_HandleKeys to handle key presses.

4.2.3 Callbacks
The application callback functions are as follows:

• HeartRateGapStateCB: This is the GAP event callback. It processes GAP events for
startup and link connect/disconnect.

• HeartRateCB: This is the heart rate service callback. It handles enabling or disabling
periodic heart rate measurements when notifications of the heart rate measurement are
enabled or disabled.

• HeartRateBattCB: This is the battery service callback. It handles enabling or disabling
periodic battery measurements when notifications of the battery level-state are enabled or
disabled.

4.2.4 Sending Notifications
The application sends notifications of the heart rate measurement and the battery level-state
when configured to do so by the peer device.

When the peer device configures the heart rate measurement for notification the application will
receive a heart rate service callback. The application starts a timer to begin periodic simulated
heart rate measurements. When the timer expires the application calls heartRateMeasNotify to
build and send a measurement using the heat rate service API.

When the peer device configures the battery level-state for notification the application will receive
a battery service callback. The application starts a timer to periodically measure the battery level.
When the timer expires the application calls battery service API function Batt_MeasLevel to
measure the battery level using the CC2450 ADC. Notification of the battery level-state is handled
inside the battery service; if the battery level has dropped since the previous measurement a
notification is sent.

5 Glucose Collector
This sample project implements a Glucose Collector. The application is designed to connect to
the glucose sensor sample application to demonstrate the operation of the Glucose Profile.

TI CC2540 Bluetooth Low Energy Sample Applications Guide v1.3.1 SWRU297 Version 1.3.1

 Page 13 of 30

Copyright © 2012-2013 Texas Instruments, Inc

5.1 Project Overview

The Glucose Collector project structure is very similar to that of the SimpleBLEPeripheral project.
The APP directory contains the application source code and header files. The project contains
one configuration, CC2540EM Master, using the SmartRF05EB + CC2540EM hardware platform.

5.1.1 User Interface
The SmartRF05EB joystick and display provide a user interface for the application. The joystick
and buttons are used as follows:

• Joystick Up: If not connected, start or stop device discovery. If connected to a glucose
sensor, request the number of records that meet configured filter criteria.

• Joystick Left: Scroll through device discovery results. If connected to a glucose sensor,
send a record access abort message.

• Joystick Center: Connect or disconnect to/from the currently selected device.
• Joystick Right: If connected, request records that meet configured filter criteria.
• Joystick Down: If connected, clear records that meet configured filter criteria. If not

connected, erase all bonds.

The LCD display is used to display the following information:

• Device BD address.
• Device discovery results.
• Connection state.
• Pairing and bonding status.
• Number of records requested.
• Sequence number, glucose concentration, and Hba1c value of received glucose

measurement and context notifications.

5.1.2 Basic Operation
When the application powers up it displays "Gluc. Collector" and the BD address of the device.
Press Joystick Up to start device discovery. When discovery completes the number of devices
found will be displayed. Press Joystick Left to scroll through the devices.

To connect to the selected device press Joystick Center. The connection status will be displayed.
Once connected, the application will attempt to discover the Glucose service and Device
Information service on the peer device. Since the Glucose profile required security the application
will also initiate bonding. When the bonding is complete, other operations such as reading or
erasing records can be performed described in the previous section.

To disconnect press Joystick Center again. To reconnect to the same device again press
Joystick Center again.

5.1.3 Record Filter Configuration
Glucose record requests use filters to select the records that will be operated on by the request.
These filters are configured in the collector using compile time configuration.

In file glucoseCollector.c, macro GLUCOSE_FILTER_ENABLED controls whether filters are used.
When set to FALSE, operations that read, erase, or get the number of records will operate on all
records. When set to TRUE, these operations will use either a time filter or sequence number
filter, as configured in macro DEFAULT_FILTER_TYPE. When set to
CTL_PNT_FILTER_SEQNUM the collector will filter on sequence number. When set to
CTL_PNT_FILTER_TIME the collector will filter on time.

File glucoseCollector.c has hardcoded time and sequence number filter values. These are set in
variables filterTime1, filterTime2, filterSeqNum1, and filterSeqNum2.

5.2 Software Description

The application is implemented in the following files:

TI CC2540 Bluetooth Low Energy Sample Applications Guide v1.3.1 SWRU297 Version 1.3.1

 Page 14 of 30

Copyright © 2012-2013 Texas Instruments, Inc

• glucoseCollector.c: Main initialization, event handling and callback functions.

• glucose_config.c: Characteristic configuration functions.

• glucose_discovery.c: Service discovery functions.

• glucose_ind.c: Indication and notification handling functions.

• glucose_ctlpnt.c: Record access control point functions.

5.2.1 Initialization
The initialization of the application occurs in two phases: first, the GlucColl_Init function is called
by the OSAL. This function configures parameters in the central profile, GAP, and GAP bond
manager and also initializes GATT for client operation. It also sets up standard GATT and GAP
services in the attribute server. Then it sets an OSAL START_DEVICE_EVT event. This triggers
the second phase of the initialization, which can be found within the GlucColl_ProcessEvent
function. During this phase, the GAPCentralRole_StartDevice function is called to set up the
GAP functions of the application. Then GAPBondMgr_Register is called to register with the
bond manager.

5.2.2 Event Processing
The application has two main event processing functions, GlucColl_ProcessEvent and
GlucColl_ProcessOSALMsg.

Function GlucColl_ProcessEvent handles events as follows:

• SYS_EVENT_MSG: Service the OSAL queue and process OSAL messages.

• START_DEVICE_EVT: Start the device, as described in the previous section.

• START_DISCOVERY_EVT: Start service discovery.

• PROCEDURE_TIMEOUT_EVT: A glucose record access procedure has timed out.

Function GlucColl_ProcessOSALMsg handles OSAL messages as follows:

• KEY_CHANGE messages: Call function GlucColl_HandleKeys to handle keypresses.

• GATT_MSG_EVENT messages: Call function GlucCollProcessGATTMsg to handle
messages from GATT.

5.2.3 Callbacks
The application callback functions are as follows:

• GlucCollCentralEventCB: This is the GAP event callback. It processes GAP events for
initialization, device discovery, and link connect/disconnect.

• GlucCollPairStateCB: This is the GAP bond manager state callback. It displays the
status of pairing and bonding operations.

• GlucCollPasscodeCB: This is the GAP bond manager passcode callback. It generates
and displays a passcode.

5.2.4 Service Discovery
The GlucColl application performs service discovery for the Glucose service and Device
Information service. Discovery is initiated when a connection is established by setting OSAL
event START_DISCOVERY_EVT. This will result in execution of function
GlucCollCentralStartDiscovery, which performs primary service discovery for the Glucose
service and Device ID service. When GATT events are received during service discovery
function glucCollProcessGATTMsg is called. This function processes the results of the previous
GATT procedure and initiates the next step in the discovery process.

5.2.5 Service Configuration
When service discovery completes the service configuration procedure is initiated. This
procedure reads and writes characteristics of interest in the discovered services.

TI CC2540 Bluetooth Low Energy Sample Applications Guide v1.3.1 SWRU297 Version 1.3.1

 Page 15 of 30

Copyright © 2012-2013 Texas Instruments, Inc

The main service configuration function is glucoseConfigNext. This function searches the
cached handle array for the next characteristic of interest and performs a read or write on that
characteristic.

When a GATT read or write response is received, function glucoseConfigGattMsg is called.
This function processes the received response and performs an action, such as updating the
clock display, and then calls glucoseConfigNext to initiate the next read or write.

The application writes all discovered client characteristic configuration descriptors to enable
notification or indication. The application also reads some characteristics and then performs no
action with the received response. This is done simply for testing and demonstration.

5.2.6 Record Access Control Point
The Glucose profile uses a characteristic called the record access control point to perform
operations on glucose measurement records stored by the glucose sensor. File glucose_ctlpnt.c
contains functions for sending control point messages. The following different operations can be
performed:

• Retrieve stored records.
• Delete stored records.
• Abort an operation in progress.
• Report number of stored records.

The collector sends control point messages to a sensor by using write requests, while the sensor
sends control point messages to the collector by using indications. When records are retrieved,
the glucose measurement and glucose context are sent via notifications on their respective
characteristics.

If an expected response is not received, the operation will time out after 30 seconds and the
collector will close the connection.

6 Glucose Sensor
This sample project implements the Glucose profile in a BLE peripheral device to provide an
example glucose sensor using simulated measurement data. The application implements the
"Sensor" role of the Glucose Profile.

6.1 Project Overview

The project structure is very similar to that of the SimpleBLEPeripheral project. The APP
directory contains the application source code and header files. The project contains one
configuration, CC2540DK-MINI Keyfob Slave, using the keyfob hardware platform.

6.1.1 User Interface

When not connected, the keyfob's right button is used to toggle advertising on and off. When in a
connection, the keyfob's left button sends a glucose measurement and glucose context.

6.1.2 Basic Operation

Power up the device and press the right button to enable advertising. From a glucose collector
peer device, initiate a device discovery and connection procedure to discover and connect to the
glucose sensor. The peer device should discover the glucose service and configure it to enable
notifications of the glucose measurement. It may also enable notifications of the glucose
measurement context.

Once glucose measurement notifications have been enabled a simulated measurement can be
sent by pressing the left button. If the peer device has also enabled notifications of the glucose
measurement context then this will be sent following the glucose measurement.

The peer device may also write commands to the record access control point to retrieve or erase
stored glucose measurement records. The sensor has four hardcoded simulated records.

TI CC2540 Bluetooth Low Energy Sample Applications Guide v1.3.1 SWRU297 Version 1.3.1

 Page 16 of 30

Copyright © 2012-2013 Texas Instruments, Inc

If the peer device initiates pairing then the devices will pair. Only "just works" pairing is supported
by the application (pairing without a passcode).

6.2 Software Description

The application is implemented in the file glucose.c.

6.2.1 Initialization

The initialization of the application occurs in two phases: first, the Glucose_Init function is called
by the OSAL. This function configures parameters in the peripheral profile, GAP, and GAP bond
manager. It also sets up the glucose service along with standard GATT and GAP services in the
attribute server. Then it sets an OSAL START_DEVICE_EVT event. This triggers the second
phase of the initialization, which can be found within the Glucose_ProcessEvent function. During
this phase, the GAPRole_StartDevice function is called to set up the GAP functions of the
application. Then GAPBondMgr_Register is called to register with the bond manager.

6.2.2 Event Processing

The application has two main event processing functions, Glucose_ProcessEvent and
Glucose_ProcessOSALMsg.

Function Glucose_ProcessEvent handles events as follows:

• SYS_EVENT_MSG: Service the OSAL queue and process OSAL messages.
• START_DEVICE_EVT: Start the device, as described in the previous section.

Function Glucose_ProcessOSALMsg handles OSAL messages as follows:

• KEY_CHANGE messages: Call function Glucose_HandleKeys to handle
keypresses.

• CTL_PNT_MSG: Call function glucoseProcessCtlPntMsg to process record
access control point messages.

6.2.3 Callbacks

The application callback functions are as follows:

• glucoseGapStateCB: This is the GAP event callback. It processes GAP events
for startup and link connect/disconnect.

• glucosePairStateCB: This is the GAP pairing state callback. It is used to store
the bonding state of pairing.

• GlucoseCB: This is the glucose service callback. It handles enabling or
disabling of indications of the glucose measurement, context, glucose
measurement context, and record access control point.

6.2.4 Sending Notifications and Indications

The application sends notifications of the glucose measurement and glucose measurement
context when configured to do so by the peer device. The application sends indications of the
record access control point when configured to do so by the peer device.

Transmissions of notifications are paced by using a timer to trigger the next transmission. The
period of the timer is set in macro DEFAULT_NOTI_PERIOD.

6.2.5 Record Access Control Point Processing

The record access control point is used to perform retrieval and management of measurements
stored in the glucose sensor. The record access control point has its own protocol to perform
these functions. The application implements this protocol in function

TI CC2540 Bluetooth Low Energy Sample Applications Guide v1.3.1 SWRU297 Version 1.3.1

 Page 17 of 30

Copyright © 2012-2013 Texas Instruments, Inc

glucoseProcessCtlPntMsg. This function is executed when the peer device writes a message
to the control point.

Function glucoseProcessCtlPntMsg processes received messages by decoding the message
operation and operands. It then executes function glucoseCtlPntHandleOpcode to perform the
detailed processing required by the operation.

A set of example utility functions is implemented that processes the simulated glucose
measurement data. These utility functions perform operations such as:

• Find records earlier than or later than a given time and date.
• Find records within a range of two given times and dates.
• Find first, last, or all records.

7 HID Advanced Remote Control
The HID Advanced Remote Control is a sample application which implements a HID mouse,
keyboard, and consumer controls. A gyro and accelerometer act as inputs allow the user to move
a mouse by simply pointing the remote. The example is HID compliant and has been tested with
Windows8 for example. For more information, refer to the TI_CC2541_ARC_User_Guide included
with this release.

The example applications for both peripheral and HID Dongle are located at

C:\TexasInstruments\BLE-CC254x-1.3.1\Projects\ble\HIDAdvRemote\ HIDAdvRemote.eww

C:\TexasInstruments\BLE-CC254x-1.3.1\Projects\ble\HIDAdvRemoteDongle\
HIDAdvRemoteDongle.eww

8 HID Emulated Keyboard
This sample project implements the HID Over GATT profile in a BLE peripheral device to provide
an example of how a HID keyboard can be emulated with a simple two button remote control
device. The project is based on adopted profile and service specifications for HID over GATT ([8]
and [9]) and Scan Parameters ([10] and [11]). The project also includes the Device Information
Service ([12]) and Battery Service ([13]).

The project can be opened with the following IAR workspace file:

C:\TexasInstruments\BLE-CC254x-1.3.1\Projects\ble\HIDEmuKbd\CC2540DB\ HidEmuKbd.eww

8.1 Project Overview

The project structure is very similar to that of the SimpleBLEPeripheral project. The APP
directory contains the application source code and header files.

The project contains one configuration, CC2540DK-MINI Keyfob Slave, using the keyfob
hardware platform.

8.1.1 User Interface

When not connected and not already advertising, pressing either button will initiate advertising.
When in a connection, the keyfob's left button sends a “left arrow” key and the right button sends
a “right arrow” key.

Note that a secure connection must be established before key presses will be sent to the peer
device.

8.1.2 Basic Operation

Power up the device and press either button to enable advertising. From a HID Host peer device,
initiate a device discovery and connection procedure to discover and connect to the HID device.
The peer device should discover the HID service and recognize the device as a keyboard. The
peer device may also discover and configure the battery service for battery level-state
notifications.

TI CC2540 Bluetooth Low Energy Sample Applications Guide v1.3.1 SWRU297 Version 1.3.1

 Page 18 of 30

Copyright © 2012-2013 Texas Instruments, Inc

By default the HID device requires security and uses “just works” pairing. After a secure
connection is established and the HID host configures the HID service to enable notifications, the
HID device can send HID key presses to the HID host. A notification is sent when a button is
pressed and when a button is released.

The HID host can send keyboard LED information to the device to illuminate the keyfob LEDs.
The “caps lock” setting controls the green LED and the “num lock” setting controls the red LED.

If there is no HID activity for a period of time (20 seconds by default) the HID device will
disconnect. When the connection is closed the HID device will not advertise. Press either button
to enable advertising and connect again.

8.2 Software Description

The project uses the following services and profiles:

• Battery service (battservice.c and battservice.h).
• Device Information service (devinfoservice.c and devinfoservice.h).
• Scan Parameters service (scanparamservice.c and scanparamservice.h).
• HID service for keyboard (hidkbdservice.c hidkbdservice.h).
• HID device profile (hiddev.c and hiddev.h). This is a common profile for HID devices that

performs the following procedures:
o Advertising, connection procedures, and security procedures.
o Sending HID notifications.
o Handling read and write of HID service characteristics.

8.3 HidEmuKbd Application

The application is implemented in the file hidemukbd.c.

8.3.1 Initialization

The HidEmuKbd_Init function is called by the OSAL to perform task initialization procedures.
This function sets parameters for the peripheral profile, GAP bond manager, and Battery service.
The function also registers the HID keyboard service and HID device profile.

8.3.2 Event Processing

The application has two main event processing functions, HidEmuKbd_ProcessEvent and
HidEmuKbd_ProcessOSALMsg.

Function HidEmuKbd_ProcessEvent handles the SYS_EVENT_MSG event, which services the
OSAL queue and processes OSAL messages.

Function HidEmuKbd_ProcessOSALMsg handles OSAL messages as follows:

• KEY_CHANGE messages: Call function HidEmuKbd_HandleKeys to handle
keypresses.

8.3.3 Callbacks

The application callback functions are as follows:

• hidEmuKbdRptCB: This is the HID device report callback. It processes HID reports
received from the HID host.

• hidEmuKbdEvtCB: This is the HID device event callback. It handles HID events, such
as enter/exit suspend or enter/exit boot mode.

8.3.4 Sending Notifications

The application sends notifications containing HID keypress data when a button is pressed. This
is done in function HidEmuKbd_HandleKeys by calling HID device profile function
HidDev_Report. The details of sending notifications are handled in the HID device profile.

TI CC2540 Bluetooth Low Energy Sample Applications Guide v1.3.1 SWRU297 Version 1.3.1

 Page 19 of 30

Copyright © 2012-2013 Texas Instruments, Inc

8.4 HID Device Profile

The HID device profile is implemented in the file hiddev.c.

8.4.1 Initialization

The initialization of occurs in two phases: first, the HidDev_Init function is called by OSAL. This
function sets up the battery, device information, and scan parameters services along with
standard GATT and GAP services in the attribute server. Then it sets an OSAL
START_DEVICE_EVT event. This triggers the second phase of the initialization, which can be
found within the HidDev_ProcessEvent function. During this phase, the GAPRole_StartDevice
function is called to set up the GAP functions of the application. Then GAPBondMgr_Register is
called to register with the bond manager.

8.4.2 Event Processing

The application has two main event processing functions, HidDev_ProcessEvent and
HidDev_ProcessOSALMsg.

Function HidDev_ProcessEvent handles events as follows:

• SYS_EVENT_MSG: Service the OSAL queue and process OSAL messages.
• START_DEVICE_EVT: Start the device, as described in the previous section.
• HID_IDLE_EVT: Terminate the connection if idle.
• BATT_PERIODIC_EVT: Check the battery level and send notification if it changed.

Function HidDev_ProcessOSALMsg handles OSAL messages as follows:

• GATT_MSG_EVENT messages: Call function hidDevProcessGattMsg to process
GATT messages.

8.4.3 Callbacks

The HID device profile callback functions are as follows:

• HidDevGapStateCB: This is the GAP event callback. It processes GAP events for
startup and link connect/disconnect.

• hidDevPairStateCB: This is the pairing state callback. Handle pairing events.
• hidDevPasscodeCB: This is the passcode callback. Send a passcode response.
• HidDevBattCB: This is the battery service callback. It handles enabling or disabling

periodic battery measurements when notifications of the battery level-state are enabled or
disabled.

• hidDevScanParamCB: This is the scan parameters service callback. Handle a scan
parameters service event.

8.4.4 GATT Read and Write Callbacks

The HID device profile GATT read and write callbacks, HidDev_WriteAttrCB and
HidDev_ReadAttrCB handle reading and writing of all HID characteristics. These functions are
used by a HID service when registering the service with GATT.

8.4.5 Mapping HID Reports to HID Characteristics

A HID service defines one or more HID reports in its service that are used to send and receive
HID data. The HID device profile has a table that maps HID reports to HID characteristics. The
table is constructed by the HID service using the HID device profile and must be registered with
the HID device profile by calling function HidDev_RegisterReports.

8.4.6 Sending and Receiving HID Reports

TI CC2540 Bluetooth Low Energy Sample Applications Guide v1.3.1 SWRU297 Version 1.3.1

 Page 20 of 30

Copyright © 2012-2013 Texas Instruments, Inc

The application calls function HidDev_Report to send a HID report. The HID device sends HID
report notifications to the HID host when configured to do so. When notifications are enabled or
disabled for a HID report characteristic the HID report callback is executed with event
HID_DEV_OPER_ENABLE or HID_DEV_OPER_DISABLE.

A HID report is received from the HID host is either a read event or write event. The HID report
callback is executed with event HID_DEV_OPER_READ or HID_DEV_OPER_WRITE.

8.4.7 Advertising and Connection Procedures

The HID device profile manages advertising and connection procedures. The device will start
advertising if the HidDev_Report function is called when not connected and not already
advertising.

Advertising is performed at an “initial” rate when not bonded, and at a “low” or “high” rate if
bonded. The advertising intervals and durations for the different rates are configurable.

If the device is bonded the device will advertise at the high rate when reconnecting to send a HID
report. If the connection is terminated and the device is bonded and the flags are set to
HID_FLAGS_NORMALLY_CONNECTABLE the device will advertise at the low rate. Otherwise
the device will not advertise when disconnected until it has data to send.

If no HID data is sent or received within an idle timeout period the HID device profile will terminate
the connection, unless pairing is in progress. The idle timeout is configured by the application
and can be disabled by setting it to zero.

9 HostTestRelease- BLE Network Processor
The HostTestRelease project implements a BLE network processor, for use with an external
microcontroller or a PC software application such as BTool. More information on the
HostTestRelease project can be found in [1].

10 KeyFobDemo
The KeyFobDemo application will demonstrate the following.

• Report battery level
• Report 3 axis accelerometer readings.
• Report proximity changes
• Report key press changes

The following GATT services are used:

• Device Information (see [12])
• Link Loss (for Proximity Profile, Reporter role; see [14] and [16])
• Immediate Alert (for Proximity Profile, Reporter role and Find Me Profile, Target role; see

[14], [15], and [17])
• Tx Power (for Proximity Profile, Reporter role; see [18])
• Battery (see [13])
• Accelerometer
• SimpleKeys

The accelerometer and simple keys profiles are not aligned to official SIG profiles, but rather
serve as an example of profile service implementation. The device information service and
proximity-related services are based on adopted specifications.

10.1 Project Overview

The project structure is very similar to that of the SimpleBLEPeripheral project. The APP directory
contains the application source code and header files. The project supports the following
configurations.

TI CC2540 Bluetooth Low Energy Sample Applications Guide v1.3.1 SWRU297 Version 1.3.1

 Page 21 of 30

Copyright © 2012-2013 Texas Instruments, Inc

- CC2540DK-MINI Keyfob Slave: using the keyfob hardware platform.

10.1.1 User Interface
There are two button inputs for this application, an LED, and buzzer.

Right Button

When not connected, this button is used to toggle advertising on and off. When in a connection,
this will register a key press which may be enabled to notify a peer device or may be read by a
peer device.

Left Button

When in a connection, this will register a key press which may be enabled to notify a peer device
or may be read by a peer device.

LED

Flash when Link Loss Alert is triggered.

Buzzer

The buzzer turns on if a Link Loss Alert is triggered.

10.1.2 Battery Operation
They KeyFob used an ADC to read remaining battery level. The battery profile allows for the USB
Dongle to read the percentage of battery remaining on the keyfob by reading the value of <
BATTERY_LEVEL_UUID>

10.1.3 Accelerometer Operation
The keyfob uses SPI to interface to a 3 axis accelerometer on the KeyFobDemo. The
accelerometer must be enabled < ACCEL_ENABLER_UUID> by writing a value of “01”. Once the
accelerometer is enabled, each axis can be configured to send notifications by writing “01 00” to
the characteristic configuration for each axis < GATT_CLIENT_CHAR_CFG_UUID>. In addition,
the values can be read by reading <ACCEL_X_UUID>, <ACCEL_Y_UUID>,<ACCEL_Z_UUID>.

10.1.4 Keys
The simple keys service on the keyfob allows the device to send notifications of key presses and
releases to a central device. The application registers with HAL to receive a callback in case HAL
detects a key change.

The peer device may read the value of the keys by reading <SK_KEYPRESSED_UUID>.

The peer device may enable key press notifications by writing a “01” to
<GATT_CLIENT_CHAR_CFG_UUID>.

A value of “00” indicates that neither key is pressed. A value of “01” indicates that the left key is
pressed. A value of “02” indicates that the right key is pressed. A value of “03” indicates that both
keys are pressed.

10.1.5 Proximity
One of the services of the proximity profile is the link loss service, which allows the proximity
reporter to begin an alert in the event the connection drops.

The link loss alert can be set by writing a value to <PROXIMITY_ALERT_LEVEL_UUID>.

The default alert value setting is “00”, which indicates “no alert.” To turn on the alert, write a 1-
byte value of “01” (low alert) or “02” (high alert). By default, the link does not timeout until 20
seconds have gone by without receiving a packet. This “Supervision Timeout” value can be
changed in the “Connection Services” tab; however the timeout value must be set before the
connection is established. After completing the write, move the keyfob device far enough away
from the USB Dongle until the link drops. Alternatively, you can disconnect the USB Dongle from
the PC, effectively dropping the connection. Once the timeout on the keyfob expires, the alarm
will be triggered. If a low alet was set, the keyfob will make a low pitched beep. If a high alert was
set, the keyfob will make a high pitched beep and the LED will blink. In either case, the keyfob will
beep ten times and then stop. Alternatively to stop the beeping, either a new connection can be
formed with the keyfob, or the button can be pressed.

TI CC2540 Bluetooth Low Energy Sample Applications Guide v1.3.1 SWRU297 Version 1.3.1

 Page 22 of 30

Copyright © 2012-2013 Texas Instruments, Inc

10.2 Software Description

The application is implemented in the file keyFobDemo.c.

10.2.1 Initialization
The initialization of the application occurs in two phases: first, the KeyFobApp_Init function is
called by the OSAL. This function configures parameters in the peripheral profile, GAP, and GAP
bond manager. It also sets up the KeyFobDemo example services along with standard GATT and
GAP services in the attribute server. Then it sets an OSAL START_DEVICE_EVT event. This
triggers the second phase of the initialization, which can be found within the
KeyFobApp_ProcessEvent function. During this phase, the GAPRole_StartDevice function is
called to set up the GAP functions of the application. Then GAPBondMgr_Register is called to
register with the bond manager.

10.2.2 Event Processing
The application has two main event processing functions, KeyFobApp_ProcessEvent and
KeyFobApp_ProcessOSALMsg.

Function KeyFobApp_ProcessEvent handles events as follows:

• SYS_EVENT_MSG: Service the OSAL queue and process OSAL messages.
• KFD_START_DEVICE_EVT: Start the device, as described in the previous section.
• KFD_ACCEL_READ_EVT: Read accelerometer and set timer for periodic reads.
• KFD_BATTERY_CHECK_EVT: Read battery level and set timer for periodic reads.
• KFD_TOGGLE_BUZZER_EVT: Toggle buzzer on proximity state.

Function KeyFobApp_ProcessOSALMsg handles OSAL messages as follows:

• KEY_CHANGE: Handle key presses.

10.2.3 Callbacks
The application callback functions are as follows:

• PeripheralStateNotificationCB: This is the GAP event callback. It processes GAP
events for startup and link connect/disconnect.

• ProximityAttrCB: Receive info on link loss and setup from proximity service.
• AccelEnablerChangeCB: Handle enabling of accelerometer.

11 SensorTag
The SensorTag is a BLE peripheral slave device which runs on the CC2541 SensorTag
hardware platform. The Sensor Tag includes five peripheral sensors with a complete software
solution for sensor drivers interfaced to a GATT server running on TI BLE stack. The GATT server
contains a primary service for each sensor for configuration and data collection.

11.1 Operation

On startup, the SensorTag is advertising with a 100ms interval. The connection is established by
a Central Device and the sensors can then be configured to provide measurement data. The
Central Device could be any BLE compliant device and the main focus is on BLE compliant
mobile phones, running either Andriod or iOS. The central device should be able to

• Scan and discover the Sensor Tag. (Scan response contain name “SensorTag”)
• Establish connection based on user defined Connection Parameters
• Perform Service Discovery – Discover Characteristic by UUID
• Operate as a GATT Client - Write to and read from Characteristic Value

The Central Device shall initiate the connection and thereby become the Master.

To obtain the data, the corresponding sensor must first be activated, which is done via a
Characteristic Value write to appropriate service.

TI CC2540 Bluetooth Low Energy Sample Applications Guide v1.3.1 SWRU297 Version 1.3.1

 Page 23 of 30

Copyright © 2012-2013 Texas Instruments, Inc

The most power efficient way to obtain measurements for a sensor is to

• Enable notification
• Enable Sensor
• When notification with data is obtained at the Master side, disable the sensor (notification

still on though)

Alternative do not use notifications at all, then simply

• Enable sensor
• Read data and verify
• Disable sensor

For the latter alternative please keep in mind that sensor take different amount of time to perform
measurement. Depending on the connection interval (~10 – 4000 ms) set by the Central Device,
the time for achieving measurement data can vary. The individual sensors require varying delays
to complete measurements. Recommended setting is 100ms but for fast accelerometer and
Magnetometer data updates, a lower is necessary. Notifications can be stopped and the sensors
turned on/off

11.2 Sensors

The SensorTag has support for the following sensors:

• IR Temperature, both object and ambient temperature
• Accelerometer, 3 axis
• Humidity, both relative humidity and temperature
• Magnetometer, 3 axis
• Barometer, both pressure and temperature
• Gyroscope, 3 axis

12 SimpleBLECentral
The SimpleBLECentral project implements a very simple BLE central device with GATT client
functionality. It makes use of the SmartRF05 + CC2540EM hardware platform. This project can be
used as a framework for developing many different central-role applications. More information on
the SimpleBLECentral project can be found in [1].

13 SimpleBLEPeripheral
The SimpleBLEPeripheral project implements a very simple BLE peripheral device with GATT
services, including configurations for the CC2540DK-MINI keyfob as well as the SmartRF05 +
CC2540EM hardware platforms. This project can be used as a framework for developing many
different peripheral-role applications. More information on the SimpleBLEPeripheral project can
be found in [1].

14 TimeApp- BLE Watch
This sample project implements time and alert-related profiles in a BLE peripheral device to
provide an example of how Bluetooth LE profiles are used in a product like a watch. The project is
based on adopted profile specifications for Time ([19]), Alert Notification ([20]), and Phone Alert
Status ([21]). All profiles are implemented in the Client role. In addition, the following Network
Availability Profile, Network Monitor role has been implemented, based on Network Availability
Draft Specification d05r04 (UCRDD).

The project can be opened with the following IAR workspace file:

C:\Texas Instruments\BLE-CC254x-1.3.1\Projects\ble\TimeApp\CC2540\TimeApp.eww

14.1 Project Overview

TI CC2540 Bluetooth Low Energy Sample Applications Guide v1.3.1 SWRU297 Version 1.3.1

 Page 24 of 30

Copyright © 2012-2013 Texas Instruments, Inc

The TimeApp project structure is very similar to that of the SimpleBLEPeripheral project. The APP
directory contains the application source code and header files. The project contains one
configuration, CC2540EM Slave, using the SmartRF05EB + CC2540EM hardware platform.

14.1.1 User Interface
The SmartRF05EB joystick and display provide a user interface for the application. The joystick
and buttons are used as follows:

• Joystick Up: Start or stop advertising.
• Joystick Left: If connected, send a command to the Alert Notification control point.
• Joystick Center: If connected, disconnect. If held down on power-up, erase all bonds.
• Joystick Right: If connected, initiate a Reference Time update.
• Joystick Down: If connected, initiates a Ringer Control Point update

The LCD display is used to display the following information:

• Device BD address.
• Connection state.
• Pairing and bonding status.
• Passcode display.
• Time and date.
• Network availability.
• Battery state of peer device.
• Alert notification messages.
• Unread message alerts.
• Ringer status.

14.1.2 Basic Operation
When the application powers up it displays "Time App", the BD address of the device, and a
default time and date of "00:00 Jan01 2000". To connect, press Joystick Up to start advertising
then initiate a connection from a peer device. The connection status will be displayed. Once
connected, the application will attempt to discover the following services on the peer device:

• Current Time Service
• DST Change Service
• Reference Time Service
• Alert Notification Service
• Phone Alert Status Service
• Network Availability Service
• Battery Service

The discovery procedure will cache handles of interest. When bonded to a peer device, the
handles are saved so that the discovery procedure is not performed on subsequent connections.

If a service is discovered certain service characteristics are read and displayed. The network
availability status and battery level will be displayed and the current time will be updated.

The application also enables notification or indication for characteristics that support these
operations. This allows the peer device to send notifications or indications updating the time,
network availability, or battery status. The peer device can also send alert notification messages
and unread message alerts. These updates and messages will be displayed on the LCD.

The peer device may initiate pairing. If a passcode is required the application will generate and
display a random passcode. Enter this passcode on the peer device to proceed with pairing.

The application advertises using either a fast interval or a slow interval. When advertising is
initiated by a button press or when a connection is terminated due to link loss, the application will
start advertising at the fast interval for 30 seconds followed by the slow interval. When a

TI CC2540 Bluetooth Low Energy Sample Applications Guide v1.3.1 SWRU297 Version 1.3.1

 Page 25 of 30

Copyright © 2012-2013 Texas Instruments, Inc

connection is terminated for any other reason the application will start advertising at the slow
interval. The advertising intervals and durations are configurable in file timeapp.c.

14.2 Software Description

The TimeApp application is implemented in the following files:

• timeapp.c: Main initialization, event handling and callback functions.
• timeapp_clock.c: Clock timekeeping and display functions.
• timeapp_config.c: Characteristic configuration functions.
• timeapp_discovery.c: Service discovery functions.
• timeapp_ind.c: Indication and notification handling functions.

14.2.1 Initialization
The initialization of the application occurs in two phases: first, the TimeApp_Init function is called
by the OSAL. This function configures parameters in the peripheral profile, GAP, and GAP bond
manager and also initializes GATT for client operation. It also sets up standard GATT and GAP
services in the attribute server. Then it sets an OSAL START_DEVICE_EVT event. This triggers
the second phase of the initialization, which can be found within the TimeApp_ProcessEvent
function. During this phase, the GAPRole_StartDevice function is called to set up the GAP
functions of the application. Then GAPBondMgr_Register is called to register with the bond
manager.

14.2.2 Event Processing
The application has two main event processing functions, TimeApp_ProcessEvent and
timeApp_ProcessOSALMsg.

Function TimeApp_ProcessEvent handles events as follows:

• SYS_EVENT_MSG: Service the OSAL queue and process OSAL messages.
• START_DEVICE_EVT: Start the device, as described in the previous section.
• START_DISCOVERY_EVT: Start service discovery.
• CLOCK_UPDATE_EVT: Update the clock display.

Function timeApp_ProcessOSALMsg handles OSAL messages as follows:

• KEY_CHANGE messages: Call function timeApp_HandleKeys to handle keypresses.
• GATT_MSG_EVENT messages: Call function timeAppProcessGATTMsg to handle

messages from GATT.

14.2.3 Callbacks
The application callback functions are as follows:

• timeAppGapStateCB: This is the GAP event callback. It processes GAP events for
startup and link connect/disconnect.

• timeAppPairStateCB: This is the GAP bond manager state callback. It displays the
status of pairing and bonding operations.

• timeAppPasscodeCB: This is the GAP bond manager passcode callback. It generates
and displays a passcode.

14.2.4 Service Discovery
The application performs service discovery for several Bluetooth LE services. Discovery is
initiated when a connection is established to a peer device with which there is no existing bond.
Discovery starts when the discovery delay timer expires, which sets event
START_DISCOVERY_EVT. This will result in execution of function timeAppDiscStart. However
if a pairing procedure is in progress when the timer expires discovery will be postponed until
pairing completes. This is done in case the peer device requires security before its characteristics
are read or written.

TI CC2540 Bluetooth Low Energy Sample Applications Guide v1.3.1 SWRU297 Version 1.3.1

 Page 26 of 30

Copyright © 2012-2013 Texas Instruments, Inc

A service discovery procedure is performed for each service until discovery has been attempted
on all services of interest. The service discovery procedure is generalized as follows:

1. Discovery the service by UUID.

2. If found, discover all characteristics of the service. Cache the handles of characteristics of
interest.

3. If a discovered characteristic uses a client characteristic configuration descriptor
(abbreviated as CCCD in the code), discover all descriptors of the characteristic.

If the mandatory characteristics and descriptors of the service are discovered then discovery of
the service is deemed successful.

The handles of discovered characteristics of interest are stored in array timeAppHdlCache.

The main service discovery function is timeAppDiscGattMsg. This function is executed when a
discovery-related GATT message response is received. This function then executes a separate
discovery function for each service. The service discovery state is maintained in variable
timeAppDiscState.

14.2.5 Service Configuration
When service discovery completes the service configuration procedure is initiated. This procedure
reads and writes characteristics of interest in the discovered services.

The main service configuration function is timeAppConfigNext. This function searches the
cached handle array for the next characteristic of interest, and once found it performs a read or
write on that characteristic.

When a GATT read response or write response is received, function timeAppConfigGattMsg is
called. This function processes the received response and performs an action, such as updating
the clock display, and then calls timeAppConfigNext to initiate the next read or write.

The application writes all discovered client characteristic configuration descriptors to enable
notification or indication. The application also reads some characteristics and then performs no
action with the received response. This is done simply for testing and demonstration.

14.2.6 Handling Indications and Notifications
Handling of received indications and notifications is performed by function timeAppIndGattMsg.
This function is called when a GATT indication or notification message is received. The function
will process the data in the received message and display it on the LCD.

14.2.7 Clock Time
The application uses the OSAL Clock service to update and maintain the clock time. When new
date and time data is received from the peer device, function timeAppClockSet is called to
update the time in OSAL and display the updated time on the LCD. The LCD is periodically
updated by an OSAL timer that sets event CLOCK_UPDATE_EVT.

15 Serial Bootloader
This sample allows the user load an image over the UART0-Alt1 port.

C:\Texas Instruments\BLE-CC254x-1.3.1\Projects\ble\SBL\iar\cc254x\sbl.eww

15.1 Basic Operation

The SBL is a utility application allowing the user download an image over the serial port. This
might be useful for field updates or allowing an external MCU to change firmware without using
the CC Debugger. The example provided in this release is specific to UART0-Alt1, although
source is provided if modification to settings is required.

15.1.1 Build and Flash the SBL
Build the sbl project and flash it to CC254X.

TI CC2540 Bluetooth Low Energy Sample Applications Guide v1.3.1 SWRU297 Version 1.3.1

 Page 27 of 30

Copyright © 2012-2013 Texas Instruments, Inc

15.1.2 Build the Project to be Bootloaded
This release contains an example project which creates a bootload compatible image. The
example project is located at

C:\TexasInstruments\BLE-CC254x-1.3.1\Projects\ble\HostTestApp\CC2540\
HostTestRelease.ewp

Select the CC2540-EM-SBL project configuration, and build the project. The .bin is located at

C:\TexasInstruments\BLE-CC254x-1.3.1\Projects\ble\HostTestApp\CC2540\CC2540EM-
SBL\Exe\HostTestReleaseCC2540-SBL.bin

15.1.3 Download the User Project Image (.bin)
TI provides a PC tool to download the image. The latest version can be found on our wiki at
http://processors.wiki.ti.com/index.php/Category:BluetoothLE .

To re-bootload send the HCI_EXT_UTIL_FORCE_BOOT command, to put a device back in
bootloader mode.

16 USB Bootloader
This sample application allows the user load an image over the USB port.

16.1 Basic Operation

The UBL is a utility application allowing the user to download an image to the USB dongle by
drag and drop in Microsoft Windows. This would be useful for updating the firmware on a USB
dongle when no programming pins are available. The example provided in this release is specific
to USB dongle and Nano dongle.

16.1.1 Flash UBL
The UBL is provided as a hex file. Some source is provided, but this is only for reference. Flash
the image using the TI Flash Programmer.

For USB Dongle provided with CC2540DK-mini kit use

C:\Texas Instruments\BLE-CC254x-1.3.1\Projects\ble\UBL\soc_8051\usb_msd\bin\ ubl_cc2540-
dk.hex

For the Nano dongle use

C:\Texas Instruments\BLE-CC254x-1.3.1\Projects\ble\UBL\soc_8051\usb_msd\bin\ ubl_cc2540-
nano.hex

16.1.2 Build the Project to be Bootloaded
This release contains an example project which creates a bootload compatible image. The
example project is located at

C:\Texas Instruments\BLE-CC254x-
1.3.1\Projects\ble\HostTestApp\CC2540\HostTestRelease.ewp

Select the CC2540USB-UBL project configuration, and build the project. The .bin is located at

C:\TexasInstruments\BLE-CC254x-1.3.1\Projects\ble\HostTestApp\CC2540\CC2540USB-
UBL\Exe\ HostTestReleaseCC2540USB-UBL.bin

16.1.3 Download the User Project Image (.bin)
Once the bootloader has been flashed, the USB dongle will show up as a mass storage device.
Use Microsoft Windows explorer to drag and drop the HostTestReleaseCC2540USB-UBL.bin to
the mass storage. Once it is copies over, the dongle will change and register with Windows as a
virtual com port. Press and hold the USB dongle button furthest from port while inserting the
dongle to run the bootloader again. The nano dongle will enter mass storage on insertion, but will
stay in that mode for a short amount of time only.

http://processors.wiki.ti.com/index.php/Category:BluetoothLE

TI CC2540 Bluetooth Low Energy Sample Applications Guide v1.3.1 SWRU297 Version 1.3.1

 Page 28 of 30

Copyright © 2012-2013 Texas Instruments, Inc

17 Over Air Download
OAD is an extended stack feature provided as a value-enhancing solution for updating code in
deployed devices without the cost of physical access via a programming header. OAD is a client-
server mechanism in which one device acts as the OAD image server (OAD manager) and the
other device is the OAD image client (OAD target).

17.1 Target Requirements

The target must be setup with a BIM (Boot Image Manager) and at least one image with OAD
profile support.

The BIM project can be found at

C:\Texas Instruments\BLE-CC254x-1.3.1\Projects\ble\util\BIM\cc254x\BIM.eww

An Example of an Image with OAD support is

C:\Texas Instruments\BLE-CC254x-
1.3.1\Projects\ble\SimpleBlePeripheral\CC254xDB\SimpleBlePeripheral.eww

17.2 Server Requirements

The installer includes a server application compatible with the SBL Tool which runs on the
SmartRF board. The project allows the user to connect load an image over the serial port, and
then transfer it over the air to the target.

This example server application is located at

C:\Texas Instruments\BLE-CC254x-
1.3.1\Projects\ble\OADManager\CC2541DB\OADManager.eww

In addition, other servers can be used such as a phone with BLE support or a PC. For PC
support, there is dev monitor application which can be found on TI CC2541 product page.

http://www.ti.com/product/cc2541

 For iOS, there is a sensorTag application which performs OAD. For more information visit the
SensorTag wiki

http://processors.wiki.ti.com/index.php/SensorTag_User_Guide

17.3 OAD Developer’s Guide

A detailed guide on OAD can be found on the Texas Instruments wiki page.

http://processors.wiki.ti.com/images/8/82/OAD_for_CC254x.pdf

http://www.ti.com/product/cc2541
http://processors.wiki.ti.com/index.php/SensorTag_User_Guide
http://processors.wiki.ti.com/images/8/82/OAD_for_CC254x.pdf

TI CC2540 Bluetooth Low Energy Sample Applications Guide v1.3.1 SWRU297 Version 1.3.1

 Page 29 of 30

Copyright © 2012-2013 Texas Instruments, Inc

18 General Information

18.1 Document History

Table 1: Document History

Revision Date Description/Changes

1.0 2011-07-13 Initial release, documenting sample applications included in BLEv1.1 release

1.2 2012-02-07 Updated to align with BLEv1.2 release sample applications.

1.2.2 2012-04-12 Updated with Glucose Collector/Sensor sample applications

1.3.1 2013-04-15 Updated with Sensor Tag, OAD, Advanced Remote.

19 Address Information
Texas Instruments Norway AS
Gaustadalléen 21
N-0349 Oslo
NORWAY
Tel: +47 22 95 85 44
Fax: +47 22 95 85 46
Web site: http://www.ti.com/lpw

20 TI Worldwide Technical Support
Internet
TI Semiconductor Product Information Center Home Page: support.ti.com
TI Semiconductor KnowledgeBase Home Page: support.ti.com/sc/knowledgebase

TI LPRF forum E2E community http://www.ti.com/lprf-forum

Product Information Centers
Americas

Phone: +1(972) 644-5580
Fax: +1(972) 927-6377
Internet/Email: support.ti.com/sc/pic/americas.htm

Europe, Middle East and Africa

Phone:
Belgium (English) +32 (0) 27 45 54 32
Finland (English) +358 (0) 9 25173948
France +33 (0) 1 30 70 11 64
Germany +49 (0) 8161 80 33 11
Israel (English) 180 949 0107
Italy 800 79 11 37
Netherlands (English) +31 (0) 546 87 95 45
Russia +7 (0) 95 363 4824
Spain +34 902 35 40 28
Sweden (English) +46 (0) 8587 555 22
United Kingdom +44 (0) 1604 66 33 99
Fax: +49 (0) 8161 80 2045
Internet: support.ti.com/sc/pic/euro.htm

http://www.ti.com/lpw
http://focus.ti.com/general/docs/dsnsuprt.tsp
http://www-k.ext.ti.com/sc/technical-support/knowledgebase.htm
http://www-k.ext.ti.com/sc/technical-support/pic/americas.htm
http://www-k.ext.ti.com/sc/technical-support/pic/euro.htm

TI CC2540 Bluetooth Low Energy Sample Applications Guide v1.3.1 SWRU297 Version 1.3.1

 Page 30 of 30

Copyright © 2012-2013 Texas Instruments, Inc

Japan

Fax International +81-3-3344-5317
 Domestic 0120-81-0036
Internet/Email International support.ti.com/sc/pic/japan.htm
 Domestic www.tij.co.jp/pic

Asia

Phone International +886-2-23786800
 Domestic Toll-Free Number
 Australia 1-800-999-084
 China 800-820-8682
 Hong Kon 800-96-5941
 India +91-80-51381665 (Toll)
 Indonesia 001-803-8861-1006
 Korea 080-551-2804
 Malaysia 1-800-80-3973
 New Zealand 0800-446-934
 Philippines 1-800-765-7404
 Singapore 800-886-1028
 Taiwan 0800-006800
 Thailand 001-800-886-0010

Fax +886-2-2378-6808
Email tiasia@ti.com or ti-china@ti.com
Internet support.ti.com/sc/pic/asia.htm

http://www-k.ext.ti.com/sc/technical-support/pic/japan.htm
http://www.tij.co.jp/pic
mailto:tiasia@ti.com
mailto:ti-china@ti.com
http://www-k.ext.ti.com/sc/technical-support/pic/asia.htm

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale
supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive

Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications

Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers

DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps

DSP dsp.ti.com Energy and Lighting www.ti.com/energy

Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial

Interface interface.ti.com Medical www.ti.com/medical

Logic logic.ti.com Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity www.ti.com/wirelessconnectivity

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com/audio
http://www.ti.com/automotive
http://amplifier.ti.com
http://www.ti.com/communications
http://dataconverter.ti.com
http://www.ti.com/computers
http://www.dlp.com
http://www.ti.com/consumer-apps
http://dsp.ti.com
http://www.ti.com/energy
http://www.ti.com/clocks
http://www.ti.com/industrial
http://interface.ti.com
http://www.ti.com/medical
http://logic.ti.com
http://www.ti.com/security
http://power.ti.com
http://www.ti.com/space-avionics-defense
http://microcontroller.ti.com
http://www.ti.com/video
http://www.ti-rfid.com
http://www.ti.com/omap
http://e2e.ti.com
http://www.ti.com/wirelessconnectivity

	Table Of Contents
	References
	1 Overview
	1.1 Introduction

	2 Blood Pressure Sensor
	2.1 Project Overview
	2.1.1 User Interface
	2.1.2 Basic Operation

	2.2 Software Description
	2.2.1 Initialization
	2.2.2 Event Processing
	2.2.3 Callbacks
	2.2.4 Sending Blood Pressure Measurement Indications
	2.2.5 Sending Intermediate Measurement Notifications
	2.2.6 Blood Pressure Measurement

	3 Health Thermometer
	3.1 Project Overview
	3.1.1 User Interface
	3.1.2 Basic Operation

	3.2 Software Description
	3.2.1 Initialization
	3.2.2 Event Processing
	3.2.3 Callbacks
	3.2.4 Sending Temperature Indications
	3.2.5 Sending Intermediate Measurement Notifications
	3.2.6 Sending Interval Change Indications
	3.2.7 Thermometer Measurement Format

	4 Heart Rate Sensor
	4.1 Project Overview
	4.1.1 User Interface
	4.1.2 Basic Operation

	4.2 Software Description
	4.2.1 Initialization
	4.2.2 Event Processing
	4.2.3 Callbacks
	4.2.4 Sending Notifications

	5 Glucose Collector
	5.1 Project Overview
	5.1.1 User Interface
	5.1.2 Basic Operation
	5.1.3 Record Filter Configuration

	5.2 Software Description
	5.2.1 Initialization
	5.2.2 Event Processing
	5.2.3 Callbacks
	5.2.4 Service Discovery
	5.2.5 Service Configuration
	5.2.6 Record Access Control Point

	6 Glucose Sensor
	6.1 Project Overview
	6.1.1 User Interface
	6.1.2 Basic Operation

	6.2 Software Description
	6.2.1 Initialization
	6.2.2 Event Processing
	6.2.3 Callbacks
	6.2.4 Sending Notifications and Indications
	6.2.5 Record Access Control Point Processing

	7 HID Advanced Remote Control
	8 HID Emulated Keyboard
	8.1 Project Overview
	8.1.1 User Interface
	8.1.2 Basic Operation

	8.2 Software Description
	8.3 HidEmuKbd Application
	8.3.1 Initialization
	8.3.2 Event Processing
	8.3.3 Callbacks
	8.3.4 Sending Notifications

	8.4 HID Device Profile
	8.4.1 Initialization
	8.4.2 Event Processing
	8.4.3 Callbacks
	8.4.4 GATT Read and Write Callbacks
	8.4.5 Mapping HID Reports to HID Characteristics
	8.4.6 Sending and Receiving HID Reports
	8.4.7 Advertising and Connection Procedures

	9 HostTestRelease- BLE Network Processor
	10 KeyFobDemo
	10.1 Project Overview
	10.1.1 User Interface
	10.1.2 Battery Operation
	10.1.3 Accelerometer Operation
	10.1.4 Keys
	10.1.5 Proximity

	10.2 Software Description
	10.2.1 Initialization
	10.2.2 Event Processing
	10.2.3 Callbacks

	11 SensorTag
	11.1 Operation
	11.2 Sensors

	12 SimpleBLECentral
	13 SimpleBLEPeripheral
	14 TimeApp- BLE Watch
	14.1 Project Overview
	14.1.1 User Interface
	14.1.2 Basic Operation

	14.2 Software Description
	14.2.1 Initialization
	14.2.2 Event Processing
	14.2.3 Callbacks
	14.2.4 Service Discovery
	14.2.5 Service Configuration
	14.2.6 Handling Indications and Notifications
	14.2.7 Clock Time

	15 Serial Bootloader
	15.1 Basic Operation
	15.1.1 Build and Flash the SBL
	15.1.2 Build the Project to be Bootloaded
	15.1.3 Download the User Project Image (.bin)

	16 USB Bootloader
	16.1 Basic Operation
	16.1.1 Flash UBL
	16.1.2 Build the Project to be Bootloaded
	16.1.3 Download the User Project Image (.bin)

	17 Over Air Download
	17.1 Target Requirements
	17.2 Server Requirements
	17.3 OAD Developer’s Guide

	18 General Information
	18.1 Document History

	19 Address Information
	20 TI Worldwide Technical Support

