
TMS320C28x CPU and Instruction Set

Reference Guide

Literature Number: SPRU430F
August 2001–Revised April 2015

2 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

Contents

Contents

Preface... 10
1 Architectural Overview.. 13

1.1 Introduction to the CPU ... 14
1.1.1 Compatibility With Other TMS320 CPUs .. 14
1.1.2 Switching to C28x Mode From Reset .. 14

1.2 Components of the CPU .. 15
1.2.1 Central Processing Unit (CPU) ... 15
1.2.2 Emulation Logic ... 16
1.2.3 Signals ... 16

1.3 Memory Map ... 16
1.3.1 CPU Interrupt Vectors ... 17

1.4 Memory Interface .. 18
1.4.1 Address and Data Buses .. 18
1.4.2 Special Bus Operations .. 19
1.4.3 Alignment of 32-Bit Accesses to Even Addresses ... 19

2 Central Processing Unit .. 20
2.1 CPU Architecture .. 21
2.2 CPU Registers ... 23

2.2.1 Accumulator (ACC, AH, AL) ... 25
2.2.2 Multiplicand Register (XT) ... 26
2.2.3 Product Register (P, PH, PL) ... 26
2.2.4 Data Page Pointer (DP) ... 27
2.2.5 Stack Pointer (SP) .. 28
2.2.6 Auxiliary Registers (XAR0-XAR7, AR0-AR7) ... 28
2.2.7 Program Counter (PC) ... 29
2.2.8 Return Program Counter (RPC) .. 29
2.2.9 Status Registers (ST0, ST1) .. 29
2.2.10 Interrupt-Control Registers (IFR, IER, DBGIER) ... 29

2.3 Status Register ST0.. 30
2.4 Status Register ST1 ... 41
2.5 Program Flow .. 44

2.5.1 Interrupts ... 44
2.5.2 Branches, Calls, and Returns ... 44
2.5.3 Repeating a Single Instruction .. 44
2.5.4 Instruction Pipeline ... 45

2.6 Multiply Operations .. 45
2.6.1 16-bit × 16-bit Multiplication ... 45
2.6.2 32-Bit × 32-Bit Multiplication .. 46

2.7 Shift Operations .. 47

3 CPU Interrupts and Reset .. 52
3.1 CPU Interrupts Overview ... 53
3.2 CPU Interrupt Vectors and Priorities .. 53
3.3 Maskable Interrupts: INT1–INT14, DLOGINT, and RTOSINT ... 55

3.3.1 CPU Interrupt Flag Register (IFR) .. 55
3.3.2 CPU Interrupt Enable Register (IER) and CPU Debug Interrupt Enable Register (DBGIER) 56

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com

3SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

Contents

3.4 Standard Operation for Maskable Interrupts ... 58
3.5 Nonmaskable Interrupts .. 62

3.5.1 INTR Instruction .. 62
3.5.2 TRAP Instruction .. 62
3.5.3 Hardware Interrupt NMI .. 64

3.6 Illegal-Instruction Trap .. 65
3.7 Hardware Reset (RS) ... 65

4 Pipeline ... 67
4.1 Pipelining of Instructions .. 68

4.1.1 Decoupled Pipeline Segments... 69
4.1.2 Instruction-Fetch Mechanism .. 69
4.1.3 Address Counters FC, IC, and PC .. 70

4.2 Visualizing Pipeline Activity ... 71
4.2.1 Example 4-2: Diagraming Pipeline Activity .. 71
4.2.2 Example 4-3 : Simplified Diagram of Pipeline Activity.. 73

4.3 Freezes in Pipeline Activity ... 73
4.3.1 Wait States ... 73
4.3.2 Instruction-Not-Available Condition ... 74

4.4 Pipeline Protection ... 74
4.4.1 Protection During Reads and Writes to the Same Data-Space Location 74
4.4.2 Protection Against Register Conflicts ... 75
4.4.3 Protection Against Interrupts... 76

4.5 Avoiding Unprotected Operations .. 76
4.5.1 Unprotected Program-Space Reads and Writes .. 76
4.5.2 An Access to One Location That Affects Another Location ... 77
4.5.3 Write Followed By Read Protection Mode ... 77

5 C28x Addressing Modes ... 79
5.1 Type of Addressing Modes ... 80
5.2 Addressing Modes Select Bit (AMODE)... 81
5.3 Assembler/Compiler Tracking of AMODE Bit... 83
5.4 Direct Addressing Modes (DP) ... 84
5.5 Stack Addressing Modes (SP).. 85
5.6 Indirect Addressing Modes.. 86

5.6.1 C28x Indirect Addressing Modes (XAR0 to XAR7) ... 86
5.6.2 C2xLP Indirect Addressing Modes (ARP, XAR0 to XAR7) .. 88
5.6.3 Circular Indirect Addressing Modes (XAR6, XAR1) .. 97

5.7 Register Addressing Modes ... 100
5.7.1 32-Bit Register Addressing Modes .. 100
5.7.2 16-Bit Register Addressing Modes .. 101

5.8 Data/Program/IO Space Immediate Addressing Modes ... 103
5.9 Program Space Indirect Addressing Modes... 104
5.10 Byte Addressing Modes.. 105
5.11 Alignment of 32-Bit Operations ... 106

6 C28x Assembly Language Instructions ... 107
6.1 Summary of Instructions ... 107
6.2 C28x Assembly Language Instructions by Function ... 114
6.3 Register Operations .. 116

7 Emulation Features ... 473
7.1 Overview of Emulation Features.. 474
7.2 Debug Interface ... 474
7.3 Debug Terminology... 476
7.4 Execution Control Modes .. 476

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com

4 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

Contents

7.4.1 Stop Mode .. 476
7.4.2 Real-Time Mode ... 477
7.4.3 Summary of Stop Mode and Real-Time Mode... 478

7.5 Aborting Interrupts With the ABORTI Instruction ... 480
7.6 DT-DMA Mechanism ... 480
7.7 Analysis Breakpoints, Watchpoints, and Counter(s) ... 482

7.7.1 Analysis Breakpoints .. 482
7.7.2 Watchpoints .. 482
7.7.3 Benchmark Counter/Event Counter(s) .. 483
7.7.4 Typical Analysis Unit Configurations .. 483

7.8 Data Logging .. 484
7.8.1 Creating a Data Logging Transfer Buffer ... 484
7.8.2 Accessing the Emulation Registers Properly... 486
7.8.3 Data Log Interrupt (DLOGINT)... 487
7.8.4 Examples of Data Logging ... 487

7.9 Sharing Analysis Resources .. 488
7.10 Diagnostics and Recovery ... 489

A Register Quick Reference .. 490
A.1 Reset Values of and Instructions for Accessing the Registers ... 491
A.2 Register Figures .. 491

B C2xLP and C28x Architectural Differences... 498
B.1 Summary of Architecture Differences Between C2xLP and C28x ... 499

B.1.1 Enhancements of the C28x over the C2xLP ... 499
B.2 Registers ... 499

B.2.1 CPU Register Changes ... 501
B.2.2 Data Page (DP) Pointer Changes ... 502
B.2.3 Status Register Changes ... 503
B.2.4 Register Reset Conditions .. 506

B.3 Memory Map .. 507

C C2xLP Migration Guidelines ... 510
C.1 Introduction .. 511
C.2 Recommended Migration Flow.. 511
C.3 Mixing C2xLP and C28x Assembly... 513
C.4 Code Examples ... 514

C.4.1 Boot Code for C28x Operating Initialization .. 514
C.4.2 IER/IFR Code .. 515
C.4.3 Context Save/Restore... 516

C.5 Reference Tables for C2xLP Code Migration Topics .. 517

D C2xLP Instruction Set Compatibility.. 522
D.1 Condition Tests on Flags .. 523
D.2 C2xLP vs. C28x Mnemonics .. 523
D.3 Repeatable Instructions .. 527

E Migration from C27x to C28x .. 529
E.1 Architecture Changes .. 530

E.1.1 Changes to Registers ... 530
E.1.2 Full Context Save and Restore .. 532
E.1.3 B0/B1 Memory Map Consideration .. 532
E.1.4 C27x Object Compatibility .. 533

E.2 Moving to a C28x Object .. 533
E.2.1 Caution When Changing OBJMODE.. 534

E.3 Migrating to C28x Object Code ... 534
E.3.1 Instruction Syntax Changes .. 534

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com

5SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

Contents

E.3.2 Repeatable Instructions ... 535
E.3.3 Changes to the SUBCU Instruction ... 536

E.4 Compiling C28x Source Code... 536

F Glossary .. 537
F.1 Glossary.. 537

Revision History .. 550

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com

6 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

List of Figures

List of Figures
1-1. High-Level Conceptual Diagram of the CPU .. 15
1-2. TMS320C28x High-Level Memory Map ... 17
2-1. Conceptual Block Diagram of the CPU ... 22
2-2. C28x Registers ... 24
2-3. Individually Accessible Portions of the Accumulator .. 25
2-4. Individually Accessible Halves of the XT Register .. 26
2-5. Individually Accessible Halves of the P Register .. 26
2-6. Pages of Data Memory .. 27
2-7. Address Reach of the Stack Pointer .. 28
2-8. XAR0 - XAR7 Registers ... 28
2-9. XAR0 - XAR7 ... 29
2-10. Conceptual Diagram of Components Involved in 16 X16-Bit Multiplication .. 46
2-11. Conceptual Diagram of Components Involved in 32 X 32-Bit Multiplication 47
2-12. .. 47
2-13. ADD Command ... 48
2-14. MOV Command .. 48
2-15. MOVH Command .. 48
2-16. LSL Command.. 48
2-17. LSL and SFR Commands ... 48
2-18. LSR Command ... 49
2-19. ASR Command ... 49
2-20. ROL Command ... 49
2-21. ROR Command... 49
2-22. LSR64 Command .. 49
2-23. LSL64 Command... 50
2-24. ASR64 Command .. 50
2-25. NORM and SUBCU Command... 50
2-26. Shift Operations .. 50
2-27. MOV Command .. 51
2-28. MOV Command .. 51
3-1. Interrupt Flag Register (IFR) .. 56
3-2. Interrupt Enable Register (IER)... 56
3-3. Debug Interrupt Enable Register (DBGIER) .. 57
3-4. Standard Operation for CPU Maskable Interrupts ... 59
3-5. Functional Flow Chart for an Interrupt Initiated by the TRAP Instruction .. 63
4-1. Relationship Between Pipeline and Address Counters FC, IC, and PC .. 70
5-1. Circular Buffer with AMODE = 0 ... 98
5-2. Circular Buffer with AMODE = 1 ... 99
7-1. JTAG Header to Interface a Target to the Scan Controller ... 474
7-2. Stop Mode Execution States .. 477
7-3. Real-time Mode Execution States .. 478
7-4. Stop Mode Versus Real-Time Mode ... 479
7-5. Process for Handling a DT-DMA Request... 481
7-6. ADDRL (at Data-Space Address 00 083816) .. 484
7-7. ADDRH (at Data-Space Address 00 083916).. 484
7-8. REFL (at Data-Space Address 00 084A16) .. 484
7-9. REFH (at Data-Space Address 00 084B16).. 485

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com

7SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

List of Figures

7-10. Valid Combinations of Analysis Resources ... 489
A-1. Status Register ST0 .. 492
A-2. Status Register ST1, Bits 15-8.. 493
A-3. Status Regsiter ST1, Bits 7-0 ... 494
A-4. Interrupt Flag Register (IFR) .. 495
A-5. Interrupt Enable Register (IER) ... 496
A-6. Debug Interrupt Enable Register (DBGIER) .. 497
B-1. Register Changes from C2xLP to C28x ... 500
B-2. Direct Addressing Mode Mapping .. 502
B-3. C2xLP Status Register ST0 ... 503
B-4. C28X Status Register ST0 .. 503
B-5. C28XLP Status Register ST1 ... 503
B-6. C28x Status Register ST1 ... 503
B-7. Memory Map Comparison (See Note A)... 508
C-1. Flow Chart of Recommended Migration Steps ... 512
E-1. C28x Registers.. 530
E-2. Full Context Save/Restore... 532
E-3. Code for a Full Context Save/Restore for C28x vs C27x ... 532
E-4. Mapping of Memory Blocks B0 and B1 on C27x ... 532
E-5. C27x Compatible Mapping of Blocks M0 and M1 .. 533
E-6. Building a C27x Object File From C27x Source .. 533
E-7. Building a C28x Object File From Mixed C27x/C28x Source ... 533
E-8. Compiling C28x Source.. 536

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com

8 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

List of Tables

List of Tables
1-1. Compatibility Modes ... 14
1-2. Summary of Bus Use During Data-Space and Program-Space Accesses ... 18
1-3. Special Bus Operations ... 19
2-1. CPU Register Summary ... 23
2-2. Available Operations for Shifting Values in the Accumulator .. 25
2-3. Product Shift Modes ... 27
2-4. Bit Fields of Status Register (ST0)... 30
2-5. Instructions That Affect OVC/OVCU ... 30
2-6. Instructions Affected by the PM Bits .. 32
2-7. Instructions Affected by V flag .. 33
2-8. Negative Flag Under Overflow Conditions ... 35
2-9. Bits Affected by the C Bit ... 36
2-10. Instructions That Affect the TC Bit .. 39
2-11. Instructions Affected by SXM ... 40
2-12. Bit Fields of Status Register 1 (ST1) .. 41
2-13. Shift Operations .. 48
3-1. Interrupt Vectors and Priorities ... 54
3-2. Requirements for Enabling a Maskable Interrupt .. 55
3-3. RTOSINT Real-time Operating System Interrupt Flag .. 56
3-4. Register Pairs Saved and SP Positions for Context Saves .. 60
3-5. Register Pairs Saved and SP Positions for Context Saves .. 64
3-6. Registers After Reset .. 65
5-1. Addressing Modes for “loc16” or “loc32” .. 81
6-1. Summary of Instructions ... 107
6-2. Instruction Set Summary (Organized by Function) .. 114
6-3. Register Operations .. 116
6-4. Flags and Modes ... 173
7-1. 14-Pin Header Signal Descriptions ... 475
7-2. Selecting Device Operating Modes By Using TRST, EMU0, and EMU1.. 475
7-3. Interrupt Handling Information By Mode and State... 479
7-4. Start Address and DMA Registers.. 485
7-5. End-Address Registers .. 486
7-6. Analysis Resources... 488
A-1. Reset Values of the Status and Control Registers ... 491
B-1. General Features ... 499
B-2. C2xLP Product Mode Shifter .. 504
B-3. C28x Product Mode Shifter.. 504
B-4. Reset Conditions of Internal Registers... 506
B-5. Status Register Bits .. 507
B-6. B0 Memory Map .. 508
C-1. Code to Save Contents Of IMR (IER) And Disabling Lower Priority Interrupts At Beginning Of ISR 515
C-2. Code to Disable an Interrupt .. 515
C-3. Code to Enable an Interrupt ... 515
C-4. Code to Clear the IFR Register ... 515
C-5. Full Context Save/Restore Comparison ... 516
C-6. C2xLP and C28x Differences in Interrupts .. 517
C-7. C2xLP and C28x Differences in Status Registers.. 518

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com

9SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

List of Tables

C-8. C2xLP and C28x Differences in Memory Maps .. 519
C-9. C2xLP and C28x Differences in Instructions and Registers .. 520
C-10. Code Generation Tools and Syntax Differences ... 521
D-1. C28x and C2xLP Flags .. 523
D-2. C2xLP Instructions and C28x Equivalent Instructions ... 523
D-3. Repeatable Instructions for the C2xLP and C28x .. 527
E-1. ST0 Register Bits ... 531
E-2. ST1 Register Bits ... 531
E-3. Instruction Syntax Change... 534

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

10 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

Read This First

Preface
SPRU430F–August 2001–Revised April 2015

Read This First

About This Manual
This manual describes the central processing unit (CPU) and the assembly language instructions of the
TMS320C28x 32-bit fixed-point CPU. It also describes emulation features available on these devices. A
summary of the chapters and appendices follows.

Chapter 1 —Architectural Overview
This chapter introduces the C2800 CPU that is at the heart of each TMS320C28x device. The
chapter includes a memory map and a high-level description of the memory interface that connects
the core with memory and peripheral devices.

Chapter 2 —Central Processing Unit
This chapter describes the architecture, registers, and primary functions of the CPU. The chapter
includes detailed descriptions of the flag and control bits in the most important CPU registers,
status registers ST0 and ST1.

Chapter 3 —Interrupts and Reset
This chapter describes the interrupts and how they are handled by the CPU. The chapter also
explains the effects of a reset on the CPU and includes discussion of the automatic context save
performed by the CPU prior to servicing an interrupt.

Chapter 4 —Pipeline
This chapter describes the phases and operation of the instruction pipeline. The chapter is primarily
for readers interested in increasing the efficiency of their programs by preventing pipeline delays.

Chapter 5 —Addressing Modes
This chapter explains the modes by which the assembly language instructions accept data and
access register and memory locations. The chapter includes a description of how addressing-mode
information is encoded in op-codes.

Chapter 6 —Assembly Language Instructions
This chapter provides summaries of the instruction set and detailed descriptions (including
examples) for the instructions. The chapter includes an ex- planation of how 32-bit accesses are
aligned to even addresses.

Chapter 7 —Emulation Features
This chapter describes the TMS320C28x emulation features that can be used with only a JTAG
port and two additional emulation pins.

Appendix A —Register Quick Reference
This appendix is a concise central resource for information about the status and control registers of
the CPU. The chapter includes figures that summarize the bit fields of the registers.

Appendix B —C2xLP and C28x Architectureal Differences
This appendix describes the differences in the architecture of the C2xLP and the C28x.

Appendix C —Migration From C2xLP
This appendix explains how to migrate code from the C2xLP to the C28x.

Appendix D —C2xLP Instruction Set Compatibility
This appendix describes the instruction set compatibility with the C2xLP.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com Notational Conventions

11SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

Read This First

Appendix E —Migration From C27x to C28x
Migration From C27x to C28x

Appendix F —Glossary
This appendix explains abbreviations, acronyms, and special terminology used throughout this
document.

Notational Conventions
This document uses the following conventions:
• The device number TMS320C28x is very often abbreviated as ’28x.
• Program examples are shown in a special typeface. Here is a sample line of program code:
PUSH IER

• Portions of an instruction syntax that are in bold should be entered as shown; portions of a syntax that
are in italics are variables indicating information that should be entered. Here is an example of an
instruction syntax:
MOV ARx, *−SP[6bit]
MOV is the instruction mnemonic. This instruction has two operands, indicated by ARx and *−SP[6bit].
Where the variable x appears, you type a value from 0 to 5; where the 6bit appears, you type a 6-bit
constant. The rest of the instruction, including the square brackets, must be entered as shown.

• When braces or brackets enclose an operand, as in {operand}, the operand is optional. If you use an
optional operand, you specify the information within the braces; you do not enter the braces
themselves. In the following syntax, the operand << shift is optional:
MOV ACC, *−SP[6bit] {<< shift}
MOV ACC, *−SP[6bit] {<< shift}
For example, you could use either of the following instructions:

MOV ACC, *−SP[5]
MOV ACC, *−SP[5]<< 4

• In most cases, hexadecimal numbers are shown with a subscript of 16. For example, the hexadecimal
number 40 would be shown as 4016. An exception to this rule is a hexadecimal number in a code
example; these hexadecimal numbers have the suffix h. For example, the number 40 in the following
code is a hexadecimal 40.

MOVB AR0,#40h

Similarly, binary numbers usually are shown with a subscript of 2. For example, the binary number 4
would be shown as 01002. Binary numbers in example code have the suffix b. For example, the
following code uses a binary 4.

MOVB AR0,#0100b

• Bus signals and bits are sometimes represented with the following notations:

Notation Description Example

Bus(n:m) Signals n through m of bus PRDB(31:0) represents the 32 signals of the
program-read data bus (PRDB).

Register(n:m) Bits n through m of register T(3:0) represents the 4 least significant bits of the
T register.

Register(n) Bit n of register IER(4) represents bit 4 of the interrupt enable
register (IER).

• Concatenated values are represented with the following notation:

Notation Description Example

x:y x concatenated with y
AR1:AR0 is the concatenation of the 16-bit
registers AR1 and AR0. AR0 is the low word. AR1
is the high word.

• If a signal is from an active-low pin, the name of the signal is qualified with an overbar (for example,
INT1). If a signal is from an active-high pin or from hardware inside the the device (in which case, the
polarity is irrelevant), the name of the signal is left unqualified (for example, DLOGINT).

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

Related Documentaiton from Texas Instruments www.ti.com

12 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

Read This First

Related Documentaiton from Texas Instruments
The following books describe the TMS320C28x DSP and related support tools. The documents are
available for downloading on the Texas Instruments website (www.ti.com).

TMS320F2801, TMS320F2806, TMS320F2808 Digital Signal Processors — (SPRS230) data sheet
contains the pinout, signal descriptions, as well as electrical and timing specifications for the F280x
devices.

TMS320C28x Assembly Language Tools User’s Guide — (lSPRU513) describes the assembly
language tools (assembler and other tools used to develop assembly language code), assembler
directives, macros, common object file format, and symbolic debugging directives for the
TMS320C28x™ device.

TMS320C28x Optimizing C Compiler User’s Guide — (SPRU514) describes the TMS320C28x™
C/C++ compiler. This compiler accepts ANSI standard C/C++ source code and produces
TMS320™ DSP assembly language source code for the TMS320C28x device.

TMS320F2810, TMS320F2811, TMS320F2812, TMS320C2810, TMS320C2811, and TMS320C2812
Digital Signal Processors — (SPRS174) data sheet contains the electrical and timing
specifications for these devices, as well as signal descriptions and pinouts for all of the available
packages.

TMS320x28xx, 28xxx DSP Peripherals Reference Guide — (SPRU566) describes all the peripherals
available for TMS320x28xx and TMS320x28xxx devices.

TMS320C28x Floating Point Unit and Instruction Set Reference Guide — (SPRUEO2) describes the
CPU architecture, pipeline, instruction set, and interrupts of the C28x floating−point DSP.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F
http://www.ti.com
http://www.ti.com/lit/pdf/SPRS230
http://www.ti.com/lit/pdf/SPRU513
http://www.ti.com/lit/pdf/SPRU514
http://www.ti.com/lit/pdf/SPRS174
http://www.ti.com/lit/pdf/SPRU566
http://www.ti.com/lit/pdf/SPRUEO2

13SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

Architectural Overview

Chapter 1
SPRU430F–August 2001–Revised April 2015

Architectural Overview

The TMS320C28xTM is one of several fixed-point CPUs in the TMS320 family. The C28x™ is source-
code and object-code compatible with the C27x™. In addition, much of the code written for the C2xLP
CPU can be reassembled to run on a C28x device.

The C2xLP CPU is used in all TMS320F24xx and TMS320C20x devices and their derivatives. This
document refers to C2xLP as a generic name for the CPU used in these devices.

This chapter provides an overview of the architectural structure and components of the C28x CPU.

Topic ... Page

1.1 Introduction to the CPU .. 14
1.2 Components of the CPU ... 15
1.3 Memory Map ... 16
1.4 Memory Interface .. 18

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

Introduction to the CPU www.ti.com

14 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

Architectural Overview

1.1 Introduction to the CPU
The CPU is a low-cost 32-bit fixed-point processor. This device draws from the best features of digital
signal processing; reduced instruction set computing (RISC); and microcontroller architectures, firmware,
and tool sets. The CPU features include a modified Harvard architecture and circular addressing. The
RISC features are single-cycle instruction execution, register-to-register operations, and modified Harvard
architecture (usable in Von Neumann mode). The microcontroller features include ease of use through an
intuitive instruction set, byte packing and unpacking, and bit manipulation.

The modified Harvard architecture of the CPU enables instruction and data fetches to be performed in
parallel. The CPU can read instructions and data while it writes data simultaneously to maintain the single-
cycle instruction operation across the pipeline. The CPU does this over six separate address/data buses.

1.1.1 Compatibility With Other TMS320 CPUs
The C28x CPU features compatibility modes that minimize the migration effort from the C27x and C2xLP
CPUs. The operating mode of the device is determined by a combination of the OBJMODE and AMODE
bits in status register 1 (ST1) as shown in Table 1-1. The OBJMODE bit allows you to select between
code compiled for a C28x (OBJMODE == 1) and code compiled for a C27x (OBJMODE == 0). The
AMODE bit allows you to select between C28x/C27x instruction addressing modes (AMODE == 0) and
C2xLP compatible instruction addressing modes (AMODE == 1).

(1) The C28x is in C27x-compatible mode at reset.

Table 1-1. Compatibility Modes

OBJMODE AMODE
C28x Mode 1 0
C2xLP Source-compatible Mode 1 1
C27x Object-compatible Mode (1) 0 0

• C28x Mode: In C28x mode, you can take advantage of all the C28x native features, addressing
modes, and instructions. To operate in C28x mode from reset, your code must first set the OBJMODE
bit by using the "C28OBJ" (or "M SETC OBJMODE"M) instruction. This book assumes you are
operating in C28x mode unless stated otherwise.

• C2xLP Source-Compatible Mode: C2xLP source-compatible mode al- lows you to run C2xLP source
code which has been reassembled using the C28x code-generation tools. For more information on
operating in this mode and migration from a C2xLP CPU, see Appendix C, Appendix D, Appendix E.

• C27x Object-Compatible Mode: At reset, the C28x CPU operates in C27x object-compatible mode. In
this mode, the C28x is 100% object-code and cycle-count compatible with the C27x CPU. For detailed
information on operating in C27x object-compatible mode and migrating from the C27x, see
Appendix F.

1.1.2 Switching to C28x Mode From Reset
At reset, the C28x CPU is in C27x Object-Compatible Mode (OBJMODE == 0, AMODE == 0) and is 100%
compatible with the C27x CPU. To take advan- tage of the enhanced C28x instruction set, you must
instead operate the de- vice in C28x mode. To do this, after a reset your code must first set the OBJ-
MODE bit in ST1 by using the "M C28OBJ"M (or "M SETC OBJMODE"M) instruction.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

C28x CPU

CPU

Emulation
logic

Memory-interface signals

Emulation signals

Reset and interrupt signals

Clock and control signals

www.ti.com Components of the CPU

15SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

Architectural Overview

1.2 Components of the CPU
As shown in Figure 1-1, the CPU contains:
• A CPU for generating data- and program-memory addresses; decoding and executing instructions;

performing arithmetic, logical, and shift operations; and controlling data transfers among CPU registers,
data memory, and program memory

• Emulation logic for monitoring and controlling various parts and functionalities of the DSP and for
testing device operation

• Signals for interfacing with memory and peripherals, clocking and controlling the CPU and the
emulation logic, showing the status of the CPU and the emulation logic, and using interrupts

The CPU does not contain memory, a clock generator, or peripheral devices. For information about
interfacing to these items, see the C28x Peripheral User's Guide (SPRU566) and the data sheet that
corresponds to your DSP.

Figure 1-1. High-Level Conceptual Diagram of the CPU

1.2.1 Central Processing Unit (CPU)
The CPU is discussed in more detail in Chapter 2, but following is a list of its major features:
• Protected pipeline. The CPU implements an 8-phase pipeline that prevents a write to and a read from

the same location from occurring out of order.
• Independent register space. The CPU contains registers that are not mapped to data space. These

registers function as system-control registers, math registers, and data pointers. The system-control
registers are accessed by special instructions. The other registers are accessed by special instructions
or by a special addressing mode (register addressing mode).

• Arithmetic logic unit (ALU). The 32-bit ALU performs 2s-complement arithmetic and Boolean logic
operations.

• Address register arithmetic unit (ARAU). The ARAU generates data- memory addresses and
increments or decrements pointers in parallel with ALU operations.

• Barrel shifter. This shifter performs all left and right shifts of data. It can shift data to the left by up to 16
bits and to the right by up to 16 bits.

• Multiplier. The multiplier performs 32-bit × 32-bit 2s-complement multiplication with a 64-bit result. The
multiplication can be performed with two signed numbers, two unsigned numbers, or one signed
number and one unsigned number.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F
http://www.ti.com/lit/pdf/SPRU566

Components of the CPU www.ti.com

16 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

Architectural Overview

1.2.2 Emulation Logic
The emulation logic includes the following features. For more details about these features, see Chapter 7,
Emulation Features.
• Debug-and-test direct memory access (DT-DMA). A debug host can gain direct access to the content

of registers and memory by taking control of the memory interface during unused cycles of the
instruction pipeline.

• Data logging. The emulation logic enables application-initiated transfers of memory contents between
the C28x and a debug host.

• A counter for performance benchmarking
• Multiple debug events. Any of the following debug events can cause a break in program execution:

– A breakpoint initiated by the ESTOP0 or ESTOP1 instruction
– An access to a specified program-space or data-space location
– A request from the debug host or other hardware
When a debug event causes the C28x to enter the debug-halt state, the event is called a break event.

• Real-time mode of operation. When the C28x is in this mode and a break event occurs, the main body
of program code comes to a halt, but time-critical interrupts can still be serviced.

1.2.3 Signals
The CPU has four main types of signals:
• Memory-interface signals. These signals transfer data among the CPU, memory, and peripherals;

indicate program-memory accesses and data-memory accesses; and differentiate between accesses
of different sizes (16-bit or 32-bit).

• Clock and control signals. These provide clocking for the CPU and the emulation logic, and they are
used to control and monitor the CPU.

• Reset and interrupt signals. These are used for generating a hardware reset and interrupts, and for
monitoring the status of interrupts.

• Emulation signals. These signals are used for testing and debugging.

1.3 Memory Map
The C28x uses 32-bit data addresses and 22-bit program addresses. This allows for a total address reach
of 4G words (1 word = 16 bits) in data space and 4M words in program space. Memory blocks on all C28x
designs are uniformly mapped to both program and data space. Figure 1-2 shows a high-level view of how
addresses are allocated in program space and data space.

The memory map in Figure 1-2 has been divided into the following segments:
• On-chip program/data
• Reserved
• CPU interrupt vectors

For specific details about each of the map segments, see the data sheet for your device. See Appendix C
for more information on the C2xLP compatible memory space.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

Vectors in RAM M0

(VMAP = 0)

Block M0 1 K × 16

Block M1 1 K × 16

Reserved

V tors (VMAP = 1)ec

0000

3FF

400

7FF

3F 0000

Program Data

Vectors in RAM M0

(VMAP = 0)

Block M0 1 K× 16

Block M1 1 K× 16

Reserved

Memory or

Peripherals

<−SP
(Reset)

800

9FF

1000

A000

Low 64K

C2xLP

Compatible

Data Space

High 64K

C2xLP

Compatible

Program

Space

3F FFFF

FFFF FFFF

Memory or

Peripherals

www.ti.com Memory Map

17SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

Architectural Overview

1.3.1 CPU Interrupt Vectors
Sixty-four addresses in program space are set aside for a table of 32 CPU interrupt vectors. The CPU
vectors can be mapped to the top or bottom of program space by way of the VMAP bit. For more
information about the CPU vectors, see Section 3.2.

For devices with a peripheral interrupt expansion (PIE) block, the interrupt vectors will reside in the PIE
vector table and this memory can be used as program memory.

Figure 1-2. TMS320C28x High-Level Memory Map

See the data sheet for your specific device for details of the exact memory map.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

Memory Interface www.ti.com

18 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

Architectural Overview

1.4 Memory Interface
The C28x memory map is accessible outside the CPU by the memory interface, which connects the CPU
logic to memories, peripherals, or other interfaces. The memory interface includes separate buses for
program space and data space. This means an instruction can be fetched from program memory while
data memory is being accessed.

The interface also includes signals that indicate the type of read or write being requested by the CPU.
These signals can select a specified memory block or peripheral for a given bus transaction. In addition to
16-bit and 32-bit accesses, the C28x supports special byte-access instructions which can access the least
significant byte (LSByte) or most significant byte (MSByte) of an addressed word. Strobe signals indicate
when such an access is occurring on a data bus.

1.4.1 Address and Data Buses
The memory interface has three address buses:

PAB —Program address bus. The PAB carries addresses for reads and writes from program space. PAB
is a 22-bit bus.

DRAB —Data-read address bus. The 32-bit DRAB carries addresses for reads from data space.

DWAB —Data-write address bus. The 32-bit DWAB carries addresses for writes to data space.

The memory interface also has three data buses:

PRDB —Program-read data bus.
The PRDB carries instructions or data during reads from program space. PRDB is a 32-bit bus.

DRDB —Data-read data bus. The DRDB carries data during reads from data space. PRDB is a 32-bit
bus.

DWDB —Data-/Program-write data bus. The 32-bit DWDB carries data during writes to data space or
program space.

Table 1-2 summarizes how these buses are used during accesses.

Table 1-2. Summary of Bus Use During Data-Space and Program-Space Accesses

Access Type Address Bus Data Bus
Read from program space PAB PRDB
Read from data space DRAB DRDB
Write to program space PAB DWDB
Write to data space DWAB DWDB

A program-space read and a program-space write cannot happen simultaneously because both use the
PAB. Similarly, a program-space write and a data-space write cannot happen simultaneously because
both use the DWDB. Transactions that use different buses can happen simultaneously. For example, the
CPU can read from program space (using PAB and PRDB), read from data space (using DRAB and
DRDB), and write to data space (using DWAB and DWDB) at the same time.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com Memory Interface

19SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

Architectural Overview

1.4.2 Special Bus Operations
Typically, PAB and PRDB are used only for reading instructions from program space, and DWDB is used
only for writing data to data space. However, the instructions in Table 1-3 are exceptions to this behavior.
For more details about using these instructions, see Chapter 6, Assembly Language Instructions.

Table 1-3. Special Bus Operations

Instruction Special Bus Operation
PREAD This instruction reads a data value rather than an instruction from program space. It then transfers that

value to data space or a register.
For the read from program space, the CPU places the source address on the program address bus
(PAB), sets the appropriate program space select signals, and reads the data value from the program-
read data bus (PRDB).

PWRITE This instruction writes a data value to program space. The value is read from from data space or a
register.
For the write to program space, the CPU places the destination address on the program address bus
(PAB), sets the appropriate program-space select signals, and writes the data value to the data-
/program-write data bus (DWDB).

MAC
DMAC
QMACL
IMACL
XMAC
XMACD

As part of their operation, these instructions multiply two data values, one of which is read from program
space.
For the read from program space, the CPU places the program-space source address on the program
address bus (PAB), sets the appropriate program-space select signals, and reads the program data
value from the program read data bus (PRDB).

1.4.3 Alignment of 32-Bit Accesses to Even Addresses
The C28x CPU expects memory wrappers or peripheral-interface logic to align any 32-bit read or write to
an even address. If the address-generation logic generates an odd address, the CPU must begin reading
or writing at the previous even address. This alignment does not affect the address values generated by
the address-generation logic.

Most instruction fetches from program space are performed as 32-bit read operations and are aligned
accordingly. However, alignment of instruction fetches are effectively invisible to a programmer. When
instructions are stored to program space, they do not have to be aligned to even addresses. Instruction
boundaries are decoded within the CPU.

You need to be concerned with alignment when using instructions that perform 32-bit reads from or writes
to data space.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

20 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

Central Processing Unit

Chapter 2
SPRU430F–August 2001–Revised April 2015

Central Processing Unit

The central processing unit (CPU) is responsible for controlling the flow of a program and the processing
of instructions. It performs arithmetic, Boolean-logic, multiply, and shift operations. When performing
signed math, the CPU uses 2s-complement notation. This chapter describes the architecture, registers,
and primary functions of the CPU.

Topic ... Page

2.1 CPU Architecture .. 21
2.2 CPU Registers .. 23
2.3 Status Register ST0.. 30
2.4 Status Register ST1 ... 41
2.5 Program Flow ... 44
2.6 Multiply Operations ... 45
2.7 Shift Operations .. 47

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com CPU Architecture

21SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

Central Processing Unit

2.1 CPU Architecture
All C28x devices contain a central processing unit (CPU), emulation logic, and signals for interfacing with
memory and peripherals. Included with these signals are three address buses and three data buses.
Figure 2-1 shows the major blocks and data paths of the C28x CPU. It does not reflect the actual silicon
implementation. The shaded buses are memory-interface buses that are external to the CPU. The
operand bus supplies the values for multiplier, shifter, and ALU operations, and the result bus carries the
results to registers and memory. The main blocks of the CPU are:
• Program and data control logic. This logic stores a queue of instructions that have been fetched

from program memory.
• Real-Time emulation and visibility
• Address register arithmetic unit (ARAU). The ARAU generates addresses for values that must be

fetched from data memory. For a data read, it places the address on the data-read address bus
(DRAB); for a data write, it loads the data-write address bus (DWAB). The ARAU also increments or
decrements the stack pointer (SP) and the auxiliary registers (XAR0, XAR1, XAR2, XAR3, XAR4,
XAR5, XAR6, and XAR7).

• Atomic arithmetic logic unit (ALU). The 32-bit ALU performs 2s-complement arithmetic and Boolean
logic operations. Before doing its calculations, the ALU accepts data from registers, from data memory,
or from the program control logic. The ALU saves results to a register or to data memory.

• Prefetch queue and instruction decode
• Address generators for program and data
• Fixed-point MPY/ALU. The multiplier performs 32-bit × 32-bit 2s-complement multiplication with a 64-

bit result. In conjunction with the multiplier, the '28xx uses the 32-bit multiplicand register (XT), the 32-
bit product register (P), and the 32-bit accumulator (ACC). The XT register supplies one of the values
to be multiplied. The result of the multiplication can be sent to the P register or to ACC.

• Interrupt processing

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

Program-read data bus, PRDB(0:31)

Program address bus, PAB(0:21)

Data-read address bus, DRAB(0:31)

Data-read data bus, DRDB(0:31)

Program-address
generation logic

Program control
logic

Data-read buffer register MUX MUX

Address
from stack

Immediate
address

XAR7

Immediate
data

Immediate
data

Registers

ARAU

XAR0
XAR1
XAR2
XAR3
XAR4
XAR5
XAR6
XAR7

DP
SP
ST1

AH:AL
PH:PL
T:TL
IER

DBGIER
IFR
ST0
PC

RPC

Multiplier,
barrel shifter,

and
ALU

Data-write buffer register

Data-/program-write data bus, DWDB(0:31)

Data-write address bus, DWAB(0:31)

Result bus

Operand bus

CPU Architecture www.ti.com

22 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

Central Processing Unit

Figure 2-1. Conceptual Block Diagram of the CPU

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com CPU Registers

23SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

Central Processing Unit

2.2 CPU Registers
Table 2-1 lists the main CPU registers and their values after reset. Section 2.2.1through Section 2.2.10
describe the registers in more detail. Figure 2-2 shows the registers.

(1) Reset value shown is for devices without the VMAP signal and MOM1MAP signal pinned out. On these devices both of these
signals are tied high internal to the device.

Table 2-1. CPU Register Summary

Register Size Description Value After Reset
ACC 32 bits Accumulator 0x00000000
AH 16 bits High half of ACC 0x0000
AL 16 bits Low half of ACC 0x0000
XAR0 16 bits Auxiliary register 0 0x00000000
XAR1 32 bits Auxiliary register 1 0x00000000
XAR2 32 bits Auxiliary register 2 0x00000000
XAR3 32 bits Auxiliary register 3 0x00000000
XAR4 32 bits Auxiliary register 4 0x00000000
XAR5 32 bits Auxiliary register 5 0x00000000
XAR6 32 bits Auxiliary register 6 0x00000000
XAR7 32 bits Auxiliary register 7 0x00000000
AR0 16 bits Low half of XAR0 0x0000
AR1 16 bits Low half of XAR1 0x0000
AR2 16 bits Low half of XAR2 0x0000
AR3 16 bits Low half of XAR3 0x0000
AR4 16 bits Low half of XAR4 0x0000
AR5 16 bits Low half of XAR5 0x0000
AR6 16 bits Low half of XAR6 0x0000
AR7 16 bits Low half of XAR7 0x0000
DP 16 bits Data-page pointer 0x0000
IFR 16 bits Interrupt flag register 0x0000
IER 16 bits Interrupt enable register 0x0000 (INT1 to INT14, DLOGINT, RTOSINT

disabled)
DBGIER 16 bits Debug interrupt enable register 0x0000 (INT1 to INT14, DLOGINT, RTOSINT

disabled)
P 32 bits Product register 0x00000000
PH 16 bits High half of P 0x0000
PL 16 bits Low half of P 0x0000
PC 22 bits Program counter 0x3F FFC0
RPC 22 bits Return program counte 0x00000000
SP 16 bits Stack pointer 0x0400
ST0 16 bits Status register 0 0x0000
ST1 16 bits Status register 1 0x080B (1)

XT 32 bits Multiplicand register 0x00000000
T 16 bits High half of XT 0x0000
TL 16 bits Low half of XT 0x0000

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

T[16] TL[16]

PH[16] PL[16]

AH[16] AL[16]

SP[16]

DP[16]
6/7-bit

offset†

AR0H[16] AR0[16]

AR1H[16] AR1[16]

AR2H[16] AR2[16]

AR3H[16] AR3[16]

AR4H[16] AR4[16]

AR5H[16] AR5[16]

AR6H[16] AR6[16]

AR7H[16] AR7[16]

PC[22]

RPC[22]

XT[32]

P[32]

ACC[32]

XAR0[32]

XAR1[32]

XAR2[32]

XAR3[32]

XAR4[32]

XAR5[32]

XAR6[32]

XAR7[32]

ST0[16]

ST1[16]

IER[16]

DBGIER[16]

IFR[16]

CPU Registers www.ti.com

24 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

Central Processing Unit

(1) A 6-bit offset is used when operating in C28x mode or C27x object-compatible mode.
(2) A 7-bit offset is used when operating in C2xLP source-compatible mode. The least significant bit of the DP is

ignored when operating in this mode.

Figure 2-2. C28x Registers

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

AH AL

ACC

AH.MSB

AH = ACC (31:16)
AH.MSB = ACC (31:24)
AH.LSB = ACC (23:16)

AH.LSB AL.MSB AL.LSB

AL = ACC (15:0)
AL.MSB = ACC (15:8)
AL.LSB = ACC (7:0)

www.ti.com CPU Registers

25SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

Central Processing Unit

2.2.1 Accumulator (ACC, AH, AL)
The accumulator (ACC) is the main working register for the device. It is the destination for all ALU
operations except those which operate directly on memory or registers. ACC supports single-cycle move,
add, subtract, and compare operations from 32-bit-wide data memory. It can also accept the 32-bit result
of a multiplication operation.

The halves and quarters of the ACC can also be accessed (see Figure 2-3). ACC can be treated as two
independent 16-bit registers: AH (high 16 bits) and AL (low 16 bits). The bytes within AH and AL can also
be accessed independently. Special byte-move instructions load and store the most significant byte or
least significant byte of AH or AL. This enables efficient byte packing and unpacking.

Figure 2-3. Individually Accessible Portions of the Accumulator

The accumulator has the following associated status bits. For the details on these bits, see Section 2.3.
• Overflow mode bit (OVM)
• Sign-extension mode bit (SXM)
• Test/control flag bit (TC)
• Carry bit (C)
• Zero flag bit (Z)
• Negative flag bit (N)
• Latched overflow flag bit (V)
• Overflow counter bits (OVC)

Table 2-2 shows the ways to shift the content of AH, AL, or ACC.

Table 2-2. Available Operations for Shifting Values in the Accumulator

Register Shift Direction Shift Type Instruction
ACC Left Logical LSL or LSLL

Rotation ROL
Right Arithmetic SFR with SXM = 1 or ASRL

Logical SFR with SXM = 0 or LSRL
Rotation ROR

AH or AL Left Logical LSL
Right Arithmetic ASR

Logical LSR

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

PH = P(31:16) PL = P(15:0)

P

T = XT(16:31) TL = XT(15:0)

XT

CPU Registers www.ti.com

26 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

Central Processing Unit

2.2.2 Multiplicand Register (XT)
The multiplicand register (XT register) is used primarily to store a 32-bit signed integer value prior to a
32-bit multiply operation.

The lower 16-bit portion of the XT register is referred to as the TL register. This register can be loaded
with a signed 16-bit value that is automatically sign-extended to fill the 32-bit XT register.

The upper 16-bit portion of the XT register is referred to as the T register. The T register is mainly used to
store a 16-bit integer value prior to a 16-bit multiply operation.

The T register is also used to specify the shift value for some shift operations. In this case, only a portion
of the T register is used, depending on the instruction.

For example:
ASR AX, T performs an arithmetic shift right based on the four least significant bits

of T: T(3:0) = 0...15
ASRL ACC, T performs an arithmetic shift right by the five least significant bits of T:

T(4:0) 0...31

For these operations, the most significant bits of T are ignored.

Figure 2-4. Individually Accessible Halves of the XT Register

2.2.3 Product Register (P, PH, PL)
The product register (P register) is typically used to hold the 32-bit result of a multiplication. It can also be
loaded directly from a 16- or 32-bit data-memory location, a 16-bit constant, the 32-bit ACC, or a 16-bit or
a 32-bit addressable CPU register. The P register can be treated as a 32-bit register or as two
independent 16-bit registers: PH (high 16 bits) and PL (low 16 bits); see Figure 2-5.

Figure 2-5. Individually Accessible Halves of the P Register

When some instructions access P, PH, or PL, all 32-bits are copied to the ALU- shifter block, where the
barrel shifter may perform a left shift, a right shift, or no shift. The action of the shifter for these instructions
is determined by the product shift mode (PM) bits in status register ST0. Table 2-3 shows the possible PM
values and the corresponding product shift modes. When the barrel shifter performs a left shift, the low
order bits are filled with zeros. When the shifter performs a right shift, the P register value is sign
extended. Instructions that use PH or PL as operands ignore the product shift mode.

For a complete list of instructions affected by PM bits, see Table 2-6.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

Data page Offset Data memory

00 0000 0000 0000 00
.
.
.

00 0000 0000 0000 00

00 0000
.
.
.

11 1111

Page 0: 0000 0000−0000 003F

00 0000 0000 0000 01
.
.
.

00 0000 0000 0000 01

00 0000
.
.
.

11 1111

Page 1: 0000 0040−0000 007F

00 0000 0.000 0000 10
.
.

00 0000 0000 0000 10

00 0.000
.
.

11 1111
Page 2: 0000 0080−0000 00BF

.

.

.

.

.

.

.

.

.

.

.

.

. .

. .

. .

. .

. .

. .

11 1111 1111 1111 11
.
.
.

11 1111 1111 1111 11

00 0000
.
.
.

11 1111

Page 65 535: 003F FFC0−003F FFFF

www.ti.com CPU Registers

27SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

Central Processing Unit

Table 2-3. Product Shift Modes

PM Value Product Shift Mode
0002 Left shift by 1
0012 No shift 7
0102 Right shift by 1
0112 Right shift by 2
1002 Right shift by 3
1012 Right shift by 4 (if AMODE = 1, left 4)
1102 Right shift by 5
1112 Right shift by 6

2.2.4 Data Page Pointer (DP)
In the direct addressing modes, data memory is addressed in blocks of 64 words called data pages. The
lower 4M words of data memory consists of 65 536 data pages labeled 0 through 65 535, as shown in
Figure 2-6. In DP direct addressing mode, the 16-bit data page pointer (DP) holds the current data page
number. You change the data page by loading the DP with a new number. For information about the direct
addressing modes, see Section 5.4.

Figure 2-6. Pages of Data Memory

Data memory above 4M words is not accessible using the DP.

When operating in C2xLP source-compatible mode, a 7-bit offset is used and the least significant bit of the
DP register is ignored. See Appendix C for more details.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

ARnH = XARn(31:16) ARn = XARn(15:0)

XARn(31:0)

n = number 0 through 7

Data memory

Range accessible

by way of SP

Range not accessible

by way of SP

0000 0000−0000 FFFF

0001 0000−FFFF FFFF

CPU Registers www.ti.com

28 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

Central Processing Unit

2.2.5 Stack Pointer (SP)
The stack pointer (SP) enables the use of a software stack in data memory. The stack pointer has only 16
bits and can only address the low 64K of data space (see Figure 2-7). When the SP is used, the upper six
bits of the 32-bit address are forced to 0. (For information about addressing modes that use the SP, see
Section 5.5). After reset, SP points to address 0000040016.

Figure 2-7. Address Reach of the Stack Pointer

The operation of the stack is as follows:
• The stack grows from low memory to high memory.
• The SP always points to the next empty location in the stack.
• At reset, the SP is initialized, so that it points to address 0000 040016.
• When 32-bit values are saved to the stack, the least significant 16 bits are saved first, and the most

significant 16 bits are saved to the next higher address (little endian format).
• When 32-bit operations read or write a 32-bit value, the C28x CPU expects the memory wrapper or

peripheral-interface logic to align that read or write to an even address. For example, if the SP contains
the odd address 0000 008316, a 32-bit read operation reads from addresses 0000 008216 and 0000

• The SP overflows if its value is increased beyond FFFF16 or decreased below 000016. When the SP
increases past FFFF16, it counts forward from 000016. For example, if SP = FFFE16 and an instruction
adds 3 to the SP, the result is 000116. When the SP decreases past 000016, it counts backward from
FFFF16. For example, if SP = 000216 and an instruction subtracts 4 from SP, the result is FFFE16.

• When values are being saved to the stack, the SP is not forced to align with even or odd addresses.
Alignment is forced by the memory wrapper or peripheral-interface logic.

2.2.6 Auxiliary Registers (XAR0-XAR7, AR0-AR7)
The CPU provides eight 32-bit registers that can be used as pointers to memory or as general-purpose
registers (see Section 5.6). The auxiliary registers are: XAR0, XAR1, XAR2, XAR3, XAR4, XAR5, XAR6,
and XAR7.

Many instructions allow you to access the 16 LSBs of XAR0-XAR7. As shown in Figure 2-8, the 16 LSBs
of the auxiliary registers are referred to as AR0-AR7. AR0-AR7 can be used as general purpose registers
for loop control and for efficient 16-bit comparisons.

When accessing AR0-AR7, the upper 16 bits of the register (known as AR0H-AR7H) may or may not be
modified, depending on the instruction used (see Chapter 6 for information on the behavior of particular
instructions). AR0H-AR7H are accessed only as part of XAR0-XAR7 and are not individually accessible.

Figure 2-8. XAR0 - XAR7 Registers

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

AR0 = XAR0(15:0)

XAR0(32:0)

AR7 = XAR7(15:0)

XAR7(32:0)

www.ti.com CPU Registers

29SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

Central Processing Unit

For ACC operations, all 32 bits are valid ([@XARn]). For 16-bit operations, the lower 16 bits are used and
upper 16 bits are ignored ([@ARn]).

XAR0 - XAR7 can also be used by some instructions to point to any value in program memory; see
Section 5.6.

Many instructions allow you to access the 16 least significant bits (LSBs) of XAR0-XAR7. As shown in
Figure 2-9, 16 LSBs of XAR0-XAR7 are known as one auxiliary register of AR0-AR7.

Figure 2-9. XAR0 - XAR7

2.2.7 Program Counter (PC)
When the pipeline is full, the 22-bit program counter (PC) always points to the instruction that is currently
being processed â€” the instruction that has just reached the decode 2 phase of the pipeline. Once an
instruction reaches this phase of the pipeline, it cannot be flushed from the pipeline by an interrupt. It is
executed before the interrupt is taken. The pipeline is discussed in Chapter 4.

2.2.8 Return Program Counter (RPC)
When a call operation is performed using the LCR instruction, the return address is saved in the RPC
register and the old value in the RPC is saved on the stack (in two 16-bit operations). When a return
operation is performed using the LRETR instruction, the return address is read from the RPC register and
the value on the stack is written into the RPC register (in two 16-bit operations). Other call instructions do
not use the RPC register. For more information, see the instructions in Chapter 6.

2.2.9 Status Registers (ST0, ST1)
The C28x has two status registers, ST0 and ST1, which contain various flag bits and control bits. These
registers can be stored into and loaded from data memory, enabling the status of the machine to be saved
and restored for subroutines.

The status bits have been organized according to when the bit values are modified in the pipeline. Bits in
ST0 are modified in the execute phase of the pipeline; bits in ST1 are modified in the decode 2 phase.
(For details about the pipeline, see Chapter 4.) The status bits are described in detail in Section 2.3 and
Section 2.4. Also, ST0 and ST1 are included in Appendix A.

2.2.10 Interrupt-Control Registers (IFR, IER, DBGIER)
The C28x CPU has three registers dedicated to the control of interrupts:
• Interrupt flag register (IFR)
• Interrupt enable register (IER)
• Debug interrupt enable register (DBGIER)

These registers handle interrupts at the CPU level. Devices with a peripheral interrupt expansion (PIE)
block will have additional interrupt control as part of the PIE module.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

Status Register ST0 www.ti.com

30 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

Central Processing Unit

The IFR contains flag bits for maskable interrupts (those that can be enabled and disabled with software).
When one of these flags is set, by hardware or software, the corresponding interrupt will be serviced if it is
enabled. You enable or disable a maskable interrupt with its corresponding bit in the IER. The DBGIER
indicates the time-critical interrupts that will be serviced (if enabled) while the DSP is in real-time
emulation mode and the CPU is halted.

The C28x CPU interrupts and the interrupt-control registers are described in detail in Section 3.1. Also, the
IFR, IER, and DBGIER are included in Appendix A.

2.3 Status Register ST0
The following figure shows the bit fields of status register (ST0). All of these bit fields are modified in the
execute phase of the pipeline. Detailed descriptions of these bits follow the figure.

Table 2-4. Bit Fields of Status Register (ST0)
15 10 9 7 6 5 4 3 2 1 0

OVC/OVCU PM V N Z C TC OVM SXM
R/W-00 0000 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

OVC/OVCU (Bits 15-10) — Overflow counter.
The overflow counter behaves differently for signed and unsigned operations.
For signed operations, the overflow counter is a 6-bit signed counter with a range of -32 to 31.
When overflow mode is off (OVM = 0), ACC overflows normally, and OVC keeps track of overflows.
When overflow mode is on (OVM = 1) and an overflow occurs in ACC, the OVC is not affected.
Instead, the CPU automatically fills ACC with a positive or negative saturation value (see the
description for OVM).
When ACC overflows in the positive direction (from 7FFF FFFF16 to 8000 000016), the OVC is
incremented by 1. When ACC overflows in the negative direction (from 8000 000016 to 7FFF
FFFF16) the OVC is decremented by 1. The increment or decrement is performed as the overflow
affects the V flag.
For unsigned operations (OVCU), the counter increments for ADD when a Carry is generated and
decrements for a SUB when a Borrow is generated (similar to a carry counter).
If OVC increments past its most positive value, 31, the counter wraps around to -32. If OVC
decrements past its most negative value, -32, the counter wraps around to 31. At reset, OVC is
cleared.
OVC is not affected by overflows in registers other than ACC and is not affected by compare
instructions (CMP and CMPL). The table that follows explains how OVC may be affected by the
saturate accumulator (SAT ACC) instruction.
Table 2-5 lists the instructions affecting OVC/OVCU. See the instruction set in Chapter 6 for a
complete description of each instruction.

Table 2-5. Instructions That Affect OVC/OVCU

Signed Addition Instructions Effect on OVC/OVCU
ADD ACC,loc16 << shift if(OVM == 0) Inc OVC on +ve signed overflow
ADD ACC,#16bit << shift
ADD ACC,loc16 << T
ADD loc16,#16bitSigned
ADDB ACC,#8bit
ADDCL ACC,loc32
ADDCU ACC,loc16
ADDL ACC,loc32
ADDL loc32,ACC
ADDU ACC,loc16

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com Status Register ST0

31SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

Central Processing Unit

Table 2-5. Instructions That Affect OVC/OVCU (continued)
Signed Addition Instructions Effect on OVC/OVCU
DMAC ACC:P,loc32,*XAR7/++
INC loc16
MAC P,loc16,*XAR7/++
MAC P,loc16,0:pma
MOVA T,loc16
MOVAD T,loc16
MPYA P,loc16,#16bit
MPYA P,T,loc16
QMACL P,loc32,*XAR7/++
QMPYAL P,XT,loc32
SQRA loc16
XMAC P,loc16,*(pma)
XMACD P,loc16,*(pma)
Signed Subtraction Instructions Effect on OVC/OVCU
DEC loc16 MOVS T,loc16 if(OVM == 0) Dec OVC on -ve signed overflow
Signed Addition Instructions Effect on OVC/OVCU
MPYS P,T,loc16
QMPYSL P,XT,loc32
SBBU ACC,loc16
SQRS loc16
SUB ACC,#16bit << shift
SUB ACC,loc16 << shift
SUB ACC,loc16 << T
SUBB ACC,#8bit
SUBBL ACC,loc32
SUBL ACC,loc32
SUBL loc32,ACC
SUBRL loc32,ACC
SUBU ACC,loc16
SUBUL ACC,loc32
SUBUL P,loc32
Unsigned Instructions Effect on OVC/OVCU
ADDUL ACC,loc32 Inc OVC/OVCU on unsigned carry
ADDUL P,loc32
IMPYAL P,XT,loc32
IMACL P,loc32,*XAR7/++
Misc Instructions Effect on OVC/OVCU

SAT ACC if(OVC > 0) Saturate +ve if(OVC < 0) Saturate -ve
OVC = 0

SAT64 ACC:P
ZAPA OVC = 0
ZAP OVC
MOV OVC,loc16 OVC = [loc16(15:10)]
Signed Addition Instructions Effect on OVC/OVCU
MOVU OVC,loc16 OVC = [loc16(5:0)]
Condition Operation Performed by SAT ACC Instruction
OVC = 0 Leave ACC and OVC unchanged.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

Status Register ST0 www.ti.com

32 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

Central Processing Unit

Table 2-5. Instructions That Affect OVC/OVCU (continued)
Signed Addition Instructions Effect on OVC/OVCU

OVC > 0 Saturate ACC in the positive direction (fill ACC with
7FFF FFFF16) and clear OVC.

OVC < 0 Saturate ACC in the negative direction (fill ACC with
8000 000016) and clear OVC.

PM (Bits 9-7) —Product shift mode bits.
This 3-bit value determines the shift mode for any output operation from the product (P) register.
The shift modes are shown in the following table. The output can be to the ALU or to memory. All
instructions that are affected by the product shift mode will sign extend the P register value during a
right shift operation. At reset, PM is cleared (left shift by 1 bit is the default).
PM is summarized as follows:
000 = Left shift by 1. During the shift the low-order bit is zero filled. At reset this mode is selected.
001 = No shift
010 = Right shift by 1. During the shift the lower bits are lost and the shifted value is sign extended.
011 = Right shift by 2. During the shift the lower bits are lost and the shifted value is sign extended.
100 = Right shift by 3. During the shift the lower bits are lost and the shifted value is sign extended.
101 = Right shift by 4. During the shift the lower bits are lost and the shifted value is sign extended.
Note if AMODE = 1 then 101 is a left shift by 4.
110 = Right shift by 5. During the shift the lower bits are lost and the shifted value is sign extended.
111 = Right shift by 6. During the shift the lower bits are lost and the shifted value is sign extended.
Note: For performing unsigned arithmetic, you must use a product shift of 0 (PM = 001) to avoid
sign extension and generation of incorrect results.
Table 2-6 lists instructions that are affected by the PM bits. See the instruction set in Chapter 6 for
a complete description of each instruction.

Table 2-6. Instructions Affected by the PM Bits

Instruction Effect of PM
CMPL ACC,P << PM flags set on(ACC - P << PM)
DMAC ACC:P,loc32,*XAR7/++ ACC = ACC + MSW*MSW << PM P = P + LSW*LSW << PM
IMACL P,loc32,*XAR7/++ P = ([loc32] * Prog[*XAR7/++]) << PM
IMPYAL P,XT,loc32 P = (XT * [loc32]) << PM
IMPYL P,XT,loc32 P = (XT *[loc32]) << PM
IMPYSL P,XT,loc32 ACC = ACC - P unsigned > > P = (XT * [loc32]) << PM
IMPYXUL P,XT,loc32 P = (XT sign * [loc32]uns) << PM
MAC P,loc16,*XAR7/++ ACC = ACC + P << PM
MAC P,loc16,0:pma ACC = ACC + P << PM
MOV loc16,P [loc16] = low(P << PM)
MOVA T,loc16 ACC = ACC + P << PM
MOVAD T,loc16 ACC = ACC + P << PM
MOVH loc16,P [loc16] = high(P << PM)
MOVP T,loc16 ACC = P << PM
MOVS T,loc16 ACC = ACC - P << PM
MPYA P,loc16,#16bit ACC = ACC + P << PM
MPYA P,T,loc16 ACC = ACC + P << PM
MPYS P,T,loc16 ACC = ACC - P << PM
QMACL P,loc32,*XAR7 ACC = ACC + P << PM
QMACL P,loc32,*XAR7++ ACC = ACC + P << PM
QMPYAL P,XT,loc32 ACC = ACC + P << PM

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com Status Register ST0

33SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

Central Processing Unit

Table 2-6. Instructions Affected by the PM Bits (continued)
Instruction Effect of PM
QMPYSL P,XT,loc32 ACC = ACC - P << PM
SQRA loc16 ACC = ACC + P << PM
SQRS loc16 ACC = ACC - P << PM
XMAC P,loc16,*(pma) ACC = ACC + P << PM
XMACD P,loc16,*(pma) ACC = ACC + P << PM

V (Bit 6) — Overflow flag.
If the result of an operation causes an overflow in the register holding the result, V is set and
latched. If no overflow occurs, V is not modified. Once V is latched, it remains set until it is cleared
by reset or by a conditional branch instruction that tests V. Such a conditional branch clears V
regardless of whether the tested condition (V = 0 or V = 1) is true.
An overflow occurs in ACC (and V is set) if the result of an addition or subtraction does not fit within
the signed numerical range -231 to (+231 - 1), or 8000 000016 to 7FFF FFFF16.
An overflow occurs in AH, AL, or another 16-bit register or data-memory location if the result of an
addition or subtraction does not fit within the signed numerical range -215 to (+215 - 1), or 800016 to
7FFF16.
The instructions CMP, CMPB and CMPL do not affect the state of the V flag. Table 2-7 lists the
instructions that are affected by V flag. See Chapter 6 for more details on instructions.
V can be summarized as follows:
0 = V has been cleared.
1 = An overflow has been detected, or V has been set.

Table 2-7. Instructions Affected by V flag

ABS ACC if(ACC == 0x8000 0000) V = 1
ABSTC ACC if(ACC == 0x8000 0000) V = 1
ADD ACC,#16bit << shift V = 1 on signed overflow
ADD ACC,loc16 << shift V = 1 on signed overflow
ADD ACC,loc16 << T V = 1 on signed overflow
ADD AX,loc16 V = 1 on signed overflow
ADD loc16,#16bitSigned V = 1 on signed overflow
ADD loc16,AX V = 1 on signed overflow
ADDB ACC,#8bit V = 1 on signed overflow
ADDB AX,#8bitSigned V = 1 on signed overflow
ADDCL ACC,loc32 V = 1 on signed overflow
ADDCU ACC,loc16 V = 1 on signed overflow
ADDL ACC,loc32 V = 1 on signed overflow
ADDL loc32,ACC V = 1 on signed overflow
ADDU ACC,loc16 V = 1 on signed overflow
ADDUL ACC,loc32 V = 1 on signed overflow
ADDUL P,loc32 V = 1 on signed overflow
B 16bitOff,COND V = 0 if tested
BF 16bitOff,COND V = 0 if tested
DEC loc16 V = 1 on signed overflow
DMAC ACC:P,loc33,*XAR77/++ V = 1 on signed overflow
IMACL P,loc32,*XAR77/++ V = 1 on signed overflow
DMAC ACC:P,loc32,*XAR7/++ V = 1 on signed overflow
IMACL P,loc32,*XAR7/++ V = 1 on signed overflow
IMPYAL P,XT,loc32 V = 1 on signed overflow

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

Status Register ST0 www.ti.com

34 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

Central Processing Unit

Table 2-7. Instructions Affected by V flag (continued)
IMPYSL P,XT,loc32 V = 1 on signed overflow
INC loc16 V = 1 on signed overflow
MAC P,loc16,*XAR7/++ V = 1 on signed overflow
MAC P,loc16,0:pma V = 1 on signed overflow
MAX AX,loc16 if((AX - [loc16]) < 0) V = 1
MAXL ACC,loc32 if((ACC - [loc32]) < 0) V = 1
MIN AX,loc16 if((AX - [loc16]) > 0) V = 1
MINL ACC,loc32 if((ACC - [loc32]) > 0) V = 1
MOV loc16,AX,COND V = 0 if tested
MOVA T,loc16 V = 1 on signed overflow
MOVAD T,loc16 V = 1 on signed overflow
MOVB loc16,#8bit,COND V = 0 if tested
MOVL loc32,ACC,COND V = 0 if tested
MOVS T,loc16 V = 1 on signed overflow
MPYA P,loc16,#16bit V = 1 on signed overflow
MPYA P,T,loc16 V = 1 on signed overflow
MPYS P,T,loc16 V = 1 on signed overflow
NEG ACC if(ACC == ox8000 0000) V = 1
NEGAX if(AX == 0x8000) V = 1
NEG64 ACC:P if(ACC:P == 0x80....00) V = 1
NEGTC ACC if(TC == 1)

if(ACC == 0x8000 0000) V = 1
QMACL P,loc32,*XAR7/++ V = 1 on signed overflow
QMPYAL P,XT,loc32 V = 1 on signed overflow
QMPYSL P,XT,loc32 V = 1 on signed overflow
SAT ACC if(OVC == 0) V = 0 else V = 1
SAT64 ACC:P if(Oâ€‹VC == 0) V = 0 else V = 1
SB 8bitOff,COND V = 0 if tested
SBBU ACC,loc16 V = 1 on signed overflow
SQRA loc16 V = 1 on signed overflow
SQRS loc16 V = 1 on signed overflow
SUB ACC,#16bit << shift V = 1 on signed overflow
SUB ACC,loc16 << shift V = 1 on signed overflow
SUB ACC,loc16 << T V = 1 on signed overflow
SUB AX,loc16 V = 1 on signed overflow
SUB loc16,AX V = 1 on signed overflow
SUBB ACC,#8bit V = 1 on signed overflow
SUBBL ACC,loc32 V = 1 on signed overflow
SUBL ACC,loc32 V = 1 on signed overflow
SUBL loc32,ACC V = 1 on signed overflow
SUBR loc16,AX V = 1 on signed overflow
SUBRL loc32,ACC V = 1 on signed overflow
SUBU ACC,loc16 V = 1 on signed overflow
SUBUL ACC,loc32 V = 1 on signed overflow
SUBUL P,loc32 V = 1 on signed overflow
XB pma,COND V = 0 if tested
XCALL pma,COND V = 0 if tested
XMAC P,loc16,*(pma) V = 1 on signed

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com Status Register ST0

35SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

Central Processing Unit

Table 2-7. Instructions Affected by V flag (continued)
XMACD P,loc16,*(pma) V = 1 on signed overflow
XRETC COND V = 0 if tested

N (Bit 5) — Negative flag.
During certain operations, N is set if the result of the operation is a negative number or cleared if
the result is a positive number. At reset, N is cleared.
Results in ACC are tested for the negative condition. Bit 31 of ACC is the sign bit. If bit 31 is a 0,
ACC is positive; if bit 31 is a 1, ACC is negative. N is set if a result in ACC is negative or cleared if
a result is positive.
Results in AH, AL, and other 16-bit registers or data-memory locations are also tested for the
negative condition. In these cases bit 15 of the value is the sign bit (1 indicates negative,
0 indicates positive). N is set if the value is negative or cleared if the value is positive.
The TEST ACC instruction sets N if the value in ACC is negative. Otherwise the instruction clears
N.
As shown in Table 2-8, under overflow conditions, the way the N flag is set for compare operations
is different from the way it is set for addition or subtraction operations. For addition or subtraction
operations, the N flag is set to match the most significant bit of the truncated result. For compare
operations, the N flag assumes infinite precision. This applies to operations whose result is loaded
to ACC, AH, AL, another register, or a data-memory location.

(1) For 32-bit data: Pos = Positive nummber from 0000 000016 to 7FFF FFFF16. Neg=Negative number from 8000-000016 to FFFF-
FFFF16. For 16-bit data: Pos = Positive number from 000016 to 7FFF16. Neg = Negative number from 800016 to FFFF16.

(2) The compare instructions are CMP, CMPB, CMPL, MIN, MAX, MINL, and MAXL.

Table 2-8. Negative Flag Under Overflow Conditions

A (1) B (1) (A - B) Subtraction Compare (2)

Pos Neg Neg (due to overflow in positive direction) N = 1 N = 0
Neg Pos Pos (due to overflow in negative direction) N = 0 N = 1

N can be summarized as follows:

0 = The tested number is positive, or N has been cleared.

1 = The tested number is negative, or N has been set.

Z (Bit 4) — Zero flag.
Z is set if the result of certain operations is 0 or is cleared if the result is nonzero. This applies to
results that are loaded into ACC, AH, AL, another register, or a data-memory location. At reset, Z is
cleared.
The TEST ACC instruction sets Z if the value in ACC is 0. Otherwise, it clears Z.
Z can be summarized as follows:
0 = The tested number is nonzero, or Z has been cleared.
1 = The tested number is 0, or Z has been set.

C (Bit 3) — Carry bit.
This bit indicates when an addition or increment generates a carry or when a subtraction, compare,
or decrement generates a borrow. It is also affected by rotate operations on ACC and barrel shifts
on ACC, AH, and AL.
During additions/increments, C is set if the addition generates a carry; otherwise C is cleared.
There is one exception: If you are using the ADD instruction with a shift of 16, the ADD instruction
can set C but cannot clear C.
During subtractions/decrements/compares, C is cleared if the subtraction generates a carry;
otherwise C is set. There is one exception: if you are using the SUB instruction with a shift of 16,
the SUB instruction can clear C but cannot set C.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

Status Register ST0 www.ti.com

36 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

Central Processing Unit

This bit can be individually set and cleared by the SETC C instruction and CLRC C instruction,
respectively. At reset, C is cleared.
C can be summarized as follows:
0 = A subtraction generated a borrow, an addition did not generate a carry, or C has been cleared.
Exception: An ADD instruction with a shift of 16 cannot clear C.
1 = An addition generated a carry, a subtraction did not generate a borrow, or C has been set.
Exception: A SUB instruction with a shift of 16 cannot set C.
Table 2-9 lists the bits that are affected by the C bit. For more information on instructions, see
Chapter 6.

Table 2-9. Bits Affected by the C Bit

Instruction Affect of or Affect on C
ABS ACC C = 0
ABSTC ACC C = 0
ADD ACC,#16bit << shift C = 1 on carry else C = 0
ADD ACC,loc16 << shift if(shift == 16)

C = 1 on carry
if(shift != 16)
C = 1 on carry else C = 0

ADD ACC,loc16 << shift C = 1 on carry else C = 0
ADD ACC,loc16 << T C = 1 on carry else C = 0
ADD AX,loc16 C = 1 on carry else C = 0
ADD loc16,#16bitSigned C = 1 on carry else C = 0
ADD loc16,AX C = 1 on carry else C = 0
ADDB ACC,#8bit C = 1 on carry else C = 0
ADDB AX,#8bitSigned C = 1 on carry else C = 0
ADDCL ACC,loc32 ACC = ACC + [loc32] + C

C = 1 on carry else C = 0
ADDCU ACC,loc16 ACC = ACC + [loc16] + C

C = 1 on carry else C = 0
ADDL ACC,loc32 C = 1 on carry else C = 0
ADDL loc32,ACC C = 1 on carry else C = 0
ADDU ACC,loc16 C = 1 on carry else C = 0
ADDUL ACC,loc32 C = 1 on carry else C = 0
ADDUL P,loc32 C = 1 on carry else C = 0
ASR AX,1..16 C = AX(bit(shift-1))
ASR AX,T if(T == 0) C = 0 else C =

AX(bit(T-1))
ASR64 ACC:P,1..16 C = P(bit(shift-1))
ASR64 ACC:P,T if(T == 0) C = 0 else C =

P(bit(T-1))
ASRL ACC,T if(T == 0) C = 0 else C =

ACC(bit(T-1))
B 16bitOff,COND C bit used as test condition
BF 16bitOff,COND C bit used as test condition
CLRC C C = 0
CMP AX,loc16 C = 0 on borrow else C = 1
CMP loc16,#16bitSigned for([loc16] - 16bitSigned) C = 0

on borrow else C = 1
CMPB AX,#8bit C = 0 on borrow else C = 1
CMPL ACC,loc32 for(ACC - [loc32]) C = 0 on borrow

else C = 1

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com Status Register ST0

37SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

Central Processing Unit

Table 2-9. Bits Affected by the C Bit (continued)
Instruction Affect of or Affect on C
CMPL ACC,P << PM for(ACC - P << PM) C = 0 on

borrow else C = 1
DEC loc16+ C = 0 on borrow else C = 1
DMAC ACC:P,loc32,*XAR7/++ C = 1 on carry else C = 0
IMACL P,loc32,*XAR7/++ C = 1 on carry else C = 0
IMPYAL P,XT,loc32 C = 1 on carry else C = 0
IMPYSL P,XT,loc32 C = 0 on borrow else C = 1
INC loc16 C = 1 on carry else C = 0
LSL ACC,1..16 C = ACC(bit(32-shift))
LSL ACC,T if(T == 0) C = 0 else C =

ACC(bit(32-T))
LSL AX,1..16 C = AX(bit(16-shift))
LSL AX,T if(T == 0) C = 0 else C =

AX(bit(16-T))
LSL64 ACC:P,1..16 C = ACC(bit(32-shift))
LSL64 ACC:P,T if(T == 0) C = 0 else C =

ACC(bit(32-T))
LSLL ACC,T if(T == 0) C = 0 else C =

ACC(bit(32-T))
LSR AX,1..16 C = AX(bit(shift-1))
LSR AX,T if(T == 0) C = 0 else C =

AX(bit(T-1))
LSR64 ACC:P,1..16 C = P(bit(shift-1))
LSR64 ACC:P,T if(T == 0) C = 0 else C =

P(bit(T-1))
LSRL ACC,T if(T == 0) C = 0 else C =

ACC(bit(T-1))
MAC P,loc16,*XAR7/++ C = 1 on carry else C = 0
MAC P,loc16,0:pma C = 1 on carry else C = 0
MAX AX,loc16 for(AX - [loc16]) C = 0 on borrow

else C = 1
MAXL ACC,loc32 for(ACC - [loc32]) C = 0 on borrow

else C = 1
MIN AX,loc16 for(AX - [loc16]) C = 0 on borrow

else C = 1
MINL ACC,loc32 for(ACC - [loc32]) C = 0 on borrow

else C = 1
MOV loc16,AX,COND C bit used as test condition
MOVA T,loc16 C = 1 on carry else C = 0
MOVAD T,loc16 C = 1 on carry else C = 0
MOVB loc16,#8bit,COND C bit used as test condition
MOVL loc32,ACC,COND C bit used as test condition
MOVS T,loc16 C = 0 on borrow else C = 1
MPYA P,loc16,#16bit C = 1 on carry else C = 0
MPYA P,T,loc16 C = 1 on carry else C = 0
MPYS P,T,loc16 C = 0 on borrow else C = 1
NEG ACC if(ACC == 0) C = 1 else C = 0

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

Status Register ST0 www.ti.com

38 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

Central Processing Unit

Table 2-9. Bits Affected by the C Bit (continued)
Instruction Affect of or Affect on C
NEG AX if(AX == 0) C = 1 else C = 0
NEG64 ACC:P if(ACC:P == 0) C = 1 else C = 0
NEGTC ACC if(TC == 1) if(ACC == 0) C = 1

else C = 0
QMACL P,loc32,*XAR7/++ C = 1 on carry else C = 0
QMPYAL P,XT,loc32 C = 1 on carry else C = 0
QMPYSL P,XT,loc32 C = 0 on borrow else C = 1
ROL ACC C <- (ACC << 1) <- C(before)
ROR ACC C(before) -(ACC >1) -C
SAT ACC C = 0
SAT64 ACC:P C = 0
SB 8bitOff,COND C bit used as test condition
SBBU ACC,loc16 ACC = ACC - ([loc16] + ~C) C = 0 on

borrow else C = 1
SETC C C = 1
SFR ACC,1..16 C = ACC(bit(shift-1))
SFR ACC,T if(T == 0) C = 0 else C =

ACC(bit(T-1))
SQRA loc16 C = 1 on carry else C = 0
SQRS loc16 C = 0 on borrow else C = 1
SUB ACC,#16bit << shift C = 0 on borrow else C = 1
SUB ACC,loc16 << shift if(shift == 16) C = 0 on borrow

if(shift != 16) C = 0 on borrow
else C = 1

SUB ACC,loc16 << T C = 0 on borrow else C = 1
SUB AX,loc16 C = 0 on borrow else C = 1
SUB loc16,AX C = 0 on borrow else C = 1
SUBB ACC,#8bit C = 0 on borrow else C = 1
SUBBL ACC,loc32 ACC = ACC - ([loc32] + ~C) C = 0 on

borrow else C = 1
SUBCU ACC,loc16 for(ACC - [loc16]<<15) C = 0

on borrow else C = 1
SUBCUL ACC,loc32 for(ACC<<1 + P(31) - [loc32]) C = 0

on borrow else C = 1
SUBL ACC,loc32 C = 0 on borrow else C = 1
SUBL loc32,ACC C = 0 on borrow else C = 1
SUBR loc16,AX C = 0 on borrow else C = 1
SUBRL loc32,ACC C = 0 on borrow else C = 1
SUBU ACC,loc16 C = 0 on borrow else C = 1
SUBUL ACC,loc32 C = 0 on borrow else C = 1
SUBUL P,loc32 C = 0 on borrow else C = 1
XB pma,COND C bit used as test condition
XCALL pma,COND C bit used as test condition
XMAC P,loc16,*(pma) C = 1 on carry else C = 0
XMACD P,loc16,*(pma) C = 1 on carry else C = 0
XRETC COND C bit used as test condition

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com Status Register ST0

39SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

Central Processing Unit

TC (Bit 2) — Test/control flag.
This bit shows the result of a test performed by either the TBIT (test bit) instruction or the NORM
(normalize) instruction.
The TBIT instruction tests a specified bit. When TBIT is executed, the TC bit is set if the tested bit
is 1 or cleared if the tested bit is 0.
When a NORM instruction is executed, TC is modified as follows: If ACC holds 0, TC is set. If ACC
does not hold 0, the CPU calculates the exclusive-OR of ACC bits 31 and 30, and then loads TC
with the result.
This bit can be individually set and cleared by the SETC TC instruction and CLRC TC instruction,
respectively. At reset, TC is cleared.
Table 2-10 lists the instructions that affect the TC bit. See the instruction set in Chapter 6 for a
complete description of each instruction.

Table 2-10. Instructions That Affect the TC Bit

Instruction Affect on the TC bit
ABSTC ACC if(ACC < 0) TC = TC ^ 1
B 16bitOff,COND TC bit used as test condition
BF 16bitOff,COND TC bit used as test condition
CLRC TC TC = 0
CMPR 0/1/2/3 TC = 0

0: if(AR(ARP) == AR0) TC = 1
1: if(AR(ARP) < AR0) TC = 1
2: if(AR(ARP) > AR0) TC = 1
3: if(AR(ARP) != AR0) TC = 1

CSB ACC TC = N flag
MOV loc16,AX,COND TC bit used as test condition
MOVB loc16,#8bit,COND TC bit used as test condition
MOVL loc32,ACC,COND TC bit used as test condition
NEGTC ACC TC bit used as test condition
NORM ACC,XARn++/--
NORM ACC,*ind

if(ACC |= 0)
TC = ACC(31) ^ ACC(30)
else
TC = 1

SB 8bitOff,COND TC bit used as test condition
SBF 8bitOff,TC/NTC TC bit used as test condition
SETC TC TC = 1
TBIT loc16,#bit TC = [loc16(bit)]
TBIT loc16,T TC = [loc16(15-T)]
TCLR loc16,#bit TC = [loc16(bit)]
TSET loc16,#bit TC = [loc16(bit)]
XB pma,COND TC bit used as test condition
XCALL pma,COND TC bit used as test condition
XRETC COND TC bit used as test condition

OVM (Bit 1) — Overflow mode bit.
When ACC accepts the result of an addition or subtraction and the result causes an overflow, OVM
determines how the CPU handles the overflow as follows:
0 = Results overflow normally in ACC. The OVC reflects the overflow
1 = ACC is filled with either its most positive or most negative value as follows:
If ACC overflows in the positive direction (from 7FFF FFFF16 to 8000 000016), ACC is then filled with
7FFF FFFF16.
If ACC overflows in the negative direction (from 8000 000016 to 7FFF FFFF16), ACC is then filled
with 8000 000016.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

Status Register ST0 www.ti.com

40 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

Central Processing Unit

This bit can be individually set and cleared by the SETC OVM instruction and CLRC OVM
instruction, respectively. At reset, OVM is cleared.

SXM (Bit 0) — Sign-extension mode bit.
SXM affects the MOV, ADD, and SUB instructions that use a 16-bit value in an operation on the 32-
bit accumulator. When the 16-bit value is loaded into (MOV), added to (ADD), or subtracted from
(SUB) the accumulator, SXM determines whether the 16-bit value is sign extended during the
operation as follows:
0 = Sign extension is suppressed. (The 16-bit value is treated as unsigned.)
1 = Sign extension is enabled. (The 16-bit value is treated as signed.)
For example:
ADD ACC, loc16 << shift

if SXM = 0, do not sign extend loc16 before adding to the 32-bit ACC.
if SXM = 1, sign extend loc16 before adding to the 32-bit ACC.

SXM also determines whether the accumulator is sign extended when it is shifted right by the SFR
instruction. SXM does not affect instructions that shift the product register value; all right shifts of
the product register value use sign extension.
This bit can be individually set and cleared by the SETC SXM instruction and CLRC SXM
instruction, respectively. At reset, SXM is cleared. Table 2-11 lists the instructions that are affected
by SXM. See Chapter 6 for more details on instructions.

Table 2-11. Instructions Affected by SXM

Instruction Description
ADD ACC,#16bit << shift Affected By SXM
ADD ACC,loc16 << shift Affected By SXM
ADD ACC,loc16 << T Affected By SXM
CLRC SXM SXM = 0
MOV ACC,#16bit << shift Affected By SXM
MOV ACC,loc16 << shift Affected By SXM
MOV ACC,loc16 << T Affected By SXM
SETC SXM SXM = 1
SFR ACC,1..16 Affected By SXM
SFR ACC,T Affected By SXM
SUB ACC,#16bit << shift Affected By SXM
SUB ACC,loc16 << shift Affected By SXM
SUB ACC,loc16 << T Affected By SXM

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com Status Register ST1

41SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

Central Processing Unit

2.4 Status Register ST1
The following figure shows the bit fields of status register ST1. All of these bit fields are modified in the
decode 2 phase of the pipeline. Detailed descriptions of these bits follow the figure.

Table 2-12. Bit Fields of Status Register 1 (ST1)
15 13 12 11 10 9 8

ARP XF MOM1MAP Reserved OBJMODE AMODE
R/W-000 R/W-0 R/W-1 R/W-0 R/W-0 R/W-0

7 6 5 4 3 2 1 0
IDLESTAT EALLOW LOOP SPA VMAP PAGE0 DBGM INTM

R-0 R/W-0 R-0 R/W-0 R/W-1 R/W-0 R/W-1 R/W-1
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

ARP (Bits 15-13) — Auxiliary register pointer.
This 3-bit field points to the current auxiliary register. This is one of the 32-bit auxiliary registers
(XAR0-XAR7). The mapping of ARP values to auxiliary registers is as follows:
000 = XAR0 (selected at reset)
001 = XAR1
010 = XAR2
011 = XAR3
100 = XAR4
101 = XAR5
110 = XAR6
111 = XAR7

XF (Bit 12) —XF status bit.
This bit reflects the current state of the XFS output signal, which is compatible to the C2XLP CPU.
This bit is set by the "M SETC XF"M instruction. This bit is cleared by the "M CLRC XF"M
instruction. The pipeline is not flushed when setting or clearing this bit using the given instructions.
This bit can be saved and restored by interrupts and when restoring the ST1 register. This bit is set
to 0 on reset.

NOTE: Use of the XFS signal requires an external pin that is only present on TMS320x2801x
devices.

M0M1MAP (Bit 11) —M0 and M1 mapping mode bit.
The M0M1MAP bit should always remain set to 1 in the C28x object mode. This is the default value
at reset. The M0M1MAP bit may be set low when operating in C27x-compatible mode. The effect of
this bit, when low, is to swap the location of blocks M0 and M1 only in program space and to set
the stack pointer default reset value to 0x000. C28x mode users should never set this bit to 0.

Reserved (Bit 10) —Reserved.
This bit is reserved. Writes to this bit have no effect.

OBJMODE (Bit 9) — Object compatibility mode bit.
This mode is used to select between C27x object mode (OBJMODE == 0) and C28x object mode
(OBJMODE == 1) compatibility. This bit is set by the "M C28OBJ"M (or "M SETC OBJMODE"M)
instructions. This bit is cleared by the "M C27OBJ"M (or "M CLRC OBJMODE"M) instructions. The
pipeline is flushed when setting or clearing this bit using the given instructions. This bit is saved and
restored by interrupts and when restoring the ST1 register. This bit is set to 0 on reset.

AMODE (Bit 8) — Address mode bit.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

Status Register ST1 www.ti.com

42 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

Central Processing Unit

This mode, in conjunction with the PAGE0 mode bit, is used to select the appropriate addressing
mode decodes. This bit is set by the "LPADDR"M ("M SETC AMODE"M) instructions. This bit is
cleared by the "M C28ADDR"M (or "M CLRC AMODE"M) instructions. The pipeline is not flushed
when setting or clearing this bit using the given instructions. This bit is saved and restored by
interrupts and when restoring the ST1 register. This bit is set to 0 on reset.
Note: Setting PAGE0 = AMODE = 1 will generate an illegal instruction trap ONLY for instructions
that decode a memory or register addressing mode field (loc16 or loc32).

IDLESTAT (Bit 7) — IDLE status bit.
This read-only bit is set when the IDLE instruction is executed. It is cleared by any one of the
following events:
• An interrupt is serviced.
• An interrupt is not serviced but takes the CPU out of the IDLE state.
• A valid instruction enters the instruction register (the register that holds the instruction currently

being decoded).
• A device reset occurs.
When the CPU services an interrupt, the current value of IDLESTAT is saved on the stack (when
ST1 is saved on the stack), and then IDLESTAT is cleared. Upon return from the interrupt,
IDLESTAT is not restored from the stack.

EALLOW (Bit 6) — Emulation access enable bit.
This bit, when set, enables access to emulation and other protected registers. Set this bit by using
the EALLOW instruction and clear this bit by using the EDIS instruction. See the data sheet for a
particular device to determine the registers that are protected.
When the CPU services an interrupt, the current value of EALLOW is saved on the stack (when
ST1 is saved on the stack), and then EALLOW is cleared. Therefore, at the start of an interrupt
service routine (ISR), access to protected registers is disabled. If the ISR must access protected
registers, it must include an EALLOW instruction. At the end of the ISR, EALLOW can be restored
by the IRET instruction.

LOOP (Bit 5)— Loop instruction status bit.
LOOP is set when a loop instruction (LOOPNZ or LOOPZ) reaches the decode 2 phase of the
pipeline. The loop instruction does not end until a specified condition is met. When the condition is
met, LOOP is cleared. LOOP is a read-only bit; it is not affected by any instruction except a loop
instruction.
When the CPU services an interrupt, the current value of LOOP is saved on the stack (when ST1 is
saved on the stack), and then LOOP is cleared. Upon return from the interrupt, LOOP is not
restored from the stack.

SPA (Bit 4) — Stack pointer alignment bit.
SPA indicates whether the CPU has previously aligned the stack pointer to an even address by the
ASP instruction:
• 0: The stack pointer has not been aligned to an even address.
• 1: The stack pointer has been aligned to an even address.
When the ASP (align stack pointer) instruction is executed, if the stack pointer (SP) points to an
odd address, SP is incremented by 1 so that it points to an even address, and SPA is set. If SP
already points to an even address, SP is not changed, but SPA is cleared. When the NASP
(unalign stack pointer) instruction is executed, if SPA is 1, SP is decremented by 1 and SPA is
cleared. If SPA is 0, SP is not changed.
At reset, SPA is cleared.

VMAP (Bit 3) — Vector map bit.
VMAP determines whether the CPU interrupt vectors (including the reset vector) are mapped to the
lowest or highest addresses in program memory:
• 0: CPU interrupt vectors are mapped to the bottom of program memory, addresses 00 000016-00

003F16.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com Status Register ST1

43SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

Central Processing Unit

• 1: CPU interrupt vectors are mapped to the top of program memory, addresses 3F FFC016-3F
FFFF16.

On C28x designs, the VMAP signal is tied high internally, forcing the VMAP bit to be set high on a
reset.
This bit can be individually set and cleared by the SETC VMAP instruction and CLRC VMAP
instruction, respectively.

PAGE0 (Bit 2) — PAGE0 addressing mode configuration bit.
PAGE0 selects between two mutually-exclusive addressing modes: PAGE0 direct addressing mode
and PAGE0 stack addressing mode. Selection of the modes is as follows:
• 0: PAGE0 stack addressing mode
• 1: PAGE0 direct addressing mode
Note: Illegal Instruction Trap Setting PAGE0 = AMODE = 1 will generate an illegal instruction
trap.
PAGE0 = 1 is included for compatibility with the C27x. the recommended operating mode for C28x
is PAGE0 = 0.
This bit can be individually set and cleared by the SETC PAGE0 instruction and
CLRC PAGE0 instruction, respectively. At reset, the PAGE0 bit is cleared (PAGE0 stack
addressing mode is selected).
For details about the above addressing modes, see Chapter 5, Addressing Modes.

DBGM (Bit 1) — Debug enable mask bit.
When DBGM is set, the emulator cannot accesss memory or registers in real time. The debugger
cannot update its windows.
In the real-time emulation mode, if DBGM = 1, the CPU ignores halt requests or hardware
breakpoints until DBGM is cleared. DBGM does not prevent the CPU from halting at a software
breakpoint. One effect of this may be seen in real-time emulation mode.
If you single-step an instruction in real time emulation mode and that instruction sets DBGM, the
CPU continues to execute instructions until DBGM is cleared.
When you give the TI debugger the REALTIME command (to enter real-time mode), DBGM is
forced to 0. Having DBGM = 0 ensures that debug and test direct memory accesses (DT-DMAs)
are allowed; memory and register values can be passed to the host processor for updating
debugger windows.
Before the CPU executes an interrupt service routine (ISR), it sets DBGM. When DBGM = 1, halt
requests from the host processor and hardware breakpoints are ignored. If you want to single-step
through or set breakpoints in a non-time-critical ISR, you must add a CLRC DBGM instruction at
the beginning of the ISR.
DBGM is primarily used in emulation to block debug events in time-critical portions of program
code. DBGM enables or disables debug events as follows:
• 0: Debug events are enabled.
• 1: Debug events are disabled.
When the CPU services an interrupt, the current value of DBGM is saved on the stack (when ST1
is saved on the stack), and then DBGM is set. Upon return from the interrupt, DBGM is restored
from the stack.
This bit can be individually set and cleared by the SETC DBGM instruction and CLRC DBGM
instruction, respectively. DBGM is also set automatically during interrupt operations. At reset,
DBGM is set. Executing the ABORTI (abort interrupt) instruction also sets DBGM.

INTM (Bit 0) —Interrupt global mask bit.
This bit globally enables or disables all maskable CPU interrupts (those that can be blocked by
software):
• 0: Maskable interrupts are globally enabled. To be acknowledged by the CPU, a maskable

interrupt must also be locally enabled by the interrupt enable register (IER).

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

Program Flow www.ti.com

44 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

Central Processing Unit

• 1: Maskable interrupts are globally disabled. Even if a maskable interrupt is locally enabled by
the IER, it is not acknowledged by the CPU.

INTM has no effect on the nonmaskable interrupts, including a hardware reset or the hardware
interrupt NMI. In addition, when the CPU is halted in real-time emulation mode, an interrupt enabled
by the IER and the DBGIER will be serviced even if INTM is set to disable maskable interrupts.
When the CPU services an interrupt, the current value of INTM is saved on the stack (when ST1 is
saved on the stack), and then INTM is set. Upon return from the interrupt, INTM is restored from
the stack.
This bit can be individually set and cleared by the SETC INTM instruction and CLRC INTM
instruction, respectively. At reset, INTM is set. The value in INTM does not cause modification to
the interrupt flag register (IFR), the interrupt enable register (IER), or the debug interrupt enable
register (DBGIER).

2.5 Program Flow
The program control logic and program-address generation logic work together to provide proper program
flow. Normally, the flow of a program is sequential: the CPU executes instructions at consecutive program-
memory addresses. At times, a discontinuity is required; that is, a program must branch to a
nonsequential address and then execute instructions sequentially at that new location. For this purpose,
the '28x supports interrupts, branches, calls, returns, and repeats.

Proper program flow also requires smooth flow at the instruction level. To meet this need, the '28x has a
protected pipeline and an instruction-fetch mechanism that attempts to keep the pipeline full.

2.5.1 Interrupts
Interrupts are hardware or software-driven events that cause the CPU to suspend its current program
sequence and execute a subroutine called an interrupt service routine. Interrupts are described in detail in
Section 3.1.

2.5.2 Branches, Calls, and Returns
Branches, calls, and returns break the sequential flow of instructions by transferring control to another
location in program memory. A branch only transfers control to the new location. A call also saves the
return address (the address of the instruction following the call). Called subroutines or interrupt service
routines are each concluded with a return instruction, which takes the return address from the stack or
from XAR7 or RPC and places it into the program counter (PC).

The following branch instructions are conditional: B, BANZ, BAR, BF, SB, SBF, XBANZ, XCALL, and
XRETC. They are executed only if a certain specified or predefined condition is met. For detailed
descriptions of these instructions, see Chapter 6.

2.5.3 Repeating a Single Instruction
The repeat (RPT) instruction allows the execution of a single instruction (N + 1) times, where N is
specified as an operand of the RPT instruction. The instruction is executed once and then repeated N
times. When RPT is executed, the repeat counter (RPTC) is loaded with N. RPTC is then decremented
every time the repeated instruction is executed, until RPTC equals 0. For a description of RPT and a list of
repeatable instructions, see Chapter 6.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com Program Flow

45SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

Central Processing Unit

2.5.4 Instruction Pipeline
Each instruction passes through eight independent phases that form an instruction pipeline. At any given
time, up to eight instructions may be active, each in a different phase of completion. Not all reads and
writes happen in the same phases, but a pipeline-protection mechanism stalls instructions as needed to
ensure that reads and writes to the same location happen in the order in which they are programmed.

To maximize pipeline efficiency, an instruction-fetch mechanism attempts to keep the pipeline full. Its role
is to fill an instruction-fetch queue, which holds instructions in preparation for decoding and execution. The
instruction-fetch mechanism fetches 32-bits at a time from program memory; it fetches one 32-bit
instruction or two 16-bit instructions.

The instruction-fetch mechanism uses three program-address counters: the program counter (PC), the
instruction counter (IC), and the fetch counter (FC). When the pipeline is full the PC will always point to
the instruction in its decode 2 pipeline phase. The IC points to the next instruction to be processed. When
the PC points to a 1-word instruction, IC = (PC+1); when the PC points to a 2-word instruction, IC =
(PC+2). The value in the FC is the address from which the next fetch is to be made.

The pipeline and the instruction-fetch mechanism are described in more detail in Chapter 4.

2.6 Multiply Operations
The C28x features a hardware multiplier that can perform 16-bit × 16-bit or 32-bit × 32-bit fixed-point
multiplication. This functionality is enhanced by 16-bit × 16-bit multiply and accumulate (MAC), 32 × 32
MAC, and 16-bit × 16-bit dual MAC (DMAC) instructions. This section describes the components involved
in each type of multiplication.

2.6.1 16-bit × 16-bit Multiplication
The C28x multiplier can perform a 16-bit × 16-bit multiplication to produce a signed or unsigned 32-bit
product. Figure 2-10 shows the CPU components involved in this multiplication.

The multiplier accepts two 16-bit inputs:
• One input is from the upper 16 bits of the multiplicand register (T). Most 16 × 16 multiplication

instructions require that you load T from a datamemory location or a register before you execute the
instruction. However, the MAC and some versions of the MPY and MPYA instructions load T for you
before the multiplication.

• The other input is from one of the following:
– A data-memory location or a register (depending on which you specify in the multiply instruction).
– An instruction opcode. Some C28x multiply instructions allow you to include a constant as an

operation.

After the value has been multiplied by the second value, the 32-bit result is stored in one of two places,
depending on the particular multiply instruction: the 32-bit product register (P) or the 32-bit accumulator
(ACC).

One special 16-bit × 16-bit multiplication instruction takes two 32-bit input values as its operands. This
instruction is the 16 × 16 DMAC instruction, which performs dual 16 × 16 MAC operations in one
instruction. In this case, the ACC contains the result of multiplying and adding the upper word of the 32-bit
operands. The P register contains the result of multiplying and adding the results of the lower word of the
32-bit operands.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

Fr

16

From data memory or a register From data memory or a register

om an instruction opcode

16

T

16
Multiplier

MUX

16

32

MUX

32 32

P ACC

16

Multiply Operations www.ti.com

46 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

Central Processing Unit

Figure 2-10. Conceptual Diagram of Components Involved in 16 X16-Bit Multiplication

2.6.2 32-Bit × 32-Bit Multiplication
The C28x multiplier can also perform 32-bit by 32-bit multiplication. Figure 2-11 shows the CPU
components involved n this multiplication. In this case, the multiplier accepts two 32-bit inputs:
• The first input is from one of the following:

– A program memory location. Some C28x 32 × 32 multiply MAC-type instructions such as IMACL
and QMACL take one data value directly from memory using the program-address bus.

– The 32-bit multiplicand register (XT). Most 32 × 32-bit multiplication instructions require that you
load XT from data memory or a register before you execute the instruction.

• A data-memory location or a register (depending on which you specify in the multiply instruction).

After the two values have ben multiplied, 32 bits of the 64-bit result are stored in the product register (P).
You can control which half is stored (upper 32 bits or lower 32 Bits) and whether the multiplication is
signed or unsigned by the instruction used.

If you need support for larger data values, the 32 X 32 multiplication instructions can be combined to
implement 32 × 32 = 64-bit or 64 × 64 = 128-bit math.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

Shift left
This symbol represents the 32-bit shifter. The text

inside the box indicates the direction of the shift.

This symbol indicates zero filling.
0

Sign
This symbol indicates sign extending.

SXM This symbol indicates that the MSBs of the shifter

depend on the sign-extension mode bit (SXM). If
0/Sign

SXM = 0, the MSBs are zero filled after the shift. If

SXM = 1, the MSBs are filled with the sign of the

shifted value.

This symbol indicates the carry bit (C).
C

From data memory

32 or register

From
program
memory

XT

32 32

MUX

From data
memory or register

32 32
Multiplier

Upper 32 Lower 32

MUX

32

P

www.ti.com Shift Operations

47SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

Central Processing Unit

Figure 2-11. Conceptual Diagram of Components Involved in 32 X 32-Bit Multiplication

2.7 Shift Operations
The shifter holds 64 bits and accepts either a 16-bit, 32-bit, or 64-bit input value. When the input value has
16 bits, the value is loaded into the 16 least significant bits (LSBs) of the shifter. When the input value has
32 bits, the value is loaded into the 32 LSBs of the shifter. Depending on the instruction that uses the
shifter, the output of the shifter may be all of its 64 bits or just its 16 LSBs.

When a value is shifted right by an amount N, the N LSBs of the value are lost and the bits to the left of
the value are filled with all 0s or all 1s. If sign extension is specified, the bits to the left are filled with
copies of the sign bit. If sign extension is not specified, the bits to the left are filled with 0s, or zero filled.

When a value is shifted left by an amount N, the bits to the right of the shifted value are zero filled. If the
value has 16 bits and sign extension is specified, the bits to the left are filled with copies of the sign bit. If
the value has 16 bits and sign extension is not specified, the bits to the left are zero filled. If the value has
32 bits, the N MSBs of the value are lost, and sign extension is irrelevant.

The figure below lists the instructions that use the shifter and provides an illustration of the corresponding
shifter operation. The table uses the following graphical symbols:

Figure 2-12.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

AH/AL to 16 LSBs
Last

bit out
C

Shift left 0

16 LSBs to AH/AL

SXM

0/Sign

ACC

Shift right

Last
C

bit out

32 bits to ACC

Discard
other bits

Last

bit out
C

Discard

other bits

ACC

Shift left 0

32 bits to ACC

ACC

Shift right

16 LSBs to ALU

Discard

Discard

ACC

Shift left 0

16 LSBs to ALU

SXM

0/Sign

16-bit value to 16 LSBs

Shift left 0

32 bits to ALU

Shift Operations www.ti.com

48 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

Central Processing Unit

Table 2-13. Shift Operations

Operation Type Illustration

Left shift of 16-bit value for ACC operation
Syntaxes: ADD ACC, loc16 << 0...16
ADD ACC, # 16Bit << 0...15
ADD ACC, loc16 <<T
SUB ACC, loc16 << 0...16
SUB ACC, # 16Bit << 0 ...15
SUB ACC, loc16<< T
MOV ACC, loc16 << 0...16
MOV ACC, # 16Bit << 0...15
MOV ACC , loc16, << T

Figure 2-13. ADD Command

Store 16 LSBs of left-shifted ACC
Syntax:
MOV loc16, ACC << 1...8

Figure 2-14. MOV Command

Store 16 MSBs of left-shifted ACC.
Syntax:
MOVH loc16, ACC << 1...8
Note: This instruction performs a single right shift by (16- shift1),
where shift1 is a value from 0 to 8.

Figure 2-15. MOVH Command

Logical left shift of ACC. The last bit to be shifted out fills the
carry bit (C)
Syntaxes:
LSL ACC, 1...16
LSL ACC, T (shift = T(3:0))
LSL ACC, T (shift = T(4:0))
Note: If T(3:0) = 0 or T(4:0) = 0, indicating a shift of 0, C is
cleared. Figure 2-16. LSL Command

Logical left shift of AH or AL. The last AH/AL to 16 LSBs bit to
be shifted out fills the carry bit (C).
Syntaxes:
LSL A X, 1...16
LSL A X, T (shift = T(3:0)) Note: If T(3:0) = 0, indicating a shift of
0, C is cleared.
Right shift of ACC. If SXM = 0, a logical shift is performed. If
SXM = 1, an arithmetic shift is performed. The last bit to be
shifted out fills the carry bit (C).
Syntaxes:
SFR ACC, 1...16
SFR ACC, T
Note: If T(3:0) = 0, indicating a shift of 0, C is cleared.

Figure 2-17. LSL and SFR Commands

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

ACC:P

0 Shift right

Last
C

bit out

64 bits to ACC:P

Discard
other bits

ACC

Rotate right C

32 bits to ACC

ACC

C Rotate left

32 bits to ACC

Sign

AH/AL to 16 LSBs

Shift right

Last
C

bit out

16 LSBs to AH/AL

Discard
other bits

AH/AL to 16 LSBs

0 Shift right

16 LSBs to AH/AL

Last
C

bit out

Discard
other bits

www.ti.com Shift Operations

49SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

Central Processing Unit

Table 2-13. Shift Operations (continued)
Operation Type Illustration

Logical right shift of AH or AL. The last bit to be shifted out fills
the carry bit (C).
Syntaxes:
LSR A X, shift
LSR A X, T (shift = T(3:0)) ARLACC, T (shift = T(4:0)
Note: If T(4:0) = 0, indicating a shift of 0, C is cleared.

Figure 2-18. LSR Command

Arithmetic right shift of AH or AL. The last bit to be shifted out
fills the carry bit (C).
Syntaxes:
ASR A X, shift
ASR A X, T
Note: If T(4:0) = 0, indicating a shift of 0, C is cleared.

Figure 2-19. ASR Command

Rotate ACC left by 1 bit. Bit 31 of ACC fills the carry bit (C). C
fills bit 0 of ACC.
Syntax:
ROL ACC

Figure 2-20. ROL Command

Rotate ACC right by 1 bit. Bit 0 of ACC fills the carry bit (C). C
fills bit 31 of ACC.
Syntax:
ROR ACC

Figure 2-21. ROR Command

Logical right shift of ACC:P.
Syntaxes
LSR64 ACC:P, 1...16
LSR64, ACC:P, T shift = T(5:0)

Figure 2-22. LSR64 Command

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

For PM = 0:

Discard

For PM = 1: No shift

For PM from 2−7:

P

Shift left 0

32 bits to ALU

P

Sign Shift right

32 bits to ALU

Discard

Discard

ACC

Shift left 0

32 bits to ACC

Sign

ACC:P

Shift right

Last
C

bit out

64 bits to ACC:P

Discard
other bits

Last

bit out
C

Discard

ACC:P

Shift left 0

other bits

64 bits to ACC:P

Shift Operations www.ti.com

50 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

Central Processing Unit

Table 2-13. Shift Operations (continued)
Operation Type Illustration

Logical left shift of ACC:P.
Syntaxes:
LSL64 ACC:P, 1...16
LSL64 ACC:P, T shift = T(5:0)

Figure 2-23. LSL64 Command

Arithmetic right shift of ACC:P.
Syntaxes:
ASR64 ACC:P, 1...16
ASR64, ACC:P, T shift = T(5:0)

Figure 2-24. ASR64 Command

Conditional shift of ACC by 1 bit.
Syntaxes: NORM ACC, aux++
NORM ACC, aux- -
SUBCU ACC, loc

Figure 2-25. NORM and SUBCU Command

Shift of P as per PM bits.
Syntaxes:
ADD ACC, P
SUB ACC, P CMP ACC, P
MAC P, loc, 0: pmem
MOV ACC, P
MOVA T, loc
MOVP T, loc
MOVS T, loc
MPYA P, loc, # 16BitSigned
MPYA P, T, loc
MPYS P, T, loc

Figure 2-26. Shift Operations

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

For PM = 0: P

1) Discard

2)

Shift left 0

Shift right by 16 Discard

16 LSBs to ALU

For PM = 1: No shift

For PM from 2−7: P

1) Sign Shift right Discard

2) Shift right by 16 Discard

16 LSBs to ALU

For PM = 0:

Discard

P

Shift left 0

16 LSBs to ALU

For PM = 1: No shift

For PM from 2−7: P

Sign Shift right Discard

16 LSBs to ALU

www.ti.com Shift Operations

51SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

Central Processing Unit

Table 2-13. Shift Operations (continued)
Operation Type Illustration

Store 16 LSBs of shifted P. P is shifted as per the PM bits. The
16 LSBs of shifter are stored.
Syntax:
MOV loc16, P

Figure 2-27. MOV Command

Store 16 MSBs of shifted P. P is shifted as per the PM bits. The
result is shifted right by 16 so that its 16 MSBs are in the For PM
= 0: P 16 LSBs of the shifter. 16 LSBs of shifter are stored.
Syntax:
MOVH loc16, P

Figure 2-28. MOV Command

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

52 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

CPU Interrupts and Reset

Chapter 3
SPRU430F–August 2001–Revised April 2015

CPU Interrupts and Reset

This chapter describes the available CPU interrupts and how they are handled by the CPU. It also
explains how to control those interrupts that can be controlled through software. Finally, it describes how a
hardware reset affects the CPU.

Topic ... Page

3.1 CPU Interrupts Overview .. 53
3.2 CPU Interrupt Vectors and Priorities .. 53
3.3 Maskable Interrupts: INT1–INT14, DLOGINT, and RTOSINT 55
3.4 Standard Operation for Maskable Interrupts ... 58
3.5 Nonmaskable Interrupts ... 62
3.6 Illegal-Instruction Trap ... 65
3.7 Hardware Reset (RS) .. 65

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com CPU Interrupts Overview

53SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

CPU Interrupts and Reset

3.1 CPU Interrupts Overview
Interrupts are hardware- or software-driven signals that cause the C28x CPU to suspend its current
program sequence and execute a subroutine. Typically, interrupts are generated by peripherals or
hardware devices that need to give data to or take data from the C28x (for example, A/D and D/A
converters and other processors). Interrupts can also signal that a particular event has taken place (for
example, a timer has finished counting).

On the C28x, interrupts can be triggered by software (the INTR, OR IFR, or TRAP instruction) or by
hardware (a pin, an external peripheral, or on-chip peripheral/logic). If hardware interrupts are triggered at
the same time, the C28x services them according to a set priority ranking.

Some 28x devices include a peripheral interrupt expansion (PIE) module that multiplexes interrupts from a
number of peripherals into a single CPU interrupt. The PIE module provides additional control before an
interrupt reaches the C28x CPU. See the TMS320C8x System and Interrupts Reference Guide
(SPRU078) for more details.

At the CPU level, each of the C28x interrupts, whether hardware or software, can be placed in one of the
following two categories:
• Maskable interrupts. These are interrupts that can be blocked (masked) or enabled (unmasked)

through software.
• Nonmaskable interrupts. These interrupts cannot be blocked. The C28x will immediately approve this

type of interrupt and branch to the corresponding subroutine. All software-initiated interrupts are in this
category.

The C28x handles interrupts in four main phases:
1. Receive the interrupt request. Suspension of the current program sequence must be requested by a

software interrupt (from program code) or a hardware interrupt (from a pin or an on-chip device).
2. Approve the interrupt. The C28x must approve the interrupt request. If the interrupt is maskable,

certain conditions must be met in order for the C28x to approve it. For nonmaskable hardware
interrupts and for software interrupts, approval is immediate.

3. Prepare for the interrupt service routine and save register values. The main tasks performed in
this phase are:
• Complete execution of the current instruction and flush from the pipeline any instructions that have

not reached the decode 2 phase.
• Automatically save most of the current program context by saving the following registers to the

stack: ST0, T, AL, AH, PL, PH, AR0, AR1, DP, ST1, DBGSTAT, PC, and IER.
• Fetch the interrupt vector and load it into the program counter (PC). For devices with a PIE

module, the vector fetched will depend on the setting of the PIE enable and flag registers.
4. Execute the interrupt service routine. The C28x branches to its corresponding subroutine called an

interrupt service routine (ISR). The C28x branches to the address (vector) you store at a
predetermined vector location and executes the ISR you have written.

3.2 CPU Interrupt Vectors and Priorities
The C28x supports 32 CPU interrupt vectors, including the reset vector. Each vector is a 22-bit address
that is the start address for the corresponding interrupt service routine (ISR). Each vector is stored in 32
bits at two consecutive addresses. The location at the lower address holds the 16 least significant bits
(LSBs) of the vector. The location at the higher address holds the 6 most significant bits (MSBs) right-
justified. When an interrupt is approved, the 22-bit vector is fetched, and the 10 MSBs at the higher
address are ignored.

The C28x supports 32 CPU interrupt vectors, including the reset vector. Each vector is a 22-bit address
that is the start address for the corresponding interrupt service routine (ISR). Each vector is stored in 32
bits at two consecutive addresses. The location at the lower address holds the 16 least significant bits
(LSBs) of the vector. The location at the higher address holds the 6 most significant bits (MSBs) right-
justified. When an interrupt is approved, the 22-bit vector is fetched, and the 10 MSBs at the higher
address are ignored.

For devices with a PIE module, this table is re-mapped and expanded into the PIE vector table.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F
http://www.ti.com/lit/pdf/SPRU078

CPU Interrupt Vectors and Priorities www.ti.com

54 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

CPU Interrupts and Reset

Table 3-1 lists the available CPU interrupt vectors and their locations. The addresses are shown in
hexadecimal form. The table also shows the priority of each of the hardware interrupts.

(1) For C28x catalog devices, VMAP = 1 at reset.
(2) Interrupts DLOGINT and RTOSINT are generated by the emulation logic internal to the CPU.

Table 3-1. Interrupt Vectors and Priorities

Vector
Absolute Address (hexadecimal) Hardware

Priority Description
VMAP = 0 VMAP = 1 (1)

RESET 00 0000 3F FFC0 1 (highest) Reset

INT1 00 0002 3F FFC2 5 Maskable Interrupt 1

INT2 00 0004 3F FFC4 6 Maskable interrupt 2

INT3 00 0006 3F FFC6 7 Maskable interrupt 3

INT4 00 0008 3F FFC8 8 Maskable interrupt 4

INT5 00 000A 3F FFCA 9 Maskable interrupt 5

INT6 00 000C 3F FFCC 10 Maskable interrupt 6

INT7 00 000E 3F FFCE 11 Maskable interrupt 7

INT8 00 0010 3F FFD0 12 Maskable interrupt 8

INT9 00 0012 3F FFD2 13 Maskable interrupt 9

INT10 00 0014 3F FFD4 14 Maskable interrupt 10

INT11 00 0016 3F FFD6 15 Maskable interrupt 11

INT12 00 0018 3F FFD8 16 Maskable interrupt 12

INT13 00 001A 3F FFDA 17 Maskable interrupt 13

INT14 00 001C 3F FFDC 18 Maskable interrupt 14

DLOGINT (2) 00 001E 3F FFDE 19 (lowest) Maskable data log interrupt

RTOSINT (2) 00 0020 3F FFE0 4 Maskable real-time operating system interrupt

Reserved 00 0022 3F FFE2 2 Reserved

NMI 00 0024 3F FFE4 3 Nonmaskable interrupt

ILLEGAL 00 0026 3F FFE6 Illegal-instruction trap

USER1 00 0028 3F FFE8 User-defined software interrupt

USER2 00 002A 3F FFEA User defined software interrupt

USER3 00 002C 3F FFEC User-defined software interrupt

USER4 00 002E 3F FFEE User-defined software interrupt

USER5 00 0030 3F FFF0 User-defined software interrupt

USER6 00 0032 3F FFF2 User-defined software interrupt

USER7 00 0034 3F FFF4 User-defined software interrupt

USER8 00 0036 3F FFF6 User-defined software interrupt

USER9 00 0038 3F FFF8 User-defined software interrupt

USER10 00 003A 3F FFFA User-defined software interrupt

USER11 00 003C 3F FFFC User-defined software interrupt

USER12 00 003E 3F FFFE User-defined software interrupt

The vector table can be mapped to the top or bottom of program space, depending on the value of the
vector map bit (VMAP) in status register ST1. If the VMAP bit is 0, the vectors are mapped beginning at
address 00 000016. If the VMAP bit is 1, the vectors are mapped beginning at address 3F FFC016.
Table 3-1 lists the absolute addresses for VMAP = 0 and VMAP = 1.

The VMAP bit can be set by the SETC VMAP instruction and cleared by the CLRC VMAP instruction. The
reset value of VMAP is 1.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com Maskable Interrupts: INT1–INT14, DLOGINT, and RTOSINT

55SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

CPU Interrupts and Reset

3.3 Maskable Interrupts: INT1–INT14, DLOGINT, and RTOSINT
INT1–INT14 are 14 general-purpose interrupts. DLOGINT (the data log interrupt) and RTOSINT (the real-
time operating system interrupt) are available for emulation purposes. These interrupts are supported by
three dedicated registers: the CPU interrupt flag register (IFR), the CPU interrupt enable register (IER),
and the CPU debug interrupt enable register (DBGIER).

The 16-bit IFR contains flag bits that indicate which of the corresponding interrupts are pending (waiting
for approval from the CPU). The external input lines INT1–INT14 are sampled at every CPU clock cycle. If
an interrupt signal is recognized, the corresponding bit in the IFR is set and latched. For DLOGINT or
RTOSINT, a signal sent by the CPU on-chip analysis logic causes the corresponding flag bit to be set and
latched. You can set one or more of the IFR bits at the same time by using the OR IFR instruction. More
details about the IFR are given in Section 3.3.1. The on-chip analysis resources are introduced in
Chapter 7.

The interrupt enable register (IER) and the debug interrupt enable register (DBGIER) each contain bits for
individually enabling or disabling the maskable interrupts. To enable one of the interrupts in the IER, you
set the corresponding bit in the IER; to enable the same interrupt in the DBGIER, you set the
corresponding bit in the DBGIER. The DBGIER indicates which interrupts can be serviced when the CPU
is in the real-time emulation mode. The IER and the DBGIER are discussed more in Section 3.3.2. Real-
time mode is discussed in Section 7.4.2.

The maskable interrupts also share bit 0 in status register ST1. This bit, the interrupt global mask bit
(INTM), is used to globally enable or globally disable these interrupts. When INTM = 0, these interrupts
are globally enabled. When INTM = 1, these interrupts are globally disabled. You can set and clear INTM
with the SETC INTM and CLRC INTM instructions, respectively. ST1 is described in Section 2.4.

After a flag has been latched in the IFR, the corresponding interrupt is not serviced until it is appropriately
enabled by two of the following: the IER, the DBGIER, and the INTM bit. As shown in Table 3-2, the
requirements for enabling the maskable interrupts depend on the interrupt-handling process used. In the
standard process, which occurs in most circumstances, the DBGIER is ignored. When the C28x is in real-
time emulation mode and the CPU is halted, a different process is used. In this special case, the DBGIER
is used and the INTM bit is ignored. (If the DSP is in real-time mode and the CPU is running, the standard
interrupt-handling process applies.)

Once an interrupt has been requested and properly enabled, the CPU prepares for and then executes the
corresponding interrupt service routine. For a detailed description of this process, see Section 3.4.

Table 3-2. Requirements for Enabling a Maskable Interrupt

Interrupt-Handling Process Interrupt Enabled If ...

Standard INTM = 0 and bit in IER is 1

DSP in real-time mode and CPU halted Bit in IER is 1 and bit in DBGIER is 1

As an example of varying interrupt-enable requirements, suppose you want interrupt INT5 enabled. This
corresponds to bit 4 in the IER and bit 4 in the DBGIER. Usually, INT5 is enabled if INTM = 0 and
IER(4) = 1. In real-time emulation mode with the CPU halted, INT5 is enabled if IER(4) = 1 and
DBGIER(4) = 1.

3.3.1 CPU Interrupt Flag Register (IFR)
Figure 3-1 shows the IFR. If a maskable interrupt is pending (waiting for approval from the CPU), the
corresponding IFR bit is 1; otherwise, the IFR bit is 0. To identify pending interrupts, use the PUSH IFR
instruction and then test the value on the stack. Use the OR IFR instruction to set IFR bits, and use the
AND IFR instruction to clear pending interrupts. When a hardware interrupt is serviced, or when an INTR
instruction is executed, the corresponding IFR bit is cleared. All pending interrupts are cleared by the AND
IFR, #0 instruction or by a hardware reset.

NOTE: When an interrupt is requested by the TRAP instruction, if the corresponding IFR bit is set,
the CPU does not clear it automatically. If an application requires that the IFR bit be cleared,
the bit must be cleared in the interrupt service routine.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

15 14 13 12 11 10 9 8

RTOSINT DLOGINT INT14 INT13 INT12 INT11 INT10 INT9

R/W−0 R/W−0 R/W−0 R/W−0 R/W−0 R/W−0 R/W−0 R/W−0

7 6 5 4 3 2 1 0

INT8 INT7 INT6 INT5 INT4 INT3 INT2 INT1

R/W−0 R/W−0 R/W−0 R/W−0 R/W−0 R/W−0 R/W−0 R/W−0

Note: R = Read access; W = Write access; value following dash (−) is value after reset.

15 14 13 12 11 10 9 8

RTOSINT DLOGINT INT14 INT13 INT12 INT11 INT10 INT9

R/W−0 R/W−0 R/W−0 R/W−0 R/W−0 R/W−0 R/W−0 R/W−0

7 6 5 4 3 2 1 0

INT8 INT7 INT6 INT5 INT4 INT3 INT2 INT1

R/W−0 R/W−0 R/W−0 R/W−0 R/W−0 R/W−0 R/W−0 R/W−0

Note: R = Read access; W = Write access; value following dash (−) is value after reset.

Maskable Interrupts: INT1–INT14, DLOGINT, and RTOSINT www.ti.com

56 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

CPU Interrupts and Reset

Figure 3-1. Interrupt Flag Register (IFR)

Bits 15 and 14 of the IFR correspond to the interrupts RTOSINT and DLOGINT:

Table 3-3. RTOSINT Real-time Operating System Interrupt Flag

RTOSINT Real-time operating system interrupt flag

Bit 15 RTOSINT = 0 RTOSINT is not pending.

RTOSINT = 1 RTOSINT is pending.

DLOGINT Data log interrupt flag

Bit 14 DLOGINT = 0 DLOGINT is not pending.

DLOGINT = 1 DLOGINT is pending.

For bits INT1-INT14, the following general description applies:

INTx Interrupt x flag (x = 1, 2, 3, ..., or 14)

Bit (x-1) INTx = 0 INTx is not pending.

INTx = 1 INTx is pending.

3.3.2 CPU Interrupt Enable Register (IER) and CPU Debug Interrupt Enable Register
(DBGIER)
Figure 3-2 shows the IER. To enable an interrupt, set its corresponding bit to 1. To disable an interrupt,
clear its corresponding bit to 0. Two syntaxes of the MOV instruction allow you to read from the IER and
write to the IER. In addition, the OR IER instruction enables you to set IER bits, and the AND IER
instruction enables you to clear IER bits. When a hardware interrupt is serviced, or when an INTR
instruction is executed, the corresponding IER bit is cleared. At reset, all the IER bits are cleared to 0,
disabling all the corresponding interrupts.

NOTE: When an interrupt is requested by the TRAP instruction, if the corresponding IER bit is set,
the CPU does not clear it automatically. If an application requires that the IER bit be cleared,
the bit must be cleared in the interrupt service routine.

NOTE: If an IFR b it is set in the same cycle that the corresponding IER bit is cleared, the interrupt
will not be serviced until the IER bit is set again.

Figure 3-2. Interrupt Enable Register (IER)

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

15 14 13 12 11 10 9 8

RTOSINT DLOGINT INT14 INT13 INT12 INT11 INT10 INT9

R/W−0 R/W−0 R/W−0 R/W−0 R/W−0 R/W−0 R/W−0 R/W−0

7 6 5 4 3 2 1 0

INT8 INT7 INT6 INT5 INT4 INT3 INT2 INT1

R/W−0 R/W−0 R/W−0 R/W−0 R/W−0 R/W−0 R/W−0 R/W−0

Note: R = Read access; W = Write access; value following dash (−) is value after reset.

www.ti.com Maskable Interrupts: INT1–INT14, DLOGINT, and RTOSINT

57SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

CPU Interrupts and Reset

NOTE: When using the AND IER and OR IER instructions, make sure that they do not modify the
state of bit 15 (RTOSINT) unless a real-time operating system is present.

Bits 15 and 14 of the IER enable or disable the interrupts RTOSINT and

DLOGINT:

RTOSINT Real-time operating system interrupt enable bit

Bit 15 RTOSINT = 0 RTOSINT is disabled.

RTOSINT = 1 RTOSINT is enabled.

DLOGINT Data log interrupt enable bit

Bit 14 DLOGINT = 0 DLOGINT is disabled.

DLOGINT = 1 DLOGINT is enabled.

For bits INT1-INT14, the following general description applies:

INTx Interrupt x enable bit (x = 1, 2, 3, ..., or 14)

Bit (x-1) INTx = 0 INTx is disabled.

INTx = 1 INTx is enabled.

Figure 3-3 shows the DBGIER, which is used only when the CPU is halted in real-time emulation mode.
An interrupt enabled in the DBGIER is defined as a time-critical interrupt. When the CPU is halted in real-
time mode, the only interrupts that are serviced are time-critical interrupts that are also enabled in the IER.
If the CPU is running in real-time emulation mode, the standard interrupt-handling process is used and the
DBGIER is ignored.

As with the IER, you can read the DBGIER to identify enabled or disabled interrupts and write to the
DBGIER to enable or disable interrupts. To enable an interrupt, set its corresponding bit to 1. To disable
an interrupt, set its corresponding bit to 0. Use the PUSH DBGIER instruction to read from the DBGIER
and the POP DBGIER instruction to write to the DBGIER. At reset, all the DBGIER bits are set to 0.

Figure 3-3. Debug Interrupt Enable Register (DBGIER)

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

Standard Operation for Maskable Interrupts www.ti.com

58 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

CPU Interrupts and Reset

Bits 15 and 14 of the DBGIER enable or disable the interrupts RTOSINT and DLOGINT:

RTOSINT Real-time operating system interrupt debug enable bit

Bit 15 RTOSINT = 0 RTOSINT is disabled.

RTOSINT = 1 RTOSINT is enabled.

DLOGINT Data log interrupt debug enable bit

Bit 14 DLOGINT = 0 DLOGINT is disabled.

DLOGINT = 1 DLOGINT is enabled.

For bits INT1-INT14, the following general description applies:

INTx Interrupt x debug enable bit (x = 1, 2, 3, ..., or 14)

Bit (x-1) INTx = 0 INTx is disabled.

INTx = 1 INTx is enabled.

3.4 Standard Operation for Maskable Interrupts
The flow chart in Figure 3-4 shows the standard process for handling interrupts. Section 7.4.2 contains
information on handling interrupts when the DSP is in real-time mode and the CPU is halted. When more
than one interrupt is requested at the same time, the C28x services them one after another according to
their set priority ranking. See the priorities in Table 3-1.

Figure 3-4 is not meant to be an exact representation of how an interrupt is handled. It is a conceptual
model of the important events.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

Interrupt request sent to CPU

Set corresponding IFR flag bit.

No

Interrupt enabled in
IER?

Yes

No

Interrupt enabled by
INTM bit?

Yes

Clear corresponding IFR bit.

Empty pipeline.

Increment and temporarily store PC.

Fetch interrupt vector.

Increment SP by 1.

Perform automatic context save.

This sequence

protected from interrupts

Clear corresponding IER bit.

Set INTM and DBGM. Clear LOOP,
EALLOW, and IDLESTAT.

Load PC with fetched vector.

Execute interrupt service routine.

Program continues

www.ti.com Standard Operation for Maskable Interrupts

59SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

CPU Interrupts and Reset

Figure 3-4. Standard Operation for CPU Maskable Interrupts

What following list explains the steps shown in Table 3-5:
1. Interrupt request sent to CPU. One of the following events occurs:

• One of the pins INT1-INT14 is driven low by an external event, peripheral or PIE interrupt request..
• The CPU emulation logic sends to the CPU a signal for DLOGINT or RTOSINT.
• One of the interrupts INT1-INT14, DLOGINT, and RTOSINT is initiated by way of the OR IFR

instruction.
2. Set corresponding IFR flag bit. When the CPU detects a valid interrupt in step 1, it sets and latches

the corresponding flag in the interrupt flag register (IFR). This flag stays latched even if the interrupt is
not approved by the CPU in step 3. The IFR is explained in detail in Section 3.3.1.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

Standard Operation for Maskable Interrupts www.ti.com

60 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

CPU Interrupts and Reset

3. Is the interrupt enabled in IER? Is the interrupt enabled by INTM bit? The CPU approves the
interrupt only if the following conditions are true:
• The corresponding bit in the IER is 1.
• The INTM bit in ST1 is 0. Once an interrupt has been enabled and then approved by the CPU, no

other interrupts can be serviced until the CPU has begun executing the interrupt service routine for
the approved interrupt (step 13). The IER is described in Section 3.3.2. ST1 is described in
Section 2.4.

4. Clear corresponding IFR bit. Immediately after the interrupt is approved, its IFR bit is cleared. If the
interrupt signal is kept low, the IFR register bit will be set again. However, the interrupt is not
immediately serviced again. The CPU blocks new hardware interrupts until the interrupt service routine
(ISR) begins. In addition, the IER bit is cleared (in step 10) before the ISR begins; therefore, an
interrupt from the same source cannot disturb the ISR until the IER bit is set again by the ISR.

5. Empty the pipeline. The CPU completes any instructions that have reached or passed their decode 2
phase in the instruction pipeline. Any instructions that have not reached this phase are flushed from
the pipeline.

6. Increment and temporarily store PC. The PC is incremented by 1 or 2, depending on the size of the
current instruction. The result is the return address, which is temporarily saved in an internal hold
register. During the automatic context save (step 9), the return address is pushed onto the stack.

7. Fetch interrupt vector. The PC is filled with the address of the appropriate interrupt vector, and the
vector is fetched from that location. To determine which vector address has been assigned to each of
the interrupts, see Section 3.2, Interrupt Vectors or, if your device uses a PIE module, see the System
and Interrupts Reference Guide for your specific device.

8. Increment SP by 1. The stack pointer (SP) is incremented by 1 in preparation for the automatic
context save (step 9). During the automatic context save, the CPU performs 32-bit accesses, and the
CPU expects 32-bit accesses to be aligned to even addresses by the memory wrapper. Incrementing
SP by 1 ensures that the first 32-bit access does not overwrite the previous stack value.

9. Perform automatic context save. A number of register values are saved automatically to the stack.
These registers are saved in pairs; each pair is saved in a single 32-bit operation. At the end of each
32-bit save operation, the SP is incremented by 2. Table 3-4 shows the register pairs and the order in
which they are saved. The CPU expects all 32-bit saves to be even-word aligned by the memory
wrapper. As shown in the table, the SP is not affected by this alignment.

(1) All registers are saved as pairs, as shown.
(2) The P register is saved with 0 shift (CPU ignores current state of the product shift mode bits, PM, in status register 0).
(3) The DBGSTAT register contains special emulation information.

Table 3-4. Register Pairs Saved and SP Positions for Context Saves
Save Operation (1) Register Pairs Bit 0 of Storage Address SP Starts at Odd Address SP Starts at Even Address

1 SP position before step 8 1

1st STO 0 0 SP position before step 8

T 1 1

2nd AL 0 0

AH 1 1

3rd PL (2) 0 0

PH 1 1

4th AR0 0 0

AR1 1 1

5th ST1 0 1

DP 1 1

6th IER 0 0

DBGSTAT (3) 1 1

7th Return address (low half) 0 0

Return address (high half) 1 1

0 SP position after save 0

1 1 SP position after save

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com Standard Operation for Maskable Interrupts

61SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

CPU Interrupts and Reset

1. Clear corresponding IER bit. After the IER register is saved on the stack in step 9, the CPU clears
the IER bit that corresponds to the interrupt being handled. This prevents reentry into the same
interrupt. If you want to nest occurrences of the interrupt, have the ISR set that IER bit again.

2. Set INTM and DBGM. Clear LOOP, EALLOW, and IDLESTAT. All these bits are in status register
ST1. By setting INTM to 1, the CPU prevents maskable interrupts from disturbing the ISR. If you wish
to nest interrupts, have the ISR clear the INTM bit. By setting DBGM to 1, the CPU prevents debug
events from disturbing time-critical code in the ISR. If you do not want debug events blocked, have the
ISR clear DBGM. The CPU clears LOOP, EALLOW, and IDLESTAT so that the ISR operates within a
new context.

3. Load PC with fetched vector. The PC is loaded with the interrupt vector that was fetched in step 7.
The vector forces program control to the ISR.

4. Execute interrupt service routine. Here is where the CPU executes the program code you have
prepared to handle the interrupt. A typical ISR is shown in Example 3-1.
Although a number of register values are saved automatically in step 10, if the ISR uses other
registers, you may need to save the contents of these registers at the beginning of the ISR. These
values must then be restored before the return from the ISR. The ISR in Example 3-1 saves and
restores auxiliary registers AR1H:AR0H, XAR2-XAR7, and the temporary register XT.
If you want the ISR to inform a peripheral that the interrupt is being serviced, you can use the IACK
instruction to send an interrupt acknowledge signal. The IACK instruction accepts a 16-bit constant as
an operand. For a detailed description of the IACK instruction, see Chapter 6, C28x Assembly
Language Instructions.

5. Program continues. If the interrupt is not approved by the CPU, the interrupt is ignored, and the
program continues uninterrupted. If the interrupt is approved, its interrupt service routine is executed
and the program continues where it left off (at the return address).

Example 3-1. Typical ISR
C28x Full Context Save/Restore

INTX: ; 8 cycles

PUSH AR1H:AR0H ; 32-bit
PUSH XAR2 ; 32-bit
PUSH XAR3 ; 32-bit
PUSH XAR4 ; 32-bit
PUSH XAR5 ; 32-bit
PUSH XAR6 ; 32-bit
PUSH XAR7 ; 32-bit
PUSH XT ; 32-bit

; +8 = 16 cycles

.

.

POP XT
POP XAR7

POP XAR6

POP XAR5

POP XAR4

POP XAR3

POP XAR2

POP XAR1H:AR0H
IRET

; 16 cycles

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

Nonmaskable Interrupts www.ti.com

62 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

CPU Interrupts and Reset

3.5 Nonmaskable Interrupts
Nonmaskable interrupts cannot be blocked by any of the enable bits (the INTM bit, the DBGM bit, and
enable bits in the IFR, IER, or DBGIER). The C28x immediately approves this type of interrupt and
branches to the corresponding interrupt service routine. There is one exception to this rule: When the CPU
is halted in stop mode (an emulation mode), no interrupts are serviced. Stop mode is described in
Section 7.4.1.

The C28x nonmaskable interrupts include:
• Software interrupts (the INTR and TRAP instructions).
• Hardware interrupt NMI
• Illegal-instruction trap
• Hardware reset interrupt (RS)

The software interrupt instructions and NMI are described in this section. The illegal-instruction trap and
reset are described in Section 3.6 and Section 3.7, respectively.

3.5.1 INTR Instruction
You can use the INTR instruction to initiate one of the following interrupts by name: INT1-INT14,
DLOGINT, RTOSINT and NMI. For example, you can execute the interrupt service routine for INT1 by
using the following instruction:
INTR INT1

Once an interrupt is initiated by the INTR instruction, how it is handled depends on which interrupt is
specified:
• INT1-INT14, DLOGINT, and RTOSINT. These maskable interrupts have corresponding flag bits in the

IFR. When a request for one of these interrupts is received at an external pin, the corresponding IFR
bit is set and the interrupt must be enabled to be serviced. In contrast, when one of these interrupts is
initiated by the INTR instruction, the IFR flag is not set, and the interrupt is serviced regardless of the
value of any enable bits. However, in other respects, the INTR instruction and the hardware request
are the same. For example, both clear the IFR bit that corresponds to the requested interrupt. For
more details, see Section 3.4.

• NMI. Because this interrupt is nonmaskable, a hardware request at a pin and a software request with
the INTR instruction lead to the same events. These events are identical to those that take place
during a TRAP instruction (see Section 3.5.2).

Chapter 6, C28x Assembly Language Instructions, contains a detailed description of the INTR instruction.

3.5.2 TRAP Instruction
You can use the TRAP instruction to initiate any interrupt, including one of the user-defined software
interrupts (see USER1-USER12 in Table 3-1. The TRAP instruction refers to one of the 32 interrupts by a
number from 0 to 31. For example, you can execute the interrupt service routine for INT1 by using the
following instruction: TRAP #1

Regardless of whether the interrupt has bits set in the IFR and IER, neither the IFR nor the IER is affected
by this instruction. Figure 3-5 shows a functional flow chart for an interrupt initiated by the TRAP
instruction. For more details about the TRAP instruction, see Chapter 6, C28x Assembly Language
Instructions

NOTE: The TRAP #0 instruction does not initiate a full reset. It only forces execution of the interrupt
service routine that corresponds to the RESET interrupt vector.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

INTM bit, IFR, IER, and
DBGIER ignored and

not affected

TRAP instruction fetched

Empty the pipeline.

Increment and temporarily store PC.

Fetch interrupt vector.

Increment SP by 1.

Perform automatic context save.

This sequence

protected from

interrupts

Set INTM and DBGM. Clear LOOP,
EALLOW, and IDLESTAT.

Load PC with fetched vector.

Execute interrupt service routine.

Program continues

www.ti.com Nonmaskable Interrupts

63SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

CPU Interrupts and Reset

Figure 3-5. Functional Flow Chart for an Interrupt Initiated by the TRAP Instruction

The following lists explains the steps shown in Figure 3-5:
1. TRAP instruction fetched. The CPU fetches the TRAP instruction from program memory. The

desired interrupt vector has been specified as an operand and is now encoded in the instruction word.
At this stage, no other interrupts can be serviced until the CPU begins executing the interrupt service
routine (step 9).

2. Empty the pipeline. The CPU completes any instructions that have reached or passed the decode 2
phase of the pipeline. Any instructions that have not reached this phase are flushed from the pipeline.

3. Increment and temporarily store PC. The PC is incremented by 1. This value is the return address,
which is temporarily saved in an internal hold register. During the automatic context save (step 6), the
return address is pushed onto the stack.

4. Fetch interrupt vector. The PC is set to point to the appropriate vector location (based on the VMAP
bit and the interrupt), and the vector located at the PC address is loaded into the PC. (To determine
which vector address has been assigned to each of the interrupts, see Section 3.2, Interrupt Vectors.)

5. Increment SP by 1. The stack pointer (SP) is incremented by 1 in preparation for the automatic
context save (step 6). During the automatic context save, the CPU performs 32-bit accesses, which
are aligned to even addresses. Incrementing SP by 1 ensures that the first 32-bit access will not
overwrite the previous stack value.

6. Perform automatic context save. A number of register values are saved automatically to the stack.
These registers are saved in pairs; each pair is saved in a single 32-bit operation. At the end of each
32-bit operation, the SP is incremented by 2. Table 3-3 shows the register pairs and the order in which
they are saved. All 32-bit saves are even-word aligned. As shown in the table, the SP is not affected
by this alignment.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

Nonmaskable Interrupts www.ti.com

64 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

CPU Interrupts and Reset

(1) All registers are saved as pairs, as shown.
(2) The P register is saved with 0 shift (CPU ignores current state of the product shift mode bits, PM, in status register 0).
(3) The DBGSTAT register contains special emulation information.

Table 3-5. Register Pairs Saved and SP Positions for Context Saves

Save Operation (1) Register Pairs Bit 0 of Storage Address SP Starts at Odd
Address SP Starts at Even Address

1st ST0 0 0 ← SP position before step 5
T 1 1

2nd AL 0 0
AH 1 1

3rd PL (2) 0 0
PH 1 1

4th AR0 0 0
AR1 1 1

5th ST1 0 0
DP 1 1

6th IER 0 0
DBGSTAT (3) 1 1

7th Return address (low half) 0 0
Return address (high half) 1 1

0 SP position after save 0
1 1 SP position after save

1. Set INTM and DBGM. Clear LOOP, EALLOW, and IDLESTAT. All these bits are in status register
ST1 (described in Section 2.4). By setting INTM to 1, the CPU prevents maskable interrupts from
disturbing the ISR. If you wish to nest interrupts, have the ISR clear the INTM bit. By setting DBGM to
1, the CPU prevents debug events from disturbing time critical code in the ISR. If you do not want
debug events blocked, have the ISR clear DBGM.
The CPU clears LOOP, EALLOW, and IDLESTAT so that the ISR operates within a new context.

2. Load PC with fetched vector. The PC is loaded with the interrupt vector that was fetched in step 4.
The vector forces program control to the ISR.

3. Execute interrupt service routine. The CPU executes the program code you have prepared to
handle the interrupt. You may wish to have the interrupt service routine (ISR) save register values in
addition to those saved in step 6. A typical ISR is shown in Example 3-1.
If you want the ISR to inform external hardware that the interrupt is being serviced, you can use the
IACK instruction to send an interrupt acknowledge signal. The IACK instruction accepts a 16-bit
constant as an operand and drives this 16-bit value on the 16 least significant lines of the data-write
bus, DWDB(15:0). For a detailed description of the IACK instruction, see Chapter 6, C28x Assembly
Language Instructions .

4. Program continues. After the interrupt service routine is completed, the program continues where it
left off (at the return address).

3.5.3 Hardware Interrupt NMI
An interrupt can be requested by way the NMI input pin, which must be driven low to initiate the interrupt.
Although NMI cannot be masked, there are some debug execution states in which NMI is not serviced
(see Section 7.4, Execution Control Modes). For more details on real-time mode, see Section 7.4.2. Once
a valid request is detected on the NMI pin, the CPU handles the interrupt in the same manner as shown
for the TRAP instruction (see Section 3.5.2).

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com Illegal-Instruction Trap

65SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

CPU Interrupts and Reset

3.6 Illegal-Instruction Trap
Any one of the following events causes an illegal-instruction trap:
• An invalid instruction is decoded (this includes invalid addressing modes).
• The opcode value 000016 is decoded. This opcode corresponds to the ITRAP0 instruction.
• The opcode value FFFF16 is decoded. This opcode corresponds to the ITRAP1 instruction.
• A 32-bit operation attempts to use the [@SP] register addressing mode.
• Address mode setting AMODE=1 and PAGE0=1

An illegal-instruction trap cannot be blocked, not even during emulation. Once initiated, an illegal-
instruction trap operates the same as a TRAP #19 instruction. The handling of an interrupt initiated by the
TRAP instruction is described in Section 3.5.2. As part of its operation, the illegal-instruction trap saves
the return address on the stack. Thus, you can detect the offending address by examining this saved
value. For more information about the TRAP instruction, see Chapter 6, C28x Assembly Language
Instructions.

3.7 Hardware Reset (RS)
When asserted, the reset input signal (RS) places the CPU into a known state. As part of a hardware
reset, all current operations are aborted, the pipeline is flushed, and the CPU registers are reset as shown
in Table 3-5. Then the RESET interrupt vector is fetched and the corresponding interrupt service routine is
executed. For the reset condition of signals, see the data sheet for your particular C28x DSP. Also see the
your data sheet for specific information on the process for resetting your DSP. Although RS cannot be
masked, there are some debug execution states in which RS is not serviced (see Section 7.4, Execution
Control Modes).

Table 3-6. Registers After Reset

Register Bit(s) Value After Reset Comments
ACC all 0000 000016

XAR0 all 0000 000016

XAR1 all 0000 000016

XAR2 all 0000 000016

XAR3 all 0000 000016

XAR4 all 0000 000016

XAR5 all 0000 000016

XAR6 all 0000 000016

XAR7 all 0000 000016

DP all 000016 DP points to data page 0.
IFR 16 bits 000016 There are no pending interrupts. All interrupts pending at the time of reset

have been cleared.
IER 16 bits 000016 Maskable interrupts are disabled in the IER.
DBGIER all 000016 Maskable interrupts are disabled in the DBGIER.
P all 0000 000016

PC all 3F FFC016 PC is loaded with the reset interrupt vector at program-space address 00
000016 or 3F FFC016.

RPC all 000016

SP all SP = 0x400 SP points to address 0400.

ST0 0: SXM 0 Sign extension is suppressed.

1: OVM 0 Overflow mode is off.
2: TC 0
3: C 0
4: Z 0
5: N 0

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

Hardware Reset (RS) www.ti.com

66 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

CPU Interrupts and Reset

Table 3-6. Registers After Reset (continued)
Register Bit(s) Value After Reset Comments

6: V 0
7-9: PM 000 2 The product shift mode is set to left-shift-by-1.
10-15: OVC 00 0000 2

ST1 0: INTM 1 Maskable interrupts are globally disabled. They cannot be serviced unless
the C28x is in real-time mode with the CPU halted.

1: DBGM 1 Emulation accesses and events are disabled.
2: PAGE0 0 PAGE0 stack addressing mode is enabled. PAGE0 direct addressing

mode is disabled.
3: VMAP 1 The interrupt vectors are mapped to program-memory addresses 3F

FFC016-3F FFFF16.
4: SPA 0
5: LOOP 0
6: EALLOW 0 Access to emulation registers is disabled.
7: IDLESTAT 0
8: AMODE 0 C27x/C28x addressing mode
9: OBJMODE 0 C27x object mode
10: Reserved 0
11:
M0M1MAP

1

12: XF 0 XFS output signal is low
13-15: ARP 000 2 ARP points to AR0.

XT all 0000 0000 32

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

67SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

Pipeline

Chapter 4
SPRU430F–August 2001–Revised April 2015

Pipeline

This chapter explains the operation of the C28x instruction pipeline. The pipeline contains hardware that
prevents reads and writes at the same register or data-memory location from happening out of order.
However, you can increase the efficiency of your programs if you take into account the operation of the
pipeline. In addition, you should be aware of two types of pipeline conflicts the pipeline does not protect
against and how you can avoid them (see Section 4.4).

For more information about the instructions shown in examples throughout this chapter, see C28x
Assembly Language Instructions.

Topic ... Page

4.1 Pipelining of Instructions .. 68
4.2 Visualizing Pipeline Activity .. 71
4.3 Freezes in Pipeline Activity ... 73
4.4 Pipeline Protection ... 74
4.5 Avoiding Unprotected Operations .. 76

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

Pipelining of Instructions www.ti.com

68 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

Pipeline

4.1 Pipelining of Instructions
When executing a program, the C28x CPU performs these basic operations:
• Fetches instructions from program memory
• Decodes instructions
• Reads data values from memory or from CPU registers
• Executes instructions
• Writes results to memory or to CPU registers

For efficiency, the C28x performs these operations in eight independent phases. Reads from memory are
designed to be pipelined in two stages, which correspond to the two pipeline phases used by the CPU for
each memory-read operation. At any time, there can be up to eight instructions being carried out, each in
a different phase of completion. Following are descriptions of the eight phases in the order they occur. The
address and data buses mentioned in these descriptions are introduced in the Memory Interface chapter,
Address and Data Buses section.

Fetch 1 (F1) In the fetch 1 (F1) phase, the CPU drives a program-memory ad- dress on the 22-bit
program address bus, PAB(21:0).

Fetch 2 (F2) In the fetch 2 (F2) phase, the CPU reads from program memory by way of the program-
read data bus, PRDB (31:0), and loads the instruction(s) into an instruction-fetch queue.

Decode 1 (D1) The C28x supports both 32-bit and 16-bit instructions and an instruction can be aligned
to an even or odd address. The decode 1 (D1) hardware identifies instruction
boundaries in the instruction-fetch queue and determines the size of the next instruction
to be executed. It also determines whether the instruction is a legal instruction.

Decode 2 (D2) The decode 2 (D2) hardware requests an instruction from the instruction-fetch queue.
The requested instruction is loaded into the instruction register, where decoding is
completed. Once an instruction reaches the D2 phase, it runs to completion before any
interrupts are taken. In this pipeline phase, the following tasks are performed:
● If data is to be read from memory, the CPU generates the source address or

addresses.
● If data is to be written to memory, the CPU generates the destination address.
● The address register arithmetic unit (ARAU) performs any required modifications to

the stack pointer (SP) or to an auxiliary register and/or the auxiliary register pointer
(ARP).

● If a program-flow discontinuity (such as a branch or an illegal-instruction trap) is
required, it is taken.

Read 1 (R1) If data is to be read from memory, the read 1 (R1) hardware drives the address(es) on
the appropriate address bus(es).

Read 2 (R2) If data was addressed in the R1 phase, the read 2 (R2) hardware fetches that data by
way of the appropriate data bus(es).

Execute (E) In the execute (E) phase, the CPU performs all multiplier, shifter, and ALU operations.
This includes all the prime arithmetic and logic operations involving the accumulator and
product register. For operations that involve reading a value, modifying it, and writing it
back to the original location, the modification (typically an arithmetic or a logical
operation) is performed during the E phase of the pipeline. Any CPU register values
used by the multiplier, shifter, and ALU are read from the registers at the beginning of
the E phase. A result that is to be written to a CPU register is written to the register at
the end of the E phase.

Write (W) If a transferred value or result is to be written to memory, the write occurs in the write
(W) phase. The CPU drives the destination address, the appropriate write strobes, and
the data to be written. The actual storing, which takes at least one more clock cycle, is
handled by memory wrappers or peripheral interface logic and is not visible as a part of
the CPU pipeline.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com Pipelining of Instructions

69SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

Pipeline

Although every instruction passes through the eight phases, not every phase is active for a given
instruction. Some instructions complete their operations in the decode 2 phase, others in the execute
phase, and still others in the write phase. For example, instructions that do not read from memory perform
no operations in the read phases, and instructions that do not write to memory perform no operation in the
write phase.

Because different instructions perform modifications to memory and registers during different phases of
their completion, an unprotected pipeline could lead to reads and writes at the same location happening
out of the intended order. The CPU automatically adds inactive cycles to ensure that these reads and
writes happen as intended. For more details about pipeline protection, see Section 4.3.

4.1.1 Decoupled Pipeline Segments
The fetch 1 through decode 1 (F1−D1) hardware acts independently of the decode 2 through write
(D2−W) hardware. This allows the CPU to continue fetching instructions when the D2−W phases are
halted. It also allows fetched instructions to continue through their D2−W phases when fetching of new
instructions is delayed. Events that cause portions of the pipeline to halt are described in Section 4.2.2.

Instructions in their fetch 1, fetch 2, and decode 1 phases are discarded if an interrupt or other program-
flow discontinuity occurs. An instruction that reaches its decode 2 phase always runs to completion before
any program-flow discontinuity is taken.

4.1.2 Instruction-Fetch Mechanism
Certain branch instructions perform prefetching. The first few instructions of the branch destination will be
fetched but not allowed to reach D2 until it is known whether the discontinuity will be taken. The
instruction-fetch mechanism is the hardware for the F1 and F2 pipeline phases. During the F1 phase, the
mechanism drives an address on the program address bus (PAB). During the F2 phase, it reads from the
program-read data bus (PRDB). While an instruction is read from program memory in the F2 phase, the
address for the next fetch is placed on the program address bus (during the next F1 phase).

The instruction-fetch mechanism contains an instruction-fetch queue of four 32-bit registers. During the F2
phase, the fetched instruction is added to the queue, which behaves like a first-in, first-out (FIFO) buffer.
The first instruction in the queue is the first to be executed. The instruction-fetch mechanism performs 32-
bit fetches until the queue is full. When a program-flow discontinuity (such as a branch or an interrupt)
occurs, the queue is emptied. When the instruction at the bottom of the queue reaches its D2 phase, that
instruction is passed to the instruction register for further decoding.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

Pipelining of Instructions www.ti.com

70 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

Pipeline

4.1.3 Address Counters FC, IC, and PC
Three program-address counters are involved in the fetching and execution of instructions:
• Fetch counter (FC). The fetch counter contains the address that is driven on the program address bus

(PAB) in the F1 pipeline phase. The CPU continually increments the FC until the queue is full or the
queue is emptied by a program-flow discontinuity. Generally, the FC holds an even address and is
incremented by 2, to accommodate 32-bit fetches. The only exception to this is when the code after a
discontinuity begins at an odd address. In this case, the FC holds the odd address. After performing
a16-bit fetch at the odd address, the CPU increments the FC by 1 and resumes 32-bit fetching at even
addresses

• Instruction counter (IC). After the D1 hardware determines the instruction size (16-bit or 32-bit), it fills
the instruction counter (IC) with the address of the next instruction to undergo D2 decoding. On an
interrupt or call operation, the IC value represents the return address, which is saved to the stack, to
auxiliary register XAR7, or to RPC.

• Program counter (PC). When a new address is loaded into the IC, the previous IC value is loaded
into the PC. The program counter (PC) always contains the address of the instruction that has reached
its D2 phase.

Figure 4-1 shows the relationship between the pipeline and the address counters. Instruction 1 has
reached its D2 phase (it has been passed to the instruction register). The PC points to the address from
which instruction 1 was taken (00 005016). Instruction 2 has reached its D1 phase and will be executed
next (assuming no program-flow discontinuity flushes the instruction-fetch queue). The IC points to the
address from which instruction 2 was taken (00 005116). Instruction 3 is in its F2 phase. It has been
transferred to the instruction-fetch queue but has not been decoded. Instructions 4 and 5 are each in their
F1 phase. The FC address (00 005416) is being driven on the PAB. During the next 32-bit fetch,
Instructions 4 and 5 will be transferred from addresses 00 005416 and 00 005516 to the queue.

Figure 4-1. Relationship Between Pipeline and Address Counters FC, IC, and PC

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com Visualizing Pipeline Activity

71SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

Pipeline

The remainder of this document refers almost exclusively to the PC. The FC and the IC are visible in only
limited ways. For example, when a call is executed or an interrupt is initiated, the IC value is saved to the
stack or to auxiliary register XAR7.

4.2 Visualizing Pipeline Activity
Consider Example 4−2, which lists eight instructions, I1−I8, and shows a diagram of the pipeline activity
for those instructions. The F1 column shows addresses and the F2 column shows the instruction opcodes
read at those addresses. During an instruction fetch, 32 bits are read, 16 bits from the specified address
and 16 bits from the following address. The D1 column shows instructions being isolated in the instruction-
fetch queue, and the D2 column indicates address generation and modification of address registers. The
Instruction column shows the instructions that have reached the D2 phase. The R1 column shows
addresses, and the R2 column shows the data values being read from those addresses. In the E column,
the diagram shows results being written to the low half of the accumulator (AL). In the W column, address
and a data values are driven simultaneously on the appropriate memory buses. For example, in the last
active W phase of the diagram, the address 00 020516 is driven on the data-write address bus (DWAB),
and the data value 123416 is driven on the data-write data bus (DWDB).

The highlighted blocks in Section 4.2.1 indicate the path taken by the instruction ADD AL,*AR0++. That
path can be summarized as follows:

Phase Activity Shown
F1 Drive address 00 004216 on the program address bus (PAB).
F2 Read the opcodes F347 and F348 from addresses 00 004216 and 00 004316, respectively .
D1 Isolate F348 in the instruction-fetch queue.
D2 Use XAR0 = 006616 to generate source address 0000 006616 and then increment XAR0 to 006716.
R1 Drive address 00 006616 on the data-read data bus (DRDB).
R2 Read the data value 1 from address 0000 006616.
E Add 1 to content of AL (123016) and store result (123116) to AL.
W No activity

4.2.1 Example 4-2: Diagraming Pipeline Activity
Address Opcode Instruction Initial Values
00 0040 F345 I1: MOV DP,#VarA ; DP = page that has VarA. VarA address=00 0203
00 0041 F346 I2: MOV AL,@VarA ; Move content of VarA to AL. VarA=1230
00 0042 F347 I3: MOVB AR0,#VarB ; AR0 points to VarB. VarB address=00 0066
00 0043 F348 I4: ADD AL,*XAR0++ ; Add content of VarB to VarB=0001

; AL, and add 1 to XAR0. (VarB + 1)=0003
00 0044 F349 I5: MOV @VarC,AL ; Replace content of VarC (VarB + 2)=0005

; with content of AL. VarC address=00 0204
00 0045 F34A I6: ADD AL,*XAR0++ ; Add content of (VarB + 1) VarD address=00 0205

; to AL, and add 1 to XAR0.
00 0046 F34B I7: MOV @VarD,AL ; Replace content of VarD

; with content of AL.
00 0047 F34C I8: ADD AL,*XAR0 ; Add content of (VarB + 2)

; to AL.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

F1 F2 D1 Instruction D2 R1 R2 E W

00 0040

00 0042 F345

F348:F347 F346 I1: MOV DP,#VarA DP = 8

00 0044 F347 I2: MOV AL,@VarA Generate

VarA address

−

F34A: F349 F348 I3: MOVBXAR0,#Var

B

XAR0 = 66 00 0203 −

00 0046 F349 I4: ADD AL,*XAR0+

+

XAR0 = 67 − 1230 −

F34C:F34B F34A I5: MOV @VarC,AL Generate

VarC address

00 0066 − AL= 1230 −

F34B I6: ADD AL,*XAR0+

+

XAR0 = 68 − 0001 − −

F34C I7: MOV @VarD,AL Generate

VarD address

00 0067 − AL= 1231 −

I8: ADD AL,*XAR0 XAR0 = 68 − 0003 − −

00 0068 − AL= 1234 00 0204

1231

0005 − −

AL= 1239 00 0205

1234

Visualizing Pipeline Activity www.ti.com

72 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

Pipeline

NOTE: The opcodes shown in the F2 and D1 columns were chosen for illustrative purposes; they are not the
actual opcodes of the instructions shown.

The pipeline activity in Section 4.2.1 can also be represented by the simplified diagram in Section 4.2.2.
This type of diagram is useful if your focus is on the path of each instruction rather than on specific
pipeline events. In cycle 8, the pipeline is full: there is an instruction in every pipeline phase. Also, the
effective execution time for each of these instructions is one cycle. Some instructions finish their activity at
the D2 phase, some at the E phase, and some at the W phase. However, if you choose one phase as a
reference, you can see that each instruction is in that phase for one cycle.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com Visualizing Pipeline Activity

73SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

Pipeline

4.2.2 Example 4-3 : Simplified Diagram of Pipeline Activity

4.3 Freezes in Pipeline Activity
This section describes the two causes for freezes in pipeline activity:
• Wait states
• An instruction-not-available condition

4.3.1 Wait States
When the CPU requests a read from or write to a memory device or peripheral device, that device may
take more time to finish the data transfer than the CPU allots by default. Each device must use one of the
CPU ready signals to insert wait states into the data transfer when it needs more time. The CPU has three
independent sets of ready signals: one set for reads from and writes to program space, a second set for
reads from data space, and a third set for writes to data space. Wait-state requests freeze a portion of the
pipeline if they are received during the F1, R1, or W phase of an instruction:
• Wait states in the F1 phase. The instruction-fetch mechanism halts until the wait states are

completed. This halt effectively freezes activity for instructions in their F1, F2, and D1 phases.
However, because the F1−D1 hardware and the D2−W hardware are decoupled, instructions that are
in their D2−W phases continue to execute.

• Wait states in the R1 phase. All D2−W activities of the pipeline freeze. This is necessary because
subsequent instructions can depend on the data-read taking place. Instruction fetching continues until
the instruction-fetch queue is full or a wait-state request is received during an F1 phase.

• Wait states in the W phase. All D2−W activity in the pipeline freezes. This is necessary because
subsequent instructions may depend on the write operation happening first. Instruction fetching
continues until the instruction-fetch queue is full or a wait-state request is received during an F1 phase.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

Freezes in Pipeline Activity www.ti.com

74 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

Pipeline

4.3.2 Instruction-Not-Available Condition
The D2 hardware requests an instruction from the instruction-fetch queue. If a new instruction has been
fetched and has completed its D1 phase, the instruction is loaded into the instruction register for more
decoding. However, if a new instruction is not waiting in the queue, an instruction-not-available condition
exists. Activity in the F1−D1 hardware continues. However, the activity in the D2−W hardware ceases until
a new instruction is available.

One time that an instruction-not-available condition will occur is when the first instruction after a
discontinuity is at an odd address and has 32 bits. A discontinuity is a break in sequential program flow,
generally caused by a branch, a call, a return, or an interrupt. When a discontinuity occurs, the instruction-
fetch queue is emptied, and the CPU branches to a specified address. If the specified address is an odd
address, a 16-bit fetch is performed at the odd address, followed by 32-bit fetches at subsequent even
addresses. Thus, if the first instruction after a discontinuity is at an odd address and has 32 bits, two
fetches are required to get the entire instruction. The D2−W hardware ceases until the instruction is ready
to enter the D2 phase.

To avoid the delay where possible, you can begin each block of code with one or two (preferably two)
16-bit instructions:
FunctionA:

16-bit instruction ; First instruction
16-bit instruction ; Second instruction
32-bit instruction ; 32-bit instructions can start here
.
.
.

If you choose to use a 32-bit instruction as the first instruction of a function or subroutine, you can prevent
a pipeline delay only by making sure the instruction begins at an even address.

4.4 Pipeline Protection
Instructions are being executed in parallel in the pipeline, and different instructions perform modifications
to memory and registers during different phases of completion. In an unprotected pipeline, this could lead
to pipeline conflicts — reads and writes at the same location happening out of the intended order.
However, the C28x pipeline has a mechanism that automatically protects against pipeline conflicts. There
are two types of pipeline conflicts that can occur on the C28x:
• Conflicts during reads and writes to the same data-space location
• Register conflicts

The pipeline prevents these conflicts by adding inactive cycles between instructions that would cause the
conflicts. Sections 4.6.1 and Section 4.6.2 explain the circumstances under which these pipeline-
protection cycles are added and tells how to avoid them, so that you can reduce the number of inactive
cycles in your programs.

4.4.1 Protection During Reads and Writes to the Same Data-Space Location
Consider two instructions, A and B. Instruction A writes a value to a memory location during its W phase.
Instruction B must read that value from the same location during its R1 and R2 phases. Because the
instructions are being executed in parallel, it is possible that the R1 phase of instruction B could occur
before the W phase of instruction A. Without pipeline protection, instruction B could read too early and
fetch the wrong value. The C28x pipeline prevents that read by holding instruction B in its D2 phase until
instruction A is finished writing.

Section 4.4.1.1 shows a conflict between two instructions that are accessing the same data-memory
location. The pipeline activity shown is for an unprotected pipeline. For convenience, the F1−D1 phases
are not shown. I1 writes to VarA during cycle 5. Data memory completes the store in cycle 6. I2 should not
read the data-memory location any sooner than cycle 7. However, I2 performs the read during cycle 4
(three cycles too early). To prevent this kind of conflict, the pipeline-protection mechanism would hold I2 in
the D2 phase for 3 cycles. During these pipeline-protection cycles, no new operations occur.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com Pipeline Protection

75SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

Pipeline

4.4.1.1 Example 4-4: Conflict Between a Read From and a Write to Same Memory Location
I1: MOV @VarA,AL ; Write AL to data−memory location
I2: MOV AH,@VarA ; Read same location, store value in AH

You can reduce or eliminate these types of pipeline-protection cycles if you can take other instructions in
your program and insert them between the instructions that conflict. Of course, the inserted instructions
must not cause conflicts of their own or cause improper execution of the instructions that follow them. For
example, the code in Section 4.4.1.1 could be improved by moving a CLRC instruction to the position
between the MOV instructions (assume that the instructions following CLRC SXM operate correctly with
SXM = 0):

I1: MOV @VarA,AL ; Write AL to data−memory location
CLRC SXM ; SXM = 0 (sign extension off)

I2: MOV AH,@VarA ; Read same location, store value in AH

Inserting the CLRC instruction between I1 and I2 reduces the number of pipeline-protection cycles to two.
Inserting two more instructions would remove the need for pipeline protection. As a general rule, if a read
operation occurs within three instructions from a write operation to the same memory location, the pipeline
protection mechanism adds at least one inactive cycle.

4.4.2 Protection Against Register Conflicts
All reads from and writes to CPU registers occur in either the D2 phase or the E phase of an instruction. A
register conflict arises when an instruction attempts to read and/or modify the content of a register (in the
D2 phase) before a previous instruction has written to that register (in the E phase).

The pipeline-protection mechanism resolves register conflicts by holding the later instruction in its D2
phase for as many cycles as needed (one to three). You do not have to consider register conflicts unless
you wish to achieve maximum pipeline efficiency. If you choose to reduce the number of pipeline-
protection cycles, you can identify the pipeline phases in which registers are accessed and try to move
conflicting instructions away from each other.

Generally, a register conflict involves one of the address registers:
• 16-bit auxiliary registers AR0−AR7
• 32-bit auxiliary registers XAR0−XAR7
• 16-bit data page pointer (DP)
• 16-bit stack pointer (SP)

Example 4−5 shows a register conflict involving auxiliary register XAR0. The pipeline activity shown is for
an unprotected pipeline, and for convenience, the F1−D1 phases are not shown. I1 writes to XAR0 at the
end of cycle 4. I2 should not attempt to read XAR0 until cycle 5. However, I2 reads XAR0 (to generate an
address) during cycle 2. To prevent this conflict, the pipeline-protection mechanism would hold I2 in the
D2 phase for three cycles. During these cycles, no new operations occur.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

Pipeline Protection www.ti.com

76 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

Pipeline

4.4.2.1 Example 4-5: Register Conflict
I1: MOVB AR0,@7 ; Load AR0 with the value addressed by

; the operand @7 and clear the upper
; half of XAR0.

I2: MOV AH,*XAR0 ; Load AH with the value pointed to by
; XAR0.

You can reduce or eliminate pipeline-protection cycles due to a register conflict by inserting other
instructions between the instructions that cause the conflict. For example, the code in Section 4.4.2.1
could be improved by moving two other instructions from elsewhere in the program (assume that the
instructions following SETC SXM operate correctly with PM = 1 and SXM = 1):
I1: MOVB AR0,@7 ; Load AR0 with the value addressed by

; the operand @7 and clear the upper
; half of XAR0.

SPM 0 ; PM = 1 (no product shift)
SETC SXM ; SXM = 1 (sign extension on)

I2: MOV AH,*XAR0 ; Load AH with the value pointed to by
; AR0.

Inserting the SPM and SETC instructions reduces the number of pipeline-protection cycles to one.
Inserting one more instruction would remove the need for pipeline protection. As a general rule, if a read
operation occurs within three instructions from a write operation to the same register, the pipeline-
protection mechanism adds at least one inactive cycle.

4.4.3 Protection Against Interrupts
Instructions for enabling and disabling interrupts via IER and INTM always take effect before the next
instruction is processed. These instructions take up multiple cycles in the pipeline to prevent any following
instructions from reaching the D2 stage before IER and INTM are modified.

4.5 Avoiding Unprotected Operations
This section describes pipeline conflicts that the pipeline-protection mechanism does not protect against.
These conflicts are avoidable, and this section offers suggestions for avoiding them.

4.5.1 Unprotected Program-Space Reads and Writes
The pipeline protects only register and data-space reads and writes. It does not protect the program-space
reads done by the PREAD and MAC instructions or the program-space write done by the PWRITE
instruction. Be careful with these instructions when using them to access a memory block that is shared by
data space and program space.

As an example, suppose a memory location can be accessed at address 00 0D5016 in program space
and address 0000 0D5016 in data space. Consider the following lines of code:
; XAR7 = 000D50 in program space

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com Avoiding Unprotected Operations

77SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

Pipeline

; Data1 = 000D50 in data space
ADD @Data1,AH ; Store AH to data−memory location

; Data1.

PREAD @AR1,*XAR7 ; Load AR1 from program−memory
; location given by XAR7.

The operands @Data1 and *XAR7 are referencing the same location, but the pipeline cannot interpret this
fact. The PREAD instruction reads from the memory location (in the R2 phase) before the ADD writes to
the memory location (in the W phase).

However, the PREAD is not necessary in this program. Because the location can be accessed by an
instruction that reads from data space, you can use another instruction, such as a MOV instruction:
ADD @Data1,AH ; Store AH to memory location Data1.
MOV AR1,*XAR7 ; Load AR1 from memory location

; given by XAR7.

4.5.2 An Access to One Location That Affects Another Location
If an access to one location affects another location, you may need to correct your program to prevent a
pipeline conflict. You only need to be concerned about this kind of pipeline conflict if you are addressing a
location outside of a protected address range. (See Section 4.5.3). Consider the following example:

MOV @DataA,#4 ; This write to DataA causes a
; peripheral to clear bit 15 of DataB.

$10: TBIT @DataB,#15 ; Test bit 15 of DataB.
SB $10,NTC ; Loop until bit 15 is set.

This program causes a misread. The TBIT instruction reads bit 15 (in the R2 phase) before the MOV
instruction writes to bit 15 (in the W phase). If the TBIT instruction reads a 1, the code prematurely ends
the loop. Because DataA and DataB reference different data-memory locations, the pipeline does not
identify this conflict.

However, you can correct this type of error by inserting two or more NOP (no operation) instructions to
allow for the delay between the write to DataA and the change to bit 15 of DataB. For example, if a
2-cycle delay is sufficient, you can fix the previous code as follows:

MOV @DataA,#4 ; This write to DataA causes a
; peripheral to clear bit 15 of DataB.

NOP ; Delay by 1 cycle.
NOP ; Delay by 1 cycle.

$10: TBIT @DataB,#15 ; Test bit 15 of DataB.
SB $10,NTC ; Loop until bit 15 is set.

4.5.3 Write Followed By Read Protection Mode
The CPU contains a write followed by read protection mode to ensure that any read operation that follows
a write operation within a protected address range is executed as written by delaying the read operation
until the write is initiated.

See your device data sheet for device-specific information about which memory region is write-followed-
by-read protected.

The PROTSTART(15:0) and PROTRANGE(15:0) input signals set the protection range. The
PROTRANGE(15:0) value is a binary multiple with the smallest block size being 64 words, and the largest
being 4M words (64 words, 128 words, 256 words ...1M words, 2M words, 4M words). The PROTSTART
address must always be a multiple of the chosen range. For example, if a 4K block size is selected, then
the start address must be a multiple of 4K.

The ENPROT signal enables this feature (when set high), it disables this feature (when set low)

All of the above signals are latched on every cycle. The above signals are connected to registers and can
be changed within the application program.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

Avoiding Unprotected Operations www.ti.com

78 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

Pipeline

The above mechanism only works for reads that follow writes to the protected area. Reads and write
sequences to unprotected areas are not affected, as shown in the following examples.
Example 1: write protected_area

write protected_area
write protected_area

<- pipe protection (3 cycles)

read non_protected_area

Example 2: write protected_area
write protected_area
write protected_area

<- no pipe protection invoked

read non_protected_area
<- pipe protection (2 cycles)

read protected_area
read protected_area

Example 3: write non_protected_area
write non_protected_area
write non_protected_area

<- no pipe protection invoked
read protectd_area

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

79SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Addressing Modes

Chapter 5
SPRU430F–August 2001–Revised April 2015

C28x Addressing Modes

This chapter describes the addressing modes of the C28x and provides examples.

Topic ... Page

5.1 Type of Addressing Modes.. 80
5.2 Addressing Modes Select Bit (AMODE)... 81
5.3 Assembler/Compiler Tracking of AMODE Bit ... 83
5.4 Direct Addressing Modes (DP) ... 84
5.5 Stack Addressing Modes (SP).. 85
5.6 Indirect Addressing Modes.. 86
5.7 Register Addressing Modes... 100
5.8 Data/Program/IO Space Immediate Addressing Modes.. 103
5.9 Program Space Indirect Addressing Modes ... 104
5.10 Byte Addressing Modes .. 105
5.11 Alignment of 32-Bit Operations .. 106

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

Type of Addressing Modes www.ti.com

80 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Addressing Modes

5.1 Type of Addressing Modes
The C28x CPU supports four basic types of addressing modes:
• Direct Addressing Mode

DP (data page pointer): In this mode, the 16-bit DP register behaves like a fixed page pointer. The
instruction supplies a 6-bit or 7-bit offset field, which is concatenated with the value in the DP register.
This type of addressing is useful for accessing fixed address data structures, such as peripheral
registers and global or static variables in C/C++.

• Stack Addressing Mode
SP (stack pointer): In this mode, the 16-bit SP pointer is used to access information on the software
stack. The software stack grows from low to high memory on the C28x and the stack pointer always
points to the next empty location. The instruction supplies a 6-bit offset field that is subtracted from the
current stack pointer value for accessing data on the stack or the stack pointer can be post-
incremented or pre-decremented when pushing and popping data from the stack, respectively.

• Indirect Addressing Mode
XAR0 to XAR7 (auxiliary register pointers): In this mode, the 32-bit XARn registers behave as generic
data pointers. The instruction can direct to post-increment, pre/post-decrement, or index from the
current register contents with either a 3-bit immediate offset field or with the contents of another 16-bit
register.

• Register Addressing Mode
In this mode, another register can be the source or destination operand of an access. This enables
register-to-register operations in the C28x architecture.

On most C28x instructions, an 8-bit field in the instruction op-code selects the addressing mode to use
and what modification to make to that mode. In the C28x instruction set, this field is referred to as:
• loc16

Selects Direct/Stack/Indirect/Register addressing mode for 16-bit data access.
• loc32

Selects Direct/Stack/Indirect/Register addressing mode for 32-bit data access.

An example C28x instruction description, which uses the above, would be:
• ADD — AL,loc16

Take the 16-bit contents of AL register, add the contents of 16-bit location specified by the ”loc16” field
and store the contents in AL register.

• ADDL — loc32,ACC
Take the 32-bit contents of the location pointed to by the ”loc32” field, add the contents of the 32-bit
ACC register, and store the result back into the location specified by the ”loc32” field.

Other types of addressing modes supported are:
• Data/Program/IO Space Immediate Addressing Modes:

In this mode, the address of the memory operand is embedded in the instruction.
• Program Space Indirect Addressing Modes:

Some instructions can access a memory operand located in program space using an indirect pointer.
Since memory is unified on the C28x CPU, this enables the reading of two operands in a single cycle.

Only a small number of instructions use the above modes and typically they are in combination with the
”loc16/loc32” modes.

The following sections contain detailed descriptions of the addressing modes with example instructions.
For more information about the instructions shown in examples throughout this chapter, see Chapter 6,
Assembly Language Instructions.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com Addressing Modes Select Bit (AMODE)

81SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Addressing Modes

5.2 Addressing Modes Select Bit (AMODE)
To accommodate various types of addressing modes, an addressing mode bit (AMODE) selects the
decoding of the 8-bit field (loc16/loc32). This bit is found in Status Register 1 (ST1). The addressing
modes have been broadly classified as follows:
• AMODE = 0

This is the default mode on reset and is the mode used by the C28x C/C++ compiler. This mode is not
fully compatible to the C2xLP CPU addressing modes. The data page pointer offset is 6-bits (it is 7-bits
on the C2xLP) and not all of the indirect addressing modes are supported.

• AMODE = 1
This mode contains addressing modes that are fully compatible to the C2xLP device. The data page
pointer offset is increased to 7-bits and all of the indirect addressing modes available on the C2xLP are
supported.

The available addressing modes, for the ”loc16” or ”loc32” field, are summarized in Table 5-1.

Table 5-1. Addressing Modes for “loc16” or “loc32”

AMODE = 0 AMODE = 1
8-Bit Decode ”loc16/loc32” Syntax 8-Bit Decode ”loc16/loc32” Syntax

Direct Addressing Modes (DP):

0 0 III III @6bit 0 I III III @@7bit

Stack Addressing Modes (SP):

0 1 III III
1 0 111 101
1 0 111 110

*−SP[6bit]
*SP++
*−−SP

1 0 111 101
1 0 111 110

*SP++
*−−SP

C28x Indirect Addressing Modes (XAR0 to XAR7):

1 0 000 AAA
1 0 001 AAA
1 0 010 AAA
1 0 011 AAA
1 1 III AAA

*XARn++
*−−XARn
*+XARn[AR0]
*+XARn[AR1]
*+XARn[3bit]

1 0 000 AAA
1 0 001 AAA
1 0 010 AAA
1 0 011 AAA

*XARn++
*−−XARn
*+XARn[AR0]
*+XARn[AR1]

C2xLP Indirect Addressing Modes (ARP, XAR0 to XAR7):

1 0 111 000
1 0 111 001
1 0 111 010
1 0 111 011
1 0 111 100
1 0 101 110
1 0 101 111
1 0 110 RRR

*
*++
*−−
*0++
*0−−
*BR0++
*BR0−−
*,ARPn

1 0 111 000
1 0 111 001
1 0 111 010
1 0 111 011
1 0 111 100
1 0 101 110
1 0 101 111
1 0 110 RRR
1 1 000 RRR
1 1 001 RRR
1 1 010 RRR
1 1 011 RRR
1 1 100 RRR
1 1 101 RRR

*
*++
*−−
*0++
*0−−
*BR0++
*BR0−−
*,ARPn
*++,ARPn
*−−,ARPn
*0++,ARPn
*0−−,ARPn
*BR0++,ARPn
*BR0−−,ARPn

Circular Indirect Addressing Modes (XAR6, XAR1):

1 0 111 111 *AR6%++ 1 0 111 111 *+XAR6[AR1%++]

32-Bit Register Addressing Modes (XAR0 to XAR7, ACC, P, XT):

1 0 100 AAA
1 0 101 001
1 0 101 011
1 0 101 100

@XARn
@ACC
@P
@XT

1 0 100 AAA
1 0 101 001
1 0 101 011
1 0 101 100

@XARn
@ACC
@P
@XT

16-Bit Register Addressing Modes (AR0 to AR7, AH, AL, PH, PL, TH, SP):

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

Addressing Modes Select Bit (AMODE) www.ti.com

82 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Addressing Modes

Table 5-1. Addressing Modes for “loc16” or “loc32” (continued)
AMODE = 0 AMODE = 1

8-Bit Decode ”loc16/loc32” Syntax 8-Bit Decode ”loc16/loc32” Syntax
1 0 100 AAA
1 0 101 000
1 0 101 001
1 0 101 010
1 0 101 011
1 0 101 100
1 0 101 101

@ARn
@AH
@AL
@PH
@PL
@TH
@SP

1 0 100 AAA
1 0 101 000
1 0 101 001
1 0 101 010
1 0 101 011
1 0 101 100
1 0 101 101

@ARn
@AH
@AL
@PH
@PL
@TH
@SP

In the ”C28x Indirect” addressing modes, the auxiliary register pointer used in the addressing mode is
implicitly specified. In the ”C2xLP Indirect” addressing modes, a 3-bit pointer called the auxiliary register
pointer (ARP) is used to s lect which of the auxiliary registers is currently used and which pointer is used
in the next operation.

The examples below illustrate the differences between the ”C28x Indirect” and ”C2xLP Indirect”
addressing modes:
• ADD — AL,*XAR4++

Read the contents of 16-bit memory location pointed to by register XAR4, add the contents to AL
register. Post-increment the contents of XAR4 by 1.

• ADD — AL,*++
Assume ARP pointer in ST1 contains the value 4. Read the contents of 16-bit memory location pointed
to by register XAR4, add the contents to AL register. Post-increment the contents of XAR4 by 1.

• ADD — AL,*++,ARP5
Assume ARP pointer in ST1 contains the value 4. Read the contents of 16-bit memory location pointed
to by register XAR4, add the contents to AL register. Post-increment the contents of XAR4 by 1. Set
the ARP pointer to 5. Now it points to XAR5.

On the C28x instruction syntax, the destination operand is always on the left and the source operands are
always on the right.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com Assembler/Compiler Tracking of AMODE Bit

83SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Addressing Modes

5.3 Assembler/Compiler Tracking of AMODE Bit
The compiler will always assume the addressing mode is set to AMODE = 0 and therefore will only use
addressing modes that are valid for AMODE = 0. The assembler can be instructed, via the command line
options, to default to either AMODE = 0 or AMODE = 1. The command line options are:

–v28 Assumes AMODE = 0 (C28x addressing modes).
−v28 −m20 Assumes AMODE = 1 (full C2xLP compatible addressing modes.

Additionally, the assembler allows directives to be embedded within a file to instruct the assembler to
override the default mode and change syntax checking to the new address mode setting:

.c28_amode Tells assembler that any code that follows assumes AMODE = 0 (C28x addressing
modes).

.lp_amode Tells assembler that any code that follows assumes AMODE = 1 (full C2xLP compatible
addressing modes)

The above directives cannot be nested. The above directives can be used as follows within an assembly
program:
; File assembled using "−v28" option (assume AMODE = 0):

. ; This section of code can only use AMODE = 0
; addressing modes

.

.

.

.
SETC AMODE ; Change to AMODE = 1
.lp_amode ; Tell assembler to check for AMODE = 1 syntax

. ; This section of code can only use AMODE = 1
; addressing modes

.

.

.

.

CLRC AMODE ; Revert back to AMODE = 0
.c28_amode ; Tell assembler to check for AMODE = 1 syntax

. ; This section of code can only use AMODE = 0
; addressing modes

.

.

.

.
; End of file.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

Direct Addressing Modes (DP) www.ti.com

84 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Addressing Modes

5.4 Direct Addressing Modes (DP)

AMODE ”loc16/loc32” Syntax Description
0 @6bit 32bitDataAddr(31:22) = 0

32bitDataAddr(21:6) = DP(15:0)

32bitDataAddr(5:0) = 6bit

Note: The 6-bit offset value is concatenated with the 16-bit DP register. The offset
value enables 0 to 63 words to be addressed relative to the current DP register value.

Example (s):
MOVW DP,#VarA ; Load DP pointer with page value containing VarA

ADD AL,@VarA ; Add memory location VarA to register AL

MOV @VarB,AL ; Store AL into memory location VarB

; VarB is located in the same 64−word page as VarA

MOVW DP,#VarC ; Load DP pointer with page value containing VarC

SUB AL,@VarC ; Subtract memory location VarC from register AL

MOV @VarD,AL ; Store AL into memory location VarD

; VarC is located in the same 64−word page as VarD

; VarC & D are in different pages than VarA & B

AMODE ”loc16/loc32” Syntax Description
0 @@7bit 32bitDataAddr(31:22) = 0

32bitDataAddr(21:7) = DP(15:1)

32bitDataAddr(6:0) = 7bit

Note: The 7-bit offset value is concatenated with the 15-bit DP register. Bit 0 of DP
register is ignored and is not affected by the operation. The offset value enables 0 to
127 words to be addressed relative to the current DP register value.

Example (s):
SETC AMODE ; Make sure AMODE = 1

.lp_amode ; Tell assembler that AMODE = 1

MOVW DP,#VarA ; Load DP pointer with page value containing VarA

ADD AL,@@VarA ; Add memory location VarA to register AL

MOV @@VarB,AL ; Store AL into memory location VarB

; VarB is located in the same 128−word page as VarA

MOVW DP,#VarC ; Load DP pointer with page value containing VarC

SUB AL,@@VarC ; Subtract memory location VarC from register AL

MOV @@VarD,AL ; Store AL into memory location VarD

; VarC is located in the same 128−word page as VarD

; VarC & D are in different pages than VarA & B

Note: The direct addressing mode can access only the lower 4M of data address space on the C28x device.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com Stack Addressing Modes (SP)

85SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Addressing Modes

5.5 Stack Addressing Modes (SP)

AMODE ”loc16/loc32” Syntax Description
0 *-SP [6bit] 32bitDataAddr(31:16) = 0x0000

32bitDataAddr(15:0) = SP - 6bit

Note: The 6-bit offset value is subtracted from the current 16-bit SP register value. The
offset value enables 0 to 63 words to be addressed relative to the current SP register
value.

Example (s):
ADD AL,*-SP[5] ; Add 16-bit contents from stack location

; -5 words from top of stack to AL register

MOV *-SP[8],AL ; Store 16-bit AL register to stack location

; -8 words from top of stack

ADDL ACC,*-SP[12] ; Add 32-bit contents from stack location

; −12 words from top of stack to ACC register.

MOVL *-Sp[34],ACC ; Store 32-bit ACC register to stack location

; -34 words from top of stack

AMODE ”loc16/loc32” Syntax Description
X *SP++ 32bitDataAddr(31:16) = 0x0000

32bitDataAddr(15:0) = SP

if(loc16), SP = SP + 1
if(loc32), SP = SP + 2

Example (s):
MOV *SP++,AL ; Push contents of 16-bit AL register onto top

; of stack

MOVL *Sp++,P ; Push contents of 32-bit P register onto top

; of stack

AMODE ”loc16/loc32” Syntax Description
X *--SP if(loc16), SP = SP - 1

if(loc32), SP = SP - 2

32bitDataAddr(31:16) = 0x0000

32bitDataAddr(15:0) = SP

Example (s):
ADD AL, *--SP ; Pop contents from top of stack and add to 16-bit

; Al register

MOVL ACC, *--Sp ; Pop contents from top of stack and store in

; 32-bit ACC register

Note: This addressing mode can only access the lower 64K of data address space on the C28x device.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

Indirect Addressing Modes www.ti.com

86 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Addressing Modes

5.6 Indirect Addressing Modes
This section includes indirect addressing modes for the 28x and 2xLP devices. It also includes circular
indirect addressing modes.

5.6.1 C28x Indirect Addressing Modes (XAR0 to XAR7)

AMODE ”loc16/loc32”
Syntax

Description

X *XARn++ ARP = n

32bitDataAddr(31:0) = XARn

if(loc16), XARn = XARn + 1

if(loc32), XARn = XARn + 2

Example (s):
MOVL XAR2, #Array1 ; Load XAR2 with start address of Array1

MOVL XAR3, #Array2 ; Load XAR3 with start address of Array2

MOV @AR0, #N-1 ; Load AR0 with loop count N

Loop:
MOVL ACC,*XAR2++ ; Load ACC with location pointed to by XAR2,

; post−increment XAR2

MOVL *XAR3++,ACC ; Store ACC into location pointed to by XAR3,

; post−increment XAR3

BANZ Loop,AR0−− ; Loop until AR0 == 0, post−decrement AR0

AMODE ”loc16/loc32”
Syntax

Description

X *--XARn ARP = n

if(loc16), XARn = XARn + 1

if(loc32), XARn = XARn + 2

32bitDataAddr(31:0) = XARn

Example (s):
MOVL XAR2,#Array1+N*2 ; Load XAR2 with start address of Array1

MOVL XAR3,#Array2+N*2 ; Load XAR3 with start address of Array2

MOV @AR0, #N-1 ; Load AR0 with loop count N

Loop:
MOVL ACC,*--XAR2 ; Pre-decrement XAR2,

; load ACC with location pointed to by XAR2

MOVL *--XAR3,ACC ; Pre-decrement XAR3,

; store ACC into location pointed to by XAR3,
BANZ Loop,AR0−− ; Loop until AR0 == 0, post−decrement AR0

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com Indirect Addressing Modes

87SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Addressing Modes

AMODE ”loc16/loc32” Syntax Description
X *+XARn[AR0] ARP = n

32bitDataAddr(31:0) = XARn + AR0
Note: The lower 16-bits of XAR0 are added to the selected 32-bit register. Upper 16-bits of
XAR0 are ignored. AR0 is treated as an unsigned 16-bit value. Overflow into the upper 16-bits
of XARn can occur.

Example (s):
MOVW DP,#Array1Ptr ; Point to Array1 Pointer location

MOVL XAR2,@Array1Ptr ; Load XAR2 with pointer to Array1

MOVB XAR0,#16 ; AR0 = 16, AR0H = 0

MOVB XAR1,#68 ; AR1 = 68, AR1H = 0

MOVL ACC,*+XAR2[AR0] ; ; Swap contents of location Array1[16]

MOVL P,*+XAR2[AR1] ; ; with the contents of location Array1[68]

MOVL *+XAR2[AR1],ACC ; ;

MOVL *+XAR2[AR0],P ; ;

AMODE ”loc16/loc32”
Syntax

Description

X *+XARn[AR1] ARP = n
32bitDataAddr(31:0) = XARn + AR1
Note: The lower 16-bits of XAR0 are added to the selected 32-bit register. Upper 16-bits of XAR0
are ignored. AR0 is treated as an unsigned 16-bit value. Overflow into the upper 16-bits of XARn
can occur.

Example (s):
MOVW DP,#Array1Ptr ; Point to Array1 Pointer location

MOVL XAR2,@Array1Ptr ; Load XAR2 with pointer to Array1

MOVB XAR0,#16 ; AR0 = 16, AR0H = 0

MOVB XAR1,#68 ; AR1 = 68, AR1H = 0

MOVL ACC,*+XAR2[AR0] ; ; Swap contents of location Array1[16]

MOVL P,*+XAR2[AR1] ; ; with the contents of location Array1[68]

MOVL *+XAR2[AR1],ACC ; ;

MOVL *+XAR2[AR0],P ; ;

AMODE ”loc16/loc32”
Syntax

Description

X *+XARn[3bit] ARP = n
32bitDataAddr(31:0) = XARn +3bit
Note: The immediate value is treated as an unsigned 3-bit value.

Example (s):
MOVW DP,#Array1Ptr ; Point to Array1 Pointer location

MOVL XAR2,@Array1Ptr ; Load XAR2 with pointer to Array1

MOVL ACC,*+XAR2[2] ; ; Swap contents of location Array1[2]

MOVL P,*+XAR2[5] ; ; with the contents of location Array1[5]

MOVL *+XAR2[5],ACC ; ;

MOVL *+XAR2[2],P ; ;

Note: The assembler also accepts ”*XARn” as an addressing mode. This is the same encoding as the ”*+XARn[0]” mode.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

Indirect Addressing Modes www.ti.com

88 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Addressing Modes

5.6.2 C2xLP Indirect Addressing Modes (ARP, XAR0 to XAR7)

AMODE ”loc16/loc32”
Syntax

Description

X * 32bitDataAddr(31:0) = XAR(ARP)

Note: The XARn register used is the register pointed to by the current value in the ARP pointer.
ARP = 0, points to XAR0, ARP = 1, points to XAR1 and so on.

Example (s):
MOVZ DP,#RegAPtr ; Load DP with page address containing RegAPtr

MOVZ AR2,@RegAPtr ; Load AR2 with contents of RegAPtr, AR2H = 0

MOVZ AR3,@RegAPtr ; Load AR3 with contents of RegBPtr, AR3H = 0

; RegAPtr and RegBPtr are located in the same 128 word data page,

; Both are located in the low 64K of data memory space.

NOP *,ARP2 ; Set ARP pointer to point to XAR2

MOV *,#0x0404 ; Store 0x0404 into location pointed by XAR2

NOP *,ARP3 ; Set ARP pointer to point to XAR3

MOV *,#0x8000 ; Store 0x8000 into location pointed by XAR3,

AMODE ”loc16/loc32”
Syntax

Description

X *,XARn 32bitDataAddr(31:0) = XAR(ARP)

ARP = n

Example (s):
MOVZ DP,#RegAPtr ; Load DP with page address containing RegAPtr

MOVZ AR2,@RegAPtr ; Load AR2 with contents of RegAPtr, AR2H = 0

MOVZ AR3,@RegAPtr ; Load AR3 with contents of RegBPtr, AR3H = 0

; RegAPtr and RegBPtr are located in the same 128 word data page,

; Both are located in the low 64K of data memory space.

NOP *,ARP2 ; Set ARP pointer to point to XAR2

MOV *,#0x0404,ARP3 ; Store 0x0404 into location pointed by XAR2

; Set ARP pointer to point to XAR3

MOV *,#0x8000 ; Store 0x8000 into location pointed by XAR3,

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com Indirect Addressing Modes

89SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Addressing Modes

AMODE ”loc16/loc32” Syntax Description
X *++ 32bitDataAddr(31:0) = XARn (ARP)

if(loc16), XAR(ARP) = XAR(ARP) + 1

if(loc32), XAR(ARP) = XAR(ARP) + 2

Example (s):
MOVL XAR2, #Array1 ; Load XAR2 with start address of Array1

MOVL XAR3, #Array2 ; Load XA32 with start address of Array2

MOV @AR0,#N-1 ; ALoad AR0 with loop count N

Loop:
NOP *,ARP2 ; Set ARP pointer to point to XAR2

MOVL ACC,*++ ; Load ACC with location pointed to by XAR2,

; post-increment XAR2
NOP *,ARP3 ; Set ARP pointer to point to XAR3

MOVL *++,ACC ; Store ACC into location pointed to by XAR3,

; post-increment XAR3

NOP *,ARP0 ; Set ARP pointer to point to XAR0

XBANZ Loop,*-- ; Loop until AR0 == 0, post-decrement AR0

AMODE ”loc16/loc32” Syntax Description
X *++,ARPn 32bitDataAddr(31:0) = XARn + AR1

if(loc16), XAR(ARP) = XAR(ARP) + 1

if(loc32), XAR(ARP) = XAR(ARP) + 2

Example (s):
MOVL XAR2,#Array1 ; Load XAR2 with start address of Array1

MOVL XAR2,#Array2 ; Load XAR3 with start address of Array2

MOV @AR0,#N-1 ; Load AR0 with loop count N

NOP *,ARP2 ; Set ARP pointer to point to XAR2

SETC AMODE ; Make sure AMODE = 1

.lp_amode ; Tell assembler that AMODE = 1

Loop:
MOVL ACC,*++,ARP3 ; Load ACC with location pointed to by XAR2

; post−increment XAR2, set ARP to point to XAR3

MOVL *++,ACC,ARP0 ; Store ACC into location pointed to by XAR3,

; post−increment XAR3, set ARP to point to XAR0

XBANZ Loop, *--,ARP2 ; Loop until AR0 == 0, post−decrement AR0,

; set ARP pointer to point to XAR2

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

Indirect Addressing Modes www.ti.com

90 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Addressing Modes

AMODE ”loc16/loc32” Syntax Description
X *-- 32bitDataAddr(31:0) = XAR(ARp)

if(loc16), XAR(ARP) = XAR(ARP) + 1

if(loc32), XAR(ARP) = XAR(ARP) + 2

Example (s):
MOVL XAR2,#Array1+(n-1)*2 ; Load XAR2 with ends address of Array1

MOVL XAR3,#Array2+(n-1)*2 ; Load XAR3 with end address of Array2

MOV @AR0,#N-1 ; Load AR0 with loop count N

Loop:
NOP *,ARP2 ; Set ARP pointer to point to XAR2

MOVL ACC,*-- ; Load ACC with location pointed to by XAR2

; post−increment XAR2

NOP *,ARP3 ; Set ARP pointer to point to XAR3

MOVL *--,ACC ; Store ACC into location pointed to by XAR3,

; post−increment XAR3

NOP *,ARP0 ; Set ARP pointer to point to XAR0

XBANZ Loop, *-- ; Loop until AR0 == 0, post−decrement AR0

AMODE ”loc16/loc32” Syntax Description
1 *--,ARPn 32bitDataAddr(31:0) = XAR(ARp)

if(loc16), XAR(ARP) = XAR(ARP) + 1

if(loc32), XAR(ARP) = XAR(ARP) + 2

ARP=n

Example (s):
MOVL XAR2,#Array1+(n-1)*2 ; Load XAR2 with ends address of Array1

MOVL XAR3,#Array2+(n-1)*2 ; Load XAR3 with end address of Array2

MOV @AR0,#N-1 ; Load AR0 with loop count N

NOP *,ARP2 ; Set ARP pointer to point to XAR2

SETC AMODE ; Make sure AMODE = 1

.lp_amode ; Tell assembler that AMODE = 1

Loop:
MOVL ACC,*--,ARP3 ; Load ACC with location pointed to by XAR2

; post−increment XAR2, set ARP to point to XAR3

MOVL *--,ACC,ARP0 ; Store ACC into location pointed to by XAR3,

; post−increment XAR3, set ARP to point to XAR0

XBANZ Loop, *--,ARP2 ; Loop until AR0 == 0, post−decrement AR0

; set ARP pointer to point to XAR2

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com Indirect Addressing Modes

91SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Addressing Modes

AMODE ”loc16/loc32” Syntax Description
X *++ 32bitDataAddr(31:0) = XAR(ARP)

XAR(ARP)=XAR(ARP)+AR0

Note: The lower 16-bits of XAR0 are added to the selected 32-bit register. Upper 16-bits of
XAR0 ignored. AR0 is treated as an unsigned 16-bit value. Overflow into the upper 16-bits of
XAR(ARP) can occur.

Example (s):
MOVL XAR2,#Array1 ; Load XAR2 with end address of Array1

MOVL XAR3,#Array2 ; Load XAR3 with end address of Array2

MOV @AR0,#4 ; Load AR0 to copy every fourth value from Array1 to Array2

MOV @AR1m #N-1 ; Load AR1 with loop count N

Loop:
NOP *,ARP2 ; Set ARP pointer to point to XAR2

MOVL ACC,*0++ ; Load ACC with location pointed to by XAR2,

; post-increment XAR2 by AR0

NOP *,ARP3 ; Set ARP pointer to point to XAR3

MOVL *++,ACC ; Store ACC with location pointed to by XAR3, post−increment XAR3

NOP *,ARP1 ; Set ARP pointer to point to XAR1

XBANZ Loop, *-- ; Loop until AR0 == 0, post−decrement AR1

AMODE ”loc16/loc32” Syntax Description
1 *++,ARPn 32bitDataAddr(31:0) = XAR(ARP)

XAR(ARP)=XAR(ARP)+AR0

ARP=n

Note: The lower 16-bits of XAR0 are added to the selected 32-bit register. Upper 16-bits of
XAR0 ignored. AR0 is treated as an unsigned 16-bit value. Overflow into the upper 16-bits
of XAR(ARP) can occur.

Example (s):
MOVL XAR2,#Array1 ; Load XAR2 with end address of Array1

MOVL XAR3,#Array2 ; Load XAR3 with end address of Array2

MOV @AR0,#4 ; Set AR0 to copy every fourth value from Array1 to Array2

MOV @AR1n #N-1 ; Load AR1 with loop count N

NOP *,ARP2 ; Set ARP pointer to point to XAR2

SETC AMODE ; Make sure AMODE = 1

.lp_amode ; Tell assembler that AMODE = 1

Loop:
MOVL ACC,*0++,ARP3 ; Load ACC with location pointed to by XAR2,

; post-increment XAR2 by AR0, set ARP pointer

MOVL *++,ACC,ARP1 ; Store ACC with location pointed to by XAR3,

; post−increment XAR3, set ARP pointer to point tp XAR1

XBANZ Loop, *--,ARP2 ; Loop until AR0 == 0, post−decrement AR1,

; set ARP to point to XAR2

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

Indirect Addressing Modes www.ti.com

92 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Addressing Modes

AMODE ”loc16/loc32” Syntax Description
X *0-- 32bitDataAddr(31:0) = XAR(ARP)

XAR(ARP)=XAR(ARP)+AR0

Note: The lower 16-bits of XAR0 are added to the selected 32-bit register. Upper 16-bits of
XAR0 ignored. AR0 is treated as an unsigned 16-bit value. Overflow into the upper 16-bits of
XAR(ARP) can occur.

Example (s):
MOVL XAR2,#Array1+(N-1)*8 ; Load XAR2 with end address of Array1

MOVL XAR3,#Array2+(N-1)*2 ; Load XAR3 with end address of Array2

MOV @AR0,#4 ; Set AR0 to copy every fourth value from Array1 to Array2

MOV @AR1n #N-1 ; Load AR1 with loop count N

Loop:
NOP *,ARP2 ; Set ARP pointer to point to XAR2

MOVL ACC,*0-- ; Load ACC with location pointed to by XAR2,

; post-increment XAR2 by AR0

NOP *,ARP3 ; Set ARP pointer to point to XAR3

MOVL *--,ACC ; Store ACC with location pointed to by XAR3,

; post−increment XAR3

NOP *,ARP1 ; Set ARP pointer to point to XAR1

XBANZ Loop, *-- ; Loop until AR1 == 0, post−decrement AR1

AMODE ”loc16/loc32” Syntax Description
1 *0--,ARPn 32bitDataAddr(31:0) = XAR(ARP)

XAR(ARP)=XAR(ARP)+AR0

ARP=n

Note: The lower 16-bits of XAR0 are added to the selected 32-bit register. Upper
16-bits of XAR0 ignored. AR0 is treated as an unsigned 16-bit value. Overflow into
the upper 16-bits of XAR(ARP) can occur.

Example (s):
MOVL XAR2,#Array1+(N-1)*8 ; Load XAR2 with end address of Array1

MOVL XAR3,#Array2+(N-1)*2 ; Load XAR3 with end address of Array2

MOV @AR0,#4 ; Set AR0 to copy every fourth value from Array1 to Array2

MOV @AR1n #N-1 ; Load AR1 with loop count N

NOP *,ARP2 ; Set ARP pointer to point to XAR2

SETC AMODE ; Make sure AMODE = 1

.lp_amode ; Tell assembler that AMODE = 1

Loop:
MOVL ACC,*0--,ARP3 ; Load ACC with location pointed to by XAR2,

; post-increment XAR2 by AR0, set ARP pointer to XAR3

MOVL *++,ACC,ARP1 ; Store ACC with location pointed to by XAR3,

; post−increment XAR3, set ARP pointer to point tp XAR1

XBANZ Loop, *--,ARP2 ; Loop until AR0 == 0, post−decrement AR1,

; set ARP to point to XAR2

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com Indirect Addressing Modes

93SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Addressing Modes

AMODE ”loc16/loc32” Syntax Description
X *BR0++ 32bitDataAddr(31:0) = XAR(ARP)

XAR(ARP)(15:0)= AR(ARP)rcadd AR0

XAR(ARP)(31:16) = unchanged

Note: The lower 16-bits of XAR0 are reverse carry added (rcadd) to the lower 16-bits of the
selected register. Upper 16-bits of XAR0 ignored. Upper 16-bits of the selected register
unchanged by the operation.

Example (s):
; Transfer contents of Array1 to Array2 in bit reverse order:

MOVL XAR2,#Array1 ; Load XAR2 with end address of Array1

MOVL XAR3,#Array2 ; Load XAR3 with end address of Array2

MOV @AR0,#N ; Load AR0 with size of array,

; N must be a multiple of 2 (2, 4, 8, 16, ...)

MOV @AR1 #N-1 ; Load AR1 with loop count N

Loop:
NOP *,ARP2 ; Set ARP pointer to point to XAR2

MOVL ACC,*0++ ; Load ACC with location pointed to by XAR2, post-
increment XAR2

NOP *,ARP3 ; Set ARP pointer to point to XAR3

MOVL *BR0++,ACC ; Store ACC with location pointed to by XAR3,

; post−increment XAR3 with AR0 reverse carry add

NOP *,ARP1 ; Set ARP pointer to point to XAR1

XBANZ Loop, *-- ; Loop until AR1 == 0, post−decrement AR1

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

Indirect Addressing Modes www.ti.com

94 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Addressing Modes

AMODE ”loc16/loc32” Syntax Description
1 *BR0++,ARPn 32bitDataAddr(31:0) = XAR(ARP)

XAR(ARP)(15:0)= AR(ARP) rcadd AR0

XAR(ARP)(31:16) = unchanged

ARP=n

Note: The lower 16-bits of XAR0 are reverse carry added (rcadd) to the lower 16-bits of the
selected register. Upper 16-bits of XAR0 ignored. Upper 16-bits of the selected register
unchanged by the operation.

Example (s):
; Transfer contents of Array1 to Array2 in bit reverse order:

MOVL XAR2,#Array1 ; Load XAR2 with start address of Array1

MOVL XAR3,#Array2 ; Load XAR3 with start address of Array2

MOV @AR0 #N ; Load AR0 with size of array,

; N must be a multiple of 2 (2, 4, 8, 16,...)

MOV @AR1, #N-1 ; Load AR1 with loop count N

NOP *,ARP2 ; Set ARP pointer to point to XAR2

SETC AMODE ; Make sure AMODE = 1

.lp_amode ; Tell assembler that AMODE = 1

Loop:
MOVL ACC,*++,ARP3 ; Load ACC with location pointed to by XAR2,

; post-increment XAR2 by AR0, set ARP pointer to XAR3

MOVL *++,ACC,ARP1 ; Store ACC with location pointed to by XAR3,

; post−increment XAR3, set ARP pointer to point tp XAR1

MOVL *BR0++,ACC,ARP1 ; Store ACC with location pointed to by XAR3,

; post−increment XAR3 with AR0 reverse carry

; add, set ARP pointer to point to XAR1

XBANZ Loop, *--,ARP2 ; Loop until AR1 == 0, post−decrement AR1,

; set ARP to point to XAR2

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com Indirect Addressing Modes

95SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Addressing Modes

AMODE ”loc16/loc32” Syntax Description
X *BR0-- Address Generation:

32bitDataAddr(31:0)=XAR(ARP)

XAR(ARP)(15:0)= AR(ARP)rbsub AR0 {see note [1]}

XAR(ARP)(31:16) = unchanged

Note: The lower 16-bits of XAR0 are reverse carry added (rbsub) from the lower 16-bits of the
selected register. Upper 16-bits of XAR0 ignored. Upper 16-bits of the selected register
unchanged by the operation.

Example (s):
; Transfer contents of Array1 to Array2 in bit reverse order:

MOVL XAR2,#Array1+(N-1)*2 ; Load XAR2 with end address of Array1

MOVL XAR3,#Array2+(N-1)*2 ; Load XAR3 with end address of Array2

MOV @AR0,#N ; Load AR0 with size of array,

; N must be a multiple of 2 (2, 4, 8, 16,...)

MOV @AR1 #N-1 ; Load AR1 with loop count N

Loop:
NOP *,ARP2 ; Set ARP pointer to point to XAR2

MOVL ACC,*0-- ; Load ACC with location pointed to by XAR2,

; post-increment XAR2

NOP *,ARP3 ; Set ARP pointer to point to XAR3

MOVL *BR0--,ACC ; Store ACC with location pointed to by XAR3,

; post−increment XAR3 with AR0 reverse carry add

NOP *,ARP1 ; Set ARP pointer to point to XAR1

XBANZ Loop, *-- ; Loop until AR1 == 0, post−decrement AR1

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

Indirect Addressing Modes www.ti.com

96 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Addressing Modes

AMODE ”loc16/loc32” Syntax Description
1 *BR0--,ARPn 32bitDataAddr(31:0) = XAR(ARP)

XAR(ARP)(15:0)= AR(ARP) rbsub AR0

XAR(ARP)(31:16) = unchanged

ARP=n

Note: The lower 16-bits of XAR0 are reverse carry added (rbsub) from the lower 16-bits of the
selected register. Upper 16-bits of XAR0 ignored. Upper 16-bits of the selected register
unchanged by the operation.

Example (s):
; Transfer contents of Array1 to Array2 in bit reverse order:

MOVL XAR2,#Array1+(N-1)*2 ; Load XAR2 with start address of Array1

MOVL XAR3,#Array2+(N-1)*2 ; Load XAR3 with start address of Array2

MOV @AR0 #N ; Load AR0 with size of array,

; N must be a multiple of 2 (2, 4, 8, 16,...)

MOV @AR1, #N-1 ; Load AR1 with loop count N

NOP *,ARP2 ; Set ARP pointer to point to XAR2

SETC AMODE ; Make sure AMODE = 1

.lp_amode ; Tell assembler that AMODE = 1

Loop:
MOVL ACC,*--,ARP3 ; Load ACC with location pointed to by XAR2,

; post-increment XAR2, set ARP pointer to point to XAR3

MOVL *++,ACC,ARP1 ; Store ACC with location pointed to by XAR3,

; post−increment XAR3, set ARP pointer to point tp XAR1

MOVL *BR0--,ACC,ARP1 ; Store ACC with location pointed to by XAR3,

; post−increment XAR3 with AR0 reverse borrow substract,

; set ARP pointer to point to XAR1

XBANZ Loop, *--,ARP2 ; Loop until AR1 == 0, post−decrement AR1,

; set ARP to point to XAR2

Reverse carry addition or reverse carry subtraction is used to implement bit-reversed addressing as used
in the re−ordering of data elements in FFT algorithms. Typically, AR0 is initialized with the (FFT size) /2.
The value of AR0 is then added or subtracted, with reverse carry addition or subtraction, to generate the
bit reversed address

Reverse Carry Addition Example Is Shown Below (FFT size = 16):
XAR(ARP)(15:0) = 0000 0000 0000 0000
+ AR0 = 0000 0000 0000 1000
−−−−−−−−−−−−− −−−−−−−−−−−−−−−−−−−

XAR(ARP)(15:0) = 0000 0000 0000 1000
+ AR0 = 0000 0000 0000 1000
−−−−−−−−−−−−− −−−−−−−−−−−−−−−−−−−

XAR(ARP)(15:0) = 0000 0000 0000 0100
+ AR0 = 0000 0000 0000 1000
−−−−−−−−−−−−− −−−−−−−−−−−−−−−−−−−

XAR(ARP)(15:0) = 0000 0000 0000 1100
+ AR0 = 0000 0000 0000 1000
−−−−−−−−−−−−− −−−−−−−−−−−−−−−−−−−

XAR(ARP)(15:0) = 0000 0000 0000 0010
+ AR0 = 0000 0000 0000 1000
−−−−−−−−−−−−− −−−−−−−−−−−−−−−−−−−

XAR(ARP)(15:0) = 0000 0000 0000 1010
......

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com Indirect Addressing Modes

97SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Addressing Modes

Reverse Borrow Subtraction Example Is Shown Below (FFT size = 16):
XAR(ARP)(15:0) = 0000 0000 0000 0000
- AR0 = 0000 0000 0000 1000
−−−−−−−−−−−−− −−−−−−−−−−−−−−−−−−−

XAR(ARP)(15:0) = 0000 0000 0000 1111
- AR0 = 0000 0000 0000 1000
−−−−−−−−−−−−− −−−−−−−−−−−−−−−−−−−

XAR(ARP)(15:0) = 0000 0000 0000 0111
- AR0 = 0000 0000 0000 1000
−−−−−−−−−−−−− −−−−−−−−−−−−−−−−−−−

XAR(ARP)(15:0) = 0000 0000 0000 1011
- AR0 = 0000 0000 0000 1000
−−−−−−−−−−−−− −−−−−−−−−−−−−−−−−−−

XAR(ARP)(15:0) = 0000 0000 0000 0011
- AR0 = 0000 0000 0000 1000
−−−−−−−−−−−−− −−−−−−−−−−−−−−−−−−−

XAR(ARP)(15:0) = 0000 0000 0000 1101
......

On the C28x, the bit reversed addressing is restricted to block size < 64K. This is OK since most FFT
implementations are much less than this.

5.6.3 Circular Indirect Addressing Modes (XAR6, XAR1)

AMODE ”loc16/loc32”
Syntax

Description

0 *AR6%++ 32bitDataAddr(31:0) = XAR6
if(XAR6(7:0) == XAR1(7:0))
{

XAR6(7:0) = 0x00
XAR6(15:8) = unchanged

}
else
{

if(16-bit data), XAR6(15:0) =+ 1
if(32-bit data), XAR6(15:0) =+ 2

}
XAR6(31:16) = unchanged
ARP = 6

As seen in Figure 5-1, buffer size is determined by the 8 LSBs of AR1 or AR1[7:0]. Specifically, the buffer
size is AR1[7:0] +1. When AR1[7:0] is 255, then the buffer size is at its maximum size of 256 words.

XAR6 points to the current address in the buffer. The top of the buffer must be at an address where the 8
LSBs are all 0s.

If one of the instructions accessing the circular buffer performs a 32-bit opera- tion, make sure XAR6 and
AR1 are both even before the buffer is accessed.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

AR1

15 8 7 0

X X 0 8

Buffer size = 8 + 1 = 9

31 8 7 0

Top of buffer XAR6 X X X X X X 0 0

Must be zero

XAR6[7:0] is incremented until it matches AR1[7:0]

31 8 7 0

Bottom of buffer XAR6 X X X X X X 0 8

Matches AR1[7:0]

Indirect Addressing Modes www.ti.com

98 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Addressing Modes

Figure 5-1. Circular Buffer with AMODE = 0

Example (s):

; Calculate FIR filter (X[N] = data array, C[N] = coefficient array):

MOVW DP,#Xpointer ; Load DP with page address of Xpointer
MOVL XAR6,@Xpointer ; Load XAR6 with current X pointer
MOVL XAR7,#C ; Load XAR7 with start address of C array
MOV @AR1,#N ; Load AR1 with size of data array N,
SPM −4 ; Set product shift mode to ">> 4","
ZAPA ; Zero ACC, P, OVC
RPT #N−1 ; Repeat next instruction N timeses

||QMACL P,*AR6%++,*XAR7++ ; ACC = ACC + P >> 4,
; P = (*AR6%++ * *XAR7++) >> 32

ADDL ACC,P << PM ; Final accumulate
MOVL @Xpointer,XAR6 ; Store XAR6 into current X pointer
MOVL @Sum,ACC ; Store result into sum

AMODE ”loc16/loc32” Syntax Description
1 *+XAR6[AR1%++] 32bitDataAddr(31:0) = XAR6 + AR1

if(XAR1(15:0) == XAR1(31:16))
{

XAR1(15:0) = 0x0000
XAR6(15:8) = unchanged

}
else
{

if(16-bit data), XAR1(15:0) =+ 1
if(32-bit data), XAR1(15:0) =+ 2

}
XAR1(31:16) = unchanged
ARP = 6
Note: With this addressing mode, there is no circular buffer alignment requirements.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

XAR1

31 16 15 0

0 0 0 9 0 0 0 0

Buffer size =
9 + 1 = 10

Buffer index

XAR6

31 0

003F8010

Top of buffer XAR6 + XAR1[15:0] = 3F8010h

0x0000

XAR1[15:0] increments until

it matches XAR1[31:16]

Bottom of buffer XAR6 + XAR1[15:0] = 3F8010h + 0009h

Matches
XAR1[31:16]

www.ti.com Indirect Addressing Modes

99SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Addressing Modes

As seen in Figure 5-2, buffer size is determined by the upper 16 bits of XAR1 or XAR1[31:16]. Specifically,
the size is XAR1[31:16] + 1.

XAR6 points to the top of the buffer.

The current address in the buffer is pointed to by XAR6 with an offset of XAR1[15:0].

If the instructions that access the circular buffer perform 32-bit operations, make sure XAR6 and
XAR1[31:16] are even.

Figure 5-2. Circular Buffer with AMODE = 1

Example (s):

; Calculate FIR filter (X[N] = data array, C[N] = coefficient array):

MOVW DP,#Xindex ; Load DP with page address of Xindex
MOVL XAR6,#X ; Load XAR6 with start address of X array
MOV @AH,#N ; Load AH with size of data array X (N)
MOV AL,@Xindex ; Load AL with current circular index
MOVL XAR1,@ACC ; Load parameters into XAR1
MOVL XAR7,#C ; Load XAR7 with start address of C array
SPM −4 ; Set product shift mode to ">> 4","
ZAPA ; Zero ACC, P, OVC
RPT #N−1 ; Repeat next instruction N timeses

||QMACL P,*XAR6[AR1%++],*XAR7++ ; ACC = ACC + P >> 4,
; P = (*AR6%++ * *XAR7++) >> 32

ADDL ACC,P << PM ; Final accumulate
MOV @Xindex,XAR1 ; Store XAR6 into current X index
MOVL @Sum,ACC ; Store result into sum

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

Register Addressing Modes www.ti.com

100 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Addressing Modes

5.7 Register Addressing Modes
This section includes register addressing modes for 32-bit and 16-bit registers.

5.7.1 32-Bit Register Addressing Modes

AMODE ”loc32” Syntax Description
X @ACC Access contents of 32-bit ACC register.

When the ”@ACC” register is the destination operand, this may affect the Z,N,V,C,OVC
flags.

Example (s):
MOVL XAR6,@ACC ; Load XAR6 with contents of ACC

MOVL @ACC,XT ; Load ACC with contents of XT register

ADDL ACC,@ACC ; ACC = ACC + ACC

AMODE ”loc32” Syntax Description
X @P Access contents of 32-bit ACC register.

Example (s):
MOVL XAR6,@AP ; Load XAR6 with contents of P

MOVL @P,XT ; Load P with contents of XT register

ADDL ACC,@AP ; P = ACC + P

AMODE ”loc32” Syntax Description
X @XT Access contents of 32-bit XT register.

Example (s):
MOVL XAR6,@XT ; Load XAR6 with contents of XT

MOVL @P,XT ; Load P with contents of XT register

ADDL ACC,@XT ; ACC = ACC + XT

AMODE ”loc32” Syntax Description
X @XARn Access contents of 32-bit XARn registers.

Example (s):
MOVL XAR6,@XR2 ; Load XAR6 with contents of XAR2

MOVL P,@XAR2 ; Load P with contents of XAR2 register

ADDL ACC,@XAR2 ; ACC = ACC + XAR2

Note: When writing assembly code, the “@” symbol in front of the register is optional. For example:
“MOVL ACC,@P” or “MOVL ACC,P”. The disassembler will use the @ to indicate operands that are
“loc16” or “loc32”. For example, MOVL ACC, @P is the MOVL ACC, loc32 instruction and MOVL @ACC,
P is the MOVL loc32, P instruction.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com Register Addressing Modes

101SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Addressing Modes

5.7.2 16-Bit Register Addressing Modes

AMODE ”loc16” Syntax Description
X @AL Access contents of 16-bit AL register.

AH register contents are un-affected.
When the ”@AL” register is the destination operand, this may affect the Z,N,V,C,OVC
flags.

Example (s):
MOV PH,@AL ; Load PH with contents of AL

ADD AH,@AL ; AH = AH + AL

MOV T,@AL ; Load P with contents of AL

AMODE ”loc16” Syntax Description
X @AH Access contents of 16-bit Ah register.

Al register contents are unaffected.
When the ”@AH” register is the destination operand, this may affect the Z,N,V,C,OVC
flags.

Example (s):
MOV PH,@AH ; Load PH with contents of AH

ADD AL,@AH ; Al = Al + Ah

MOV T,@AH ; Load t with contents of AH

AMODE ”loc16” Syntax Description
X @PL Access contents of 16-bit PL register.

PH register contents are unaffected.

Example (s):
MOV PH,@AL ; Load PH with contents of PL

ADD AH,@AL ; AL = AL + PL

MOV T,@AL ; Load T with contents of PL

AMODE ”loc16” Syntax Description
X @PH Access contents of 16-bit PH register.

PL register contents are unaffected.

Example (s):
MOV PL,@PH ; Load PL with contents of PH

ADD AL,@PH ; AL = AL + PH

MOV T,@PH ; Load T with contents of PH

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

Register Addressing Modes www.ti.com

102 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Addressing Modes

AMODE ”loc16” Syntax Description
X @TH Access contents of 16-bit TH register.

TL register contents are unaffected.

Example (s):
MOV PL,@T ; Load PL with contents of T

ADD AL,@T ; AL = AL + TH

MOVZ AR4,@T ; Load AR4 with contents of T, AR4H = 0

AMODE ”loc16” Syntax Description
X @TH Access contents of 16-bit SP register

Example (s):
MOVZ AR4,@SP ; Load AR4 with contents of SP, AR4H = 0

MOV AL,@SP ; Load AL with contents of SP

MOV @SP,AH ; Load SP with contents of AH

AMODE ”loc16” Syntax Description
X @ARn Access contents of 16-bit AR0 to AR7 registerS.

AR0H to AR7H register contents are unaffected.

Example (s):
MOVZ AR4,@AR2 ; Load AR4 with contents of AR2, AR4H = 0

MOV AL,@AR3 ; Load AL with contents of AR3

MOV @AR5,AH ; Load AR5 with contents of AH, AR5H = unchanged

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com Data/Program/IO Space Immediate Addressing Modes

103SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Addressing Modes

5.8 Data/Program/IO Space Immediate Addressing Modes

Syntax Description
*(0:16bit) 32BitDataAddr(31:16) = 0

32BitDataAddr(15:0) = 16−bit immediate value

Note: If instruction is repeated, the address is post−incremented on each iteration. This addressing mode can
only access the low 64K of data space.

Instructions that use this addressing mode:

MOV loc16,*(0:16bit) ; [loc16] = [0:16bit]

MOV *(0:16bit),loc16 ; [loc16] = [0:16bit]

Syntax Description
*(PA) 32BitDataAddr(31:16) = 0

32BitDataAddr(15:0) = PA 16−bit immediate value

Note: If instruction is repeated, the address is post−incremented on each iteration. The I/O strobe signal is
toggled when accessing I/O space with this addressing mode. The data space address lines are used for
accessing I/O space.

Instructions that use this addressing mode:

OUT (PA),*loc16 ; IOspace[0:pa]= [loc16]

UOUT *(0:16bit),loc16 ; IOspace[0:pa]= [loc16](unprotected)

IN loc16,*(PA) ; [loc16] = IOspace[0:PA]

Syntax Description
0:pma 22BitProgAddr(21:16) = 0

22BitProgAddr(15:0) = pma 16−bit immediate value

Note: If instruction is repeated, the address is post−incremented on each iteration. This addressing mode can
only access the low 64K of program space.

Instructions that use this addressing mode:

MAC p,loc16,0:pma ; ACC = ACC + P << PM,

; P = [loc16] * ProgSpace[0:pma]

Syntax Description
*(0:16bit) 22BitProgAddr(21:16) = 0x3F

22BitProgAddr(15:0) = pma 16−bit immediate value

Note: If instruction is repeated, the address is post−incremented on each iteration. This addressing mode can
only access the upper 64K of program space.

Instructions that use this addressing mode:

XPREAD loc16, *(pma) ; [loc16] = ProgSpace [0x3f:pma]

XMAC P,loc16*(pma) ; ACC = ACC + P << PM,

; P = [loc16] * ProgSpace[0x3F:pma]

XMACD P,loc16*(pma) ; ACC = ACC + P << PM,

; P = [loc16] * ProgSpace[0x3F:pma]

; [loc16+1] = [loc16]

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

Program Space Indirect Addressing Modes www.ti.com

104 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Addressing Modes

5.9 Program Space Indirect Addressing Modes

Syntax Description
*AL 22BitProgAddr(21:16) = 0x3F

22BitProgAddr(15:0) = AL

Note: If instruction is repeated, the address in AL is copied to a shadow register and the value post−incremented
on each iteration. The AL register is not modified. This addressing mode can only access the upper 64K of
program space.

Instructions that use this addressing mode:

XPREAD loc16,*AL ; [loc16] = ProgSpace [0x3F:AL]

XPWRITE *AL,loc16 ; ProgSpace [0x3F:AL] = [loc16]

Syntax Description
*XAR7 22BitProgAddr(21:0) = XAR7

Note: If instruction is repeated, only in the XPREAD and XPWRITE instructions, is the address contained in XAR7
copied to a shadow register and the value post−incremented on each iteration. The XAR7 register is not modified.
For all other instructions, the address is not incremented even when repeated.

Instructions that use this addressing mode:

MAC P,loc16,*XAR7 ; ACC = ACC + P << PM,

; P = [loc16] * ProgSpace[*XAR7]

DMAC ACC:P,loc32,*XAR7 ; ACC = ([loc32].MSW * ProgSpace[*XAR7].MSW) >> PM,

; P = ([loc32].LSW * ProgSpace[*XAR7].MSW) >> PM

QMACL P,loc32,*XAR7 ; ACC = ACC + P >> PM,

; P = ([loc32] * ProgSpace[*XAR7] >> 32

IMACL P,loc32,*XAR7 ; ACC = ACC + P,

; P = ([loc32] * ProgSpace[*XAR7] << PM

PREAD loc16,*XAR7 ; [loc16] = ProgSpace[*XAR7]

PWRITE *XAR7,loc16 ; ProgSpace[*XAR7] = [loc16]

Syntax Description
*XAR7++ 22BitProgAddr(21:0) = XAR7,

if(16−bit operation) XAR7 = XAR7 + 1,

if(32−bit operation) XAR7 = XAR7 + 2

Note: If instruction is repeated, the address is post−incremented as normal.

Instructions that use this addressing mode:

MAC P,loc16,*XAR7++ ; ACC = ACC + P << PM,

; P = [loc16] * ProgSpace[*XAR7++]

DMAC ACC:P,loc32,*XAR7++ ; ACC = ([loc32].MSW * ProgSpace[*XAR7++].MSW) >> PM,

; P = ([loc32].LSW * ProgSpace[*XAR7].MSW) >> PM

QMACL P,loc32,*XAR7++ ; ACC = ACC + P >> PM,

; P = ([loc32] * ProgSpace[*XAR7++] >> 32

IMACL P,loc32,*XAR7++ ; ACC = ACC + P,

; P = ([loc32] * ProgSpace[*XAR7++] << PM

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com Byte Addressing Modes

105SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Addressing Modes

5.10 Byte Addressing Modes

Syntax Description
*+XARn[AR0]
*+XARn[AR1]
*+XARn[3bit]

32BitDataAddr(31:0) = XARn + Offset (Offset = AR0/AR1/3bit)

if(offset == Even Value)

Access LSByte Of 16−bit Memory Location;

Leave MSByte untouched;

if(Offset == Odd Value)

Access MSByte Of 16−bit Memory Location;

Leave LSByte untouched;

Note: For all other addressing modes, only the LSByte of the addressed location is accessed, the MSByte is left
untouched.

Instructions that use this addressing mode:

MOVB AX.LSB,loc16 ; if(address mode == *+XARn[AR0/AR1/3bit])
; if(offset == even)
; AX.LSB = [loc16].LSB;
; AX.MSB = 0x00;
; if(offset == odd)
; AX.LSB = [loc16].MSB;
; AX.MSB = 0x00;
; else
; AX.LSB = [loc16].LSB;
; AX.MSB = 0x00;

MOVB AX.MSB,loc16 ; if(address mode == *+XARn[AR0/AR1/3bit])
; if(offset == even)
; AX.LSB = untouched;
; AX.MSB = [loc16].LSB;
; if(offset == odd)
; AX.LSB = untouched;
; AX.MSB = [loc16].MSB;
; else
; AX.LSB = untouched;
; AX.MSB = [loc16].LSB;

MOVB loc16,AX.LSB ; if(address mode == *+XARn[AR0/AR1/3bit])
; if(offset == even)
; [loc16].LSB = AX.LSB
; [loc16].MSB = untouched;
; if(offset == odd)
; [loc16].LSB = untouched;
; [loc16].MSB = AX.LSB;
; else
; [loc16].LSB = AX.LSB;
; [loc16].MSB = untouched;

MOVB loc16,AX.MSB ; if(address mode == *+XARn[AR0/AR1/3bit])
; if(offset == even)
; [loc16].LSB = AX.MSB
; [loc16].MSB = untouched;
; if(offset == odd)
; [loc16].LSB = untouched;
; [loc16].MSB = AX.MSB;
; else
; [loc16].LSB = AX.MSB;
; [loc16].MSB = untouched;

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

Alignment of 32-Bit Operations www.ti.com

106 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Addressing Modes

5.11 Alignment of 32-Bit Operations
All 32-bit reads and writes to memory are aligned at the memory interface to an even address boundary
with the least significant word of the 32-bit data aligned to the even address. The output of the address
generation unit does not force alignment, hence pointer values retain their values.

For example:
MOVB AR0,#5 ; AR0 = 5
MOVL *AR0,ACC ; AL −> address 0x000004

; AH −> address 0x000005
; AR0 = 5

The programmer must take the above into account when generating addresses that are not aligned to an
even boundary.

The 32-bit operands are stored in the following order; low order bits, 0 to 15, followed by the high order
bits, 16 to 31, on the next highest 16-bit address increment (little-endian format).

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

107SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

Chapter 6
SPRU430F–August 2001–Revised April 2015

C28x Assembly Language Instructions

This chapter presents summaries of the instruction set, defines special symbols and notations used, and
describes each instruction in detail in alphabetical order.

6.1 Summary of Instructions

The instructions are listed alphabetically, preceded by a summary.
Table 6-1. Summary of Instructions

Title .. Page

ABORTI —Abort Interrupt .. 124
ABS ACC —Absolute Value of Accumulator ... 125
ABSTC ACC —Absolute Value of Accumulator and Load TC ... 126
ADD ACC,#16bit<<#0..15 —Add Value to Accumulator .. 128
ADD ACC,loc16 <<T —Add Value to Accumulator.. 129
ADD ACC,loc16 << #0..16 —Add Value to Accumulator ... 130
ADD AX, loc16 —Add Value to AX .. 131
ADD loc16, AX —Add AX to Specified Location ... 132
ADDB SP, #7bit —Add 7-bit Constant to Stack Pointer .. 136
ADDB XARn, #7bit —Add 7-bit Constant to Auxiliary Register.. 137
ADDCL ACC,loc32 —Add 32-bit Value Plus Carry to Accumulator... 138
ADDCU ACC,loc16 —Add Unsigned Value Plus Carry to Accumulator.. 139
ADDL ACC,loc32 —Add 32-bit Value to Accumulator .. 140
ADDL ACC,P << PM —Add Shifted P to Accumulator .. 141
ADDL loc32,ACC —Add Accumulator to Specified Location... 142
ADDU ACC,loc16 —Add Unsigned Value to Accumulator ... 143
ADDUL P,loc32 —Add 32-bit Unsigned Value to P ... 144
ADDUL ACC, loc32 —Add 32-bit Unsigned Value to Accumulator ... 145
ADRK #8bit —Add to Current Auxiliary Register .. 146
AND ACC,#16bit << #0..16 —Description .. 147
AND ACC, loc16 —Bitwise AND ... 148
AND AX, loc16, #16bit —Bitwise AND.. 149
AND IER,#16bit —Bitwise AND to Disable Specified CPU Interrupts... 150
AND IFR,#16bit —Bitwise AND to Clear Pending CPU Interrupts... 151
AND loc16, AX —Bitwise AND ... 152
AND AX, loc16 —Bitwise AND ... 153
AND loc16,#16bitSigned —Bitwise AND... 154
ANDB AX, #8bit —Bitwise AND 8-bit Value .. 155
ASP —Align Stack Pointer.. 156
ASR AX,#1...16 —Arithmetic Shift Right .. 157
ASR AX,T —Arithmetic Shift Right ... 158
ASR64 ACC:P,#1..16 —Arithmetic Shift Right of 64-bit Value ... 159
ASR64 ACC:P,T —Arithmetic Shift Right of 64-bit Value... 160
ASRL ACC,T —Arithmetic Shift Right of Accumulator .. 161

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

Summary of Instructions www.ti.com

108 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

Table 6-1. Summary of Instructions (continued)
B 16bitOffset,COND —Branch... 162
BANZ 16bitOffset,ARn− − —Branch if Auxiliary Register Not Equal to Zero.. 163
BAR 16bitOffset,ARn,ARm,EQ/NEQ —Branch on Auxiliary Register Comparison .. 164
BF 16bitOffset,COND —Branch Fast ... 165
C27MAP —Set the M0M1MAP Bit .. 166
C27OBJ —Clear the Objmode Bit ... 167
C28ADDR —Clear the AMODE Status Bit ... 168
C28MAP —Set the M0M1MAP Bit .. 169
C28OBJ —Set the Objmode Bit ... 170
CLRC AMODE —Clear the AMODE Bit ... 171
CLRC M0M1MAP —Clear the M0M1MAP Bit .. 172
CLRC Objmode —Clear the Objmode Bit .. 173
CLRC OVC —Clear Overflow Counter .. 174
CLRC XF —Clear XF Status Bit .. 175
CLRC Mode —Clear Status Bits ... 176
CMP AX, loc16 —Compare... 177
CMP loc16,#16bitSigned —Compare... 178
CMP64 ACC:P —Compare 64-bit Value .. 179
CMPB AX, #8bit —Compare 8-bit Value.. 180
CMPL ACC,loc32 —Compare 32-bit Value... 181
CMPL ACC,P << PM —Compare 32-bit Value ... 182
CMPR 0/1/2/3 —Compare Auxiliary Registers.. 183
CSB ACC —Count Sign Bits .. 184
DEC loc16 —Decrement by 1 .. 185
DINT —Disable Maskable Interrupts (Set INTM Bit) ... 186
DMAC ACC:P,loc32,*XAR7/++ —16-Bit Dual Multiply and Accumulate ... 187
DMOV loc16 —Data Move Contents of 16-bit Location... 189
EALLOW —Enable Write Access to Protected Space.. 190
EDIS —Disable Write Access to Protected Registers ... 191
EINT —Enable Maskable Interrupts (Clear INTM Bit) ... 192
ESTOP0 —Emulation Stop 0... 193
ESTOP1 —Emulation Stop 1... 194
FFC XAR7,22bit —Fast Function Call... 195
FLIP AX —Flip Order of Bits in AX Register .. 196
IACK #16bit —Interrupt Acknowledge... 197
IDLE —Put Processor in Idle Mode .. 198
IMACL P,loc32,*XAR7/++ —Signed 32 X 32-Bit Multiply and Accumulate (Lower Half) 199
IMPYAL P,XT,loc32 —Signed 32-Bit Multiply (Lower Half) and Add Previous P.. 201
IMPYL ACC,XT,loc32 —Signed 32 X 32-Bit Multiply (Lower Half) .. 203
IMPYL P,XT,loc32 —Signed 32 X 32-Bit Multiply (Lower Half) .. 204
IMPYSL P,XT,loc32 —Signed 32-Bit Multiply (Low Half) and Subtract P .. 205
IMPYXUL P,XT,loc32 —Signed 32 X Unsigned 32-Bit Multiply (Lower Half) .. 207
IN loc16,*(PA) —Input Data From Port.. 209
INC loc16 —Increment by 1... 211
INTR —Emulate Hardware Interrupt ... 212
IRET —Interrupt Return.. 214
LB *XAR7 —Long Indirect Branch ... 216
LB 22bit —Long Branch ... 217
LC *XAR7 —Long Indirect Call ... 218

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com Summary of Instructions

109SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

Table 6-1. Summary of Instructions (continued)
LC 22bit —Long Call... 219
LCR #22bit —Long Call Using RPC ... 220
LCR *XARn —Long Indirect Call Using RPC ... 221
LOOPNZ loc16,#16bit —Loop While Not Zero .. 222
LOOPZ loc16,#16bit —Loop While Zero ... 224
LPADDR —Set the AMODE Bit.. 226
LRET —Long Return.. 227
LRETE —Long Return and Enable Interrupts ... 228
LRETR —Long Return Using RPC ... 229
LSL ACC,#1..16 —Logical Shift Left ... 230
LSL ACC,T —Logical Shift Left by T(3:0) ... 231
LSL AX,#1...16 —Logical Shift Left .. 232
LSL AX,T —Logical Shift Left by T(3:0) ... 233
LSL64 ACC:P,#1..16 —Logical Shift Left ... 234
LSL64 ACC:P,T —64-Bit Logical Shift Left by T(5:0) ... 235
LSLL ACC,T —Logical Shift Left by T (4:0)... 236
LSR AX,#1...16 —Logical Shift Right .. 237
LSR AX,T —Logical Shift Right by T(3:0) ... 238
LSR64 ACC:P,#1..16 —64-Bit Logical Shift Right ... 239
LSR64 ACC:P,T —64-Bit Logical Shift Right by T(5:0) ... 240
LSRL ACC,T —Logical Shift Right by T (4:0) .. 241
MAC P,loc16,0:pma —Multiply and Accumulate .. 242
MAC P ,loc16,*XAR7/++ —Multiply and Accumulate ... 244
MAX AX, loc16 —Find the Maximum.. 246
MAXCUL P,loc32 —Conditionally Find the Unsigned Maximum .. 247
MAXL ACC,loc32 —Find the 32-bit Maximum ... 248
MIN AX, loc16 —Find the Minimum ... 249
MINCUL P,loc32 —Conditionally Find the Unsigned Minimum .. 250
MINL ACC,loc32 —Find the 32-bit Minimum ... 251
MOV *(0:16bit), loc16 —Move Value.. 252
MOV ACC,#16bit<<#0..15 —Load Accumulator With Shift... 253
MOV ACC,loc16<<T —Load Accumulator With Shift ... 254
MOV ACC, loc16<<#0..16 —Load Accumulator With Shift... 255
MOV AR6/7, loc16 —Load Auxiliary Register .. 256
MOV AX, loc16 —Load AX ... 257
MOV DP, #10bit —Load Data-Page Pointer.. 258
MOV IER,loc16 —Load the Interrupt-Enable Register .. 259
MOV loc16, #16bit —Save 16-bit Constant .. 260
MOV loc16, *(0:16bit) —Move Value.. 261
MOV loc16, #0 —Clear 16-bit Location ... 262
MOV loc16,ACC << 1..8 —Save Low Word of Shifted Accumulator ... 263
MOV loc16, ARn —Store 16-bit Auxiliary Register .. 264
MOV loc16, AX —Store AX ... 265
MOV loc16, AX, COND —Store AX Register Conditionally .. 266
MOV loc16,IER —Store Interrupt-Enable Register .. 268
MOV loc16,OVC —Store the Overflow Counter.. 269
MOV loc16,P —Store Lower Half of Shifted P Register... 270
MOV loc16, T —Store the T Register.. 271
MOV OVC, loc16 —Load the Overflow Counter ... 272

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

Summary of Instructions www.ti.com

110 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

Table 6-1. Summary of Instructions (continued)
MOV PH, loc16 —Load the High Half of the P Register .. 273
MOV PL, loc16 —Load the Low Half of the P Register ... 274
MOV PM, AX —Load Product Shift Mode... 275
MOV T, loc16 —Load the Upper Half of the XT Register... 276
MOV TL, #0 —Clear the Lower Half of the XT Register... 277
MOV XARn, PC —Save the Current Program Counter ... 278
MOVA T,loc16 —Load T Register and Add Previous Product ... 279
MOVAD T, loc16 —Load T Register... 280
MOVB ACC,#8bit —Load Accumulator With 8-bit Value ... 281
MOVB AR6/7, #8bit —Load Auxiliary Register With an 8-bit Constant ... 282
MOVB AX, #8bit —Load AX With 8-bit Constant .. 283
MOVB AX.LSB, loc16 —Load Byte Value.. 284
MOVB AX.MSB, loc16 —Load Byte Value ... 286
MOVB loc16,#8bit,COND —Conditionally Save 8-bit Constant ... 288
MOVB loc16, AX.LSB —Store LSB of AX Register ... 290
MOVB loc16, AX.MSB —Store MSB of AX Register.. 292
MOVB XARn, #8bit —Load Auxiliary Register With 8-bit Value ... 294
MOVDL XT,loc32 —Store XT and Load New XT .. 295
MOVH loc16,ACC << 1..8 —Description.. 296
MOVH loc16, P —Save High Word of the P Register ... 297
MOVL ACC,loc32 —Load Accumulator With 32 Bits.. 298
MOVL ACC,P << PM —Load the Accumulator With Shifted P... 299
MOVL loc32, ACC —Store 32-bit Accumulator .. 300
MOVL loc32,ACC,COND —Conditionally Store the Accumulator ... 301
MOVL loc32,P —Store the P Register .. 303
MOVL loc32, XARn —Store 32-bit Auxiliary Register... 304
MOVL loc32,XT —Store the XT Register ... 305
MOVL P,ACC —Load P From the Accumulator.. 306
MOVL P,loc32 —Load the P Register ... 307
MOVL XARn, loc32 —Load 32-bit Auxiliary Register ... 308
MOVL XARn, #22bit —Load 32-bit Auxiliary Register With Constant Value... 309
MOVL XT,loc32 —Load the XT Register.. 310
MOVP T,loc16 —Load the T Register and Store P in the Accumulator... 311
MOVS T,loc16 —Load T and Subtract P From the Accumulator .. 312
MOVU ACC,loc16 —Load Accumulator With Unsigned Word ... 313
MOVU loc16,OVC —Store the Unsigned Overflow Counter ... 314
MOVU OVC,loc16 —Load Overflow Counter With Unsigned Value... 315
MOVW DP, #16bit —Load the Entire Data Page .. 316
MOVX TL,loc16 —Load Lower Half of XT With Sign Extension ... 317
MOVZ ARn, loc16 —Load Lower Half of XARn and Clear Upper Half ... 318
MOVZ DP, #10bit —Load Data Page and Clear High Bits ... 319
MPY ACC,loc16, #16bit —16 X 16-bit Multiply .. 320
MPY ACC, T, loc16 —16 X 16-bit Multiply.. 321
MPY P,loc16,#16bit —16 X 16-Bit Multiply ... 322
MPY P,T,loc16 —16 X 16 Multiply ... 323
MPYA P,loc16,#16bit —16 X 16-Bit Multiply and Add Previous Product... 324
MPYA P,T,loc16 —16 X 16-bit Multiply and Add Previous Product ... 325
MPYB ACC,T,#8bit —Multiply by 8-bit Constant... 326
MPYB P,T,#8bit —Multiply Signed Value by Unsigned 8-bit Constant ... 327

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com Summary of Instructions

111SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

Table 6-1. Summary of Instructions (continued)
MPYS P,T,loc16 —16 X 16-bit Multiply and Subtract ... 328
MPYU P,T,loc16 —Unsigned 16 X 16 Multiply ... 329
MPYU ACC,T,loc16 —16 X 16-bit Unsigned Multiply ... 330
MPYXU ACC, T, loc16 —Multiply Signed Value by Unsigned Value ... 331
MPYXU P,T,loc16 —Multiply Signed Value by Unsigned Value ... 332
NASP —Unalign Stack Pointer .. 333
NEG ACC —Negate Accumulator .. 334
NEG AX —Negate AX Register... 335
NEG64 ACC:P —Negate Accumulator Register and Product Register ... 336
NEGTC ACC —If TC is Equivalent to 1, Negate ACC... 337
NOP {*ind}{ARPn} —No Operation With Optional Indirect Address Modification ... 339
NORM ACC, *ind —Normalize ACC and Modify Selected Auxiliary Register ... 340
NORM ACC,XARn++/− − —Normalize ACC and Modify Selected Auxiliary Register .. 341
NOT ACC —Complement Accumulator ... 342
NOT AX —Complement AX Register .. 343
OR ACC, loc16 —Bitwise OR .. 344
OR ACC,#16bit << #0..16 —Bitwise OR .. 345
OR AX, loc16 —Bitwise OR .. 346
OR IER,#16bit —Bitwise OR.. 347
OR IFR,#16bit —Bitwise OR.. 348
OR loc16,#16bit —Bitwise OR ... 349
OR loc16, AX —Bitwise OR .. 350
ORB AX,#8bit —Bitwise OR 8-bit Value .. 351
OUT *(PA),loc16 —Output Data to Port... 352
POP ACC —Pop Top of Stack to Accumulator ... 353
POP ARn:ARm —Pop Top of Stack to 16-bit Auxiliary Registers ... 354
POP AR1H:AR0H —Pop Top of Stack to Upper Half of Auxiliary Registers ... 355
POP DBGIER —Pop Top of Stack to DBGIER ... 356
POP DP —Pop Top of Stack to the Data Page .. 357
POP DP:ST1 —Pop Top of Stack to DP and ST1 ... 358
POP IFR —Pop Top of Stack to IFR ... 359
POP loc16 —Pop Top of Stack... 360
POP P —Pop top of Stack to P ... 361
POP RPC —Pop RPC Register From Stack .. 362
POP ST0 —Pop Top of Stack to ST0.. 363
POP ST1 —Pop Top of Stack to ST1.. 364
POP T:ST0 —Pop Top of Stack to T and ST0 ... 365
POP XARn —Pop Top of Stack to 32-bit Auxiliary Register.. 366
POP XT —Pop Top of Stack to XT .. 367
PREAD loc16,*XAR7 —Read From Program Memory ... 368
PUSH ACC —Push Accumulator Onto Stack... 369
PUSH ARn:ARm —Push 16-bit Auxiliary REgisters Onto Stack .. 370
PUSH AR1H:AR0H —Push AR1H and Ar0H Registers on Stack ... 371
PUSH DBGIER —Push DBGIER Register Onto Stack.. 372
PUSH DP —Push DP Register Onto Stack ... 373
PUSH DP:ST1 —Push DP and ST1 Onto Stack ... 374
PUSH IFR —Push IFR Onto Stack... 375
PUSH loc16 —Push 16-bit Value on Stack ... 376
PUSH P —Push P Onto Stack.. 377

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

Summary of Instructions www.ti.com

112 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

Table 6-1. Summary of Instructions (continued)
PUSH RPC —Push RPC Onto Stack .. 378
PUSH ST0 —Push ST0 Onto Stack.. 379
PUSH ST1 —Push ST1 Onto Stack.. 380
PUSH T:ST0 —Push T and ST0 Onto Stack ... 381
PUSH XARn —Push 32-bit Auxiliary Register Onto Stack ... 382
PUSH XT —Push XT Onto Stack... 383
PWRITE *XAR7,loc16 —Write to Program Memory... 384
QMACL P,loc32,*XAR7/++ —Signed 32 X 32-bit Multiply and Accumulate (Upper Half).................................... 385
QMPYAL P,XT,loc32 —Signed 32-bit Multiply (Upper Half) and Add Previous P... 387
QMPYL P,XT,loc32 —Signed 32 X 32-bit Multiply (Upper Half) ... 388
QMPYL ACC,XT,loc32 —Signed 32 X 32-bit Multiply (Upper Half) ... 389
QMPYSL P,XT,loc32 —Signed 32-bit Multiply (Upper Half) and Subtract Previous P.. 390
QMPYUL P,XT,loc32 —Unsigned 32 X 32-bit Multiply (Upper Half) .. 391
QMPYXUL P,XT,loc32 —Signed X Unsigned 32-bit Multiply (Upper Half) ... 392
ROL ACC —Rotate Accumulator Left ... 393
ROR ACC —Rotate Accumulator Right ... 394
RPT #8bit/loc16 —Repeat Next Instruction .. 395
SAT ACC —Saturate Accumulator ... 396
SAT64 ACC:P —Saturate 64-bit Value ACC:P... 397
SB 8bitOffset,COND —Need description here... 399
SBBU ACC,loc16 —Subtract Unsigned Value Plus Inverse Borrow .. 400
SBF 8bitOffset,EQ/NEQ/TC/NTC —Short Branch Fast .. 401
SBRK #8bit —Subtract From Current Auxiliary Register ... 402
SETC Mode —Set Multiple Status Bits .. 403
SETC M0M1MAP —Set the M0M1MAP Status Bit .. 405
SETC Objmode —Set the Objmode Status Bit .. 406
SETC XF —Set XF Bit and Output Signal... 407
SFR ACC,#1..16 —Shift Accumulator Right .. 408
SFR ACC,T —Shift Accumulator Right .. 409
SPM shift —Set Product Mode Shift Bits ... 410
SQRA loc16 —Square Value and Add P to ACC .. 412
SQRS loc16 —Square Value and Subtract P From ACC... 413
SUB ACC,loc16 << #0..16 —Subtract Shifted Value From Accumulator... 414
SUB ACC,loc16 << T —Subtract Shifted Value From Accumulator... 416
SUB ACC,#16bit << #0..15 —Subtract Shifted Value From Accumulator .. 417
SUB AX, loc16 —Subtract Specified Location From AX.. 418
SUB loc16, AX —Reverse-Subtract Specified Location From AX... 419
SUBB ACC,#8bit —Subtract 8-bit Value.. 420
SUBB SP,#7bit —Subtract 7-bit Value .. 421
SUBB XARn,#7bit —Subtract 7-Bit From Auxiliary Register... 422
SUBBL ACC, loc32 —Subtract 32-bit Value Plus Inverse Borrow .. 423
SUBCU ACC,loc16 —Subtract Conditional 16 Bits.. 424
SUBCUL ACC,loc32 —Subtract Conditional 32 Bits .. 426
SUBL ACC, loc32 —Subtract 32-bit Value ... 428
SUBL ACC,P << PM —Subtract 32-bit Value .. 429
SUBL loc32, ACC —Subtract 32-bit Value ... 430
SUBR loc16,AX —Reverse-Subtract Specified Location From AX.. 431
SUBRL loc32, ACC —Reverse-Subtract Specified Location From ACC ... 432
SUBU ACC, loc16 —Subtract Unsigned 16-bit Value... 433

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com Summary of Instructions

113SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

Table 6-1. Summary of Instructions (continued)
SUBUL ACC, loc32 —Subtract Unsigned 32-bit Value ... 434
SUBUL P,loc32 —Subtract Unsigned 32-bit Value .. 435
TBIT loc16,#bit —Test Specified Bit... 436
TBIT loc16,T —Test Bit Specified by Register ... 437
TCLR loc16,#bit —Test and Clear Specified Bit... 438
TEST ACC —Test for Accumulator Equal to Zero ... 439
TRAP #VectorNumber —Software Trap.. 440
TSET loc16,#16bit —Test and Set Specified Bit .. 442
UOUT *(PA),loc16 —Unprotected Output Data to I/O Port ... 443
XB *AL —C2 xLP Source-Compatible Indirect Branch... 444
XB pma,*,ARPn —C2xLP Source-Compatible Branch with ARP Modification .. 445
XB pma,COND —C2 xLP Source-Compatible Branch .. 446
XBANZ pma,*ind{,ARPn} —C2 x LP Source-Compatible Branch If ARn Is Not Zero.. 448
XCALL *AL —C2 x LP Source-Compatible Function Call .. 450
XCALL pma,*,ARPn —C2 x LP Source-Compatible Function Call ... 451
XCALL pma,COND —C2xLP Source-Compatible Function Call .. 452
XMAC P,loc16,*(pma) —C2xLP Source-compatible Multiply and Accumulate .. 454
XMACD P,loc16,*(pma) —C2xLP Source-Compatible Multiply and Accumulate With Data Move 456
XOR ACC,loc16 —Bitwise Exclusive OR ... 458
XOR ACC,#16bit << #0..16 —Bitwise Exclusive OR .. 459
XOR AX,loc16 —Bitwise Exclusive OR ... 460
XOR loc16, AX —Bitwise Exclusive OR .. 461
XOR loc16,#16bit —Bitwise Exclusive OR ... 462
XORB AX, #8bit —Bitwise Exclusive OR 8-bit Value ... 463
XPREAD loc16, *(pma) —C2xLP Source-Compatible Program Read.. 464
XPREAD loc16, *AL —C2xLP Source-Compatible Program Read ... 465
XPWRITE *A,loc16 —C2xLP Source-Compatible Program Write ... 466
XRET —C2xLP Source-Compatible Return.. 467
XRETC COND —C2xLP Source-Compatible Conditional Return.. 468
ZALR ACC,loc16 —Zero AL and Load AH With Rounding... 470
ZAP OVC —Clear Overflow Counter... 471
ZAPA —Zero Accumulator and P Register .. 472

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

C28x Assembly Language Instructions by Function www.ti.com

114 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

6.2 C28x Assembly Language Instructions by Function

NOTE: The examples in this chapter assume that the device is already operating in C28x Mode
(Objmode = = 1, AMODE = = 0). To put the device into C28x mode following a reset, you
must first set the Objmode bit in ST1 by executing the "C28OBJ"M (or "SETC Objmode"M)
instruction.

NOTE: Cycle Counts assume the instruction is executed from zero-wait (single-cycle) memory and
there are no pipeline stalls.

Table 6-2. Instruction Set Summary (Organized by Function)

Symbol Description
XARn XAR0 to XAR7 registers
ARn, ARm Lower 16-bits of XAR0 to XAR7 registers
ARnH Upper 16-bits of XAR0 to XAR7 registers
ARPn 3-bit auxiliary register pointer, ARP0 to ARP7

ARP0 points to XAR0 and ARP7 points to XAR7
AR(ARP) Lower 16-bits of auxiliary register pointed to by ARP
XAR(ARP) Auxiliary registers pointed to by ARP
AX Accumulator high (AH) and low (AL) registers
Immediate operand
PM Product shift mode (+4,1,0,-1,-2,-3,-4,-5,-6) PC Program counter
~ Bitwise compliment
[loc16] Contents of 16-bit location
0:[loc16] Contents of 16-bit location, zero extended
S:[loc16] Contents of 16-bit location, sign extended
[loc32] Contents of 32-bit location
0:[loc32] Contents of 32-bit location, zero extended
S:[loc32] Contents of 32-bit location, sign extended
7bit 7-bit immediate value
0:7bit 7-bit immediate value, zero extended
S:7bit 7-bit immediate value, sign extended
8bit 8-bit immediate value
0:8bit 8-bit immediate value, zero extended
S:8bit 8-bit immediate value, sign extended
10bit 10-bit immediate value
0:10bit 10-bit immediate value, zero extended
16bit 16-bit immediate value
0:16bit 16-bit immediate value, zero extended
S:16bit 16-bit immediate value, sign extended
22bit 22-bit immediate value
0:22bit 22-bit immediate value, zero extended
LSb Least Significant bit
LSB Least Significant Byte
LSW Least Significant Word
MSB Most Significant Byte
MSb Most Significant bit
MSW Most Significant Word
OBJ Objmode bit state for which instruction is valid

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com C28x Assembly Language Instructions by Function

115SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

Table 6-2. Instruction Set Summary (Organized by Function) (continued)
Symbol Description
N Repeat count (N = 0,1,2,3,4,5,6,7,....)
{ } Optional field
= Assignment
== Equivalent to

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

Register Operations www.ti.com

116 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

6.3 Register Operations

NOTE: The examples in this chapter assume that the device is already operating in C28x Mode
(Objmode == 1, AMODE == 0). To put the device into C28x mode following a reset, you
must first set the Objmode bit in ST1 by executing the "C28OBJ"M (or "SETC Objmode"M)
instruction.

NOTE: Cycle Counts assume the instruction is executed from zero-wait (single-cycle) memory and
there are no pipeline stalls.

Table 6-3. Register Operations

Mnemonic Description
XARn Register Operations (XAR0-XAR7)
ADDB XARn,#7bit Add 7-bit constant to auxiliary register
ADRK #8bit Add 8-bit constant to current auxiliary register
CMPR 0/1/2/3 Compare auxiliary registers
MOV AR6/7,loc16 Load auxiliary register
MOV loc16,ARn Store 16-bit auxiliary register
MOV XARn,PC Save the current program counter
MOVB AR6/7,#8bit Load auxiliary register with an 8-bit constant
MOVB XARn,#8bit Load auxiliary register with 8-bit value
MOVL loc32,XARn Store 32-bit auxiliary register
MOVL XARn,loc32 Load 32-bit auxiliary register
MOVL XARn,#22bit Load 32-bit auxiliary register with constant value
MOVZ ARn,loc16 Load lower half of XARn and clear upper half
SBRK #8bit Subtract 8-bit constant from current auxiliary register
SUBB XARn,#7bit Subtract 7-bit constant from auxiliary register
DP Register Operations
MOV DP,#10bit Load data-page pointer
MOVW DP,#16bit Load the entire data page
MOVZ DP,#10bit Load data page and clear high bits
SP Register Operations
ADDB SP,#7bit Add 7-bit constant to stack pointer
POP ACC Pop ACC register from stack
POP AR1:AR0 Pop AR1 & AR0 registers from stack
POP AR1H:AR0H Pop AR1H & AR0H registers from stack
POP AR3:AR2 Pop AR3 & AR2 registers from stack
POP AR5:AR4 Pop AR5 & AR4 registers from stack
POP DBGIER Pop DBGIER register from stack
POP DP:ST1 Pop DP & ST1 registers on stack
POP DP Pop DP register from stack
POP IFR Pop IFR register from stack
POP loc16 Pop â€M loc16â€M data from stack
POP P Pop P register from stack
POP RPC Pop RPC register from stack
POP ST0 Pop ST0 register from stack
POP ST1 Pop ST1 register from stack
POP T:ST0 Pop T & ST0 registers from stack
POP XT Pop XT register from stack

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com Register Operations

117SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

Table 6-3. Register Operations (continued)
Mnemonic Description
POP XARn Pop auxiliary register from stack
PUSH ACC Push ACC register on stack
PUSH ARn:ARn Push ARn & ARn registers on stack
PUSH AR1H:AR0H Push AR1H & AR0H registers on stack
PUSH DBGIER Push DBGIER register on stack
PUSH DP:ST1 Push DP & ST1 registers on stack
PUSH DP Push DP register on stack
PUSH IFR Push IFR register on stack
PUSH loc16 Push â€M loc16â€M data on stack
PUSH P Push P register on stack
PUSH RPC Push RPC register on stack
PUSH ST0 Push ST0 register on stack
PUSH ST1 Push ST1 register on stack
PUSH T:ST0 Push T & ST0 registers on stack
PUSH XT Push XT register on stack
PUSH XARn Push auxiliary register on stack
SUBB SP,#7bit Subtract 7-bit constant from the stack pointer
AX Register Operations (AH, AL)
ADD AX,loc16 Add value to AX
ADD loc16,AX Add AX to specified location
ADDB AX,#8bit Add 8-bit constant to AX
AND AX,loc16,#16bit Bitwise AND
AND AX,loc16 Bitwise AND
AND loc16,AX Bitwise AND
ANDB AX,#8bit Bitwise AND 8-bit value
ASR AX,1..16 Arithmetic shift right
ASR AX,T Arithmetic shift right by T(3:0) = 0...15
CMP AX,loc16 Compare
CMPB AX,#8bit Compare 8-bit value
FLIP AX Flip order of bits in AX register
LSL AX,1..16 Logical shift left
LSL AX,T Logical shift left by T(3:0) = 0...15
LSR AX,1..16 Logical shift right
LSR AX,T Logical shift right by T(3:0) = 0..15
MAX AX,loc16 Find the maximum
MIN AX,loc16 Find the minimum
MOV AX,loc16 Load AX
MOV loc16,AX Store AX
MOV loc16,AX,COND Store AX register conditionally
MOVB AX,#8bit Load AX with 8-bit constant
MOVB AX.LSB,loc16 Load LSB of AX reg, MSB = 0x00
MOVB AX.MSB,loc16 Load MSB of AX reg, LSB = unchanged
MOVB loc16,AX.LSB Store LSB of AX reg
MOVB loc16,AX.MSB Store MSB of AX reg
NEG AX Negate AX register
NOT AX Complement AX register
OR AX,loc16 Bitwise OR

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

Register Operations www.ti.com

118 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

Table 6-3. Register Operations (continued)
Mnemonic Description
OR loc16,AX Bitwise OR
ORB AX,#8bit Bitwise OR 8-bit value
SUB AX,loc16 Subtract specified location from AX
SUB loc16,AX Subtract AX from specified location
SUBR loc16,AX Reverse-subtract specified location from AX
SXTB AX Sign extend LSB of AX reg into MSB
XOR AX,loc16 Bitwise exclusive OR
XORB AX,#8bit Bitwise exclusive OR 8-bit value
XOR loc16,AX Bitwise exclusive OR
16-Bit ACC Register Operations
ADD ACC,loc16 {<< 0..16} Add value to accumulator
ADD ACC,#16bit {<< 0..15} Add value to accumulator
ADD ACC,loc16 << T Add shifted value to accumulator
ADDB ACC,#8bit Add 8-bit constant to accumulator
ADDCU ACC,loc16 Add unsigned value plus carry to accumulator
ADDU ACC,loc16 Add unsigned value to accumulator
AND ACC,loc16 Bitwise AND
AND ACC,#16bit{<< 0..16} Bitwise AND
MOV ACC,loc16 {<< 0..16} Load accumulator with shift
MOV ACC,#16bit {<< 0..15} Load accumulator with shift
MOV loc16,ACC << 1..8 Save low word of shifted accumulator
MOV ACC,loc16 << T Load accumulator with shift
MOVB ACC,#8bit Load accumulator with 8-bit value
MOVH loc16,ACC << 1..8 Save high word of shifted accumulator
MOVU ACC,loc16 Load accumulator with unsigned word
SUB ACC,loc16 << T Subtract shifted value from accumulator
SUB ACC,loc16 {<< 0..16} Subtract shifted value from accumulator
SUB ACC,#16bit {<< 0..15} Subtract shifted value from accumulator
SUBB ACC,#8bit Subtract 8-bit value
SBBU ACC,loc16 Subtract unsigned value plus inverse borrow
SUBU ACC,loc16 Subtract unsigned 16-bit value
OR ACC,loc16 Bitwise OR
OR ACC,#16bit {<< 0..16} Bitwise OR
XOR ACC,loc16 Bitwise exclusive OR
XOR ACC,#16bit {<< 0..16} Bitwise exclusive OR
ZALR ACC,loc16 Zero AL and load AH with rounding
32-Bit ACC Register Operations
ABS ACC Absolute value of accumulator
ABSTC ACC Absolute value of accumulator and load TC
ADDL ACC,loc32 Add 32-bit value to accumulator
ADDL loc32,ACC Add accumulator to specified location
ADDCL ACC,loc32 Add 32-bit value plus carry to accumulator
ADDUL ACC,loc32 Add 32-bit unsigned value to accumulator
ADDL ACC,P << PM Add shifted P to accumulator
ASRL ACC,T Arithmetic shift right of accumulator by T(4:0)
CMPL ACC,loc32 Compare 32-bit value
CMPL ACC,P << PM Compare 32-bit value

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com Register Operations

119SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

Table 6-3. Register Operations (continued)
Mnemonic Description
CSB ACC Count sign bits
LSL ACC,1..16 Logical shift left 1 to 16 places
LSL ACC,T Logical shift left by T(3:0) = 0...15
LSRL ACC,T Logical shift right by T(4:0)
LSLL ACC,T Logical shift left by T(4:0)
MAXL ACC,loc32 Find the 32-bit maximum
MINL ACC,loc32 Find the 32-bit minimum
MOVL ACC,loc32 Load accumulator with 32 bits
MOVL loc32,ACC Store 32-bit accumulator
MOVL P,ACC Load P from the accumulator
MOVL ACC,P << PM Load the accumulator with shifted P
MOVL loc32,ACC,COND Store ACC conditionally
NORM ACC,XARn++/-- Normalize ACC and modify selected auxiliary register.
NORM ACC,*ind C2XLP compatible Normalize ACC operation
NEG ACC Negate ACC
NEGTC ACC If TC is equivalent to 1, negate ACC
NOT ACC Complement ACC
ROL ACC Rotate ACC left
ROR ACC Rotate ACC right
SAT ACC Saturate ACC based on OVC value
SFR ACC,1..16 Shift accumulator right by 1 to 16 places
SFR ACC,T Shift accumulator right by T(3:0) = 0...15
SUBBL ACC,loc32 Subtract 32-bit value plus inverse borrow
SUBCU ACC,loc16 Subtract conditional 16-bit value
SUBCUL ACC,loc32 Subtract conditional 32-bit value
SUBL ACC,loc32 Subtract 32-bit value
SUBL loc32,ACC Subtract 32-bit value
SUBL ACC,P << PM Subtract 32-bit value
SUBRL loc32,ACC Reverse-subtract specified location from ACC
SUBUL ACC,loc32 Subtract unsigned 32-bit value
TEST ACC Test for accumulator equal to zero
64-Bit ACC:P Register Operations
ASR64 ACC:P,#1..16 Arithmetic shift right of 64-bit value
ASR64 ACC:P,T Arithmetic shift right of 64-bit value by T(5:0)
CMP64 ACC:P Compare 64-bit value
LSL64 ACC:P,1..16 Logical shift left 1 to 16 places
LSL64 ACC:P,T 64-bit logical shift left by T(5:0)
LSR64 ACC:P,#1..16 64-bit logical shift right by 1 to 16 places
LSR64 ACC:P,T 64-bit logical shift right by T(5:0)
NEG64 ACC:P Negate ACC:P
SAT64 ACC:P Saturate ACC:P based on OVC value
P or XT Register Operations (P, PH, PL, XT, T, TL)
ADDUL P,loc32 Add 32-bit unsigned value to P
MAXCUL P,loc32 Conditionally find the unsigned maximum
MINCUL P,loc32 Conditionally find the unsigned minimum
MOV PH,loc16 Load the high half of the P register
MOV PL,loc16 Load the low half of the P register

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

Register Operations www.ti.com

120 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

Table 6-3. Register Operations (continued)
Mnemonic Description
MOV loc16,P Store lower half of shifted P register
MOV T,loc16 Load the upper half of the XT register
MOV loc16,T Store the T register
MOV TL,#0 Clear the lower half of the XT register
MOVA T,loc16 Load the T register and add the previous product
MOVAD T,loc16 Load T register
MOVDL XT,loc32 Store XT and load new XT
MOVH loc16,P Save the high word of the P register
MOVL P,loc32 Load the P register
MOVL loc32,P Store the P register
MOVL XT,loc32 Load the XT register
MOVL loc32,XT Store the XT register
MOVP T,loc16 Load the T register and store P in the accumulator
MOVS T,loc16 Load T and subtract P from the accumulator
MOVX TL,loc16 Load lower half of XT with sign extension
SUBUL P,loc32 Subtract unsigned 32-bit value
16x16 Multiply Operations
DMAC ACC:P,loc32,*XAR7/++ 16-bit dual multiply and accumulate
MAC P,loc16,0:pma Multiply and accumulate
MAC P,loc16,*XAR7/++ Multiply and Accumulate
MPY P,T,loc16 16 X 16 multiply
MPY P,loc16,#16bit 16 X 16-bit multiply
MPY ACC,T,loc16 16 X 16-bit multiply
MPY ACC,loc16,#16bit 16 X 16-bit multiply
MPYA P,loc16,#16bit 16 X 16-bit multiply and add previous product
MPYA P,T,loc16 16 X 16-bit multiply and add previous product
MPYB P,T,#8bit Multiply signed value by unsigned 8-bit constant
MPYS P,T,loc16 16 X 16-bit multiply and subtract
MPYB ACC,T,#8bit Multiply by 8-bit constant
MPYU ACC,T,loc16 16 X 16-bit unsigned multiply
MPYU P,T,loc16 Unsigned 16 X 16 multiply
MPYXU P,T,loc16 Multiply signed value by unsigned value
MPYXU ACC,T,loc16 Multiply signed value by unsigned value
SQRA loc16 Square value and add P to accumulator
SQRS loc16 Square value and subtract from accumulator
XMAC P,loc16,*(pma) C2xLP source-compatible multiply and accumulate
XMACD P,loc16,*(pma) C2xLP source-compatible multiply and accumulate with data move
32x32 Multiply Operations
IMACL P,loc32,*XAR7/++ Signed 32 X 32-bit multiply and accumulate (lower half)
IMPYAL P,XT,loc32 Signed 32-bit multiply (lower half) and add previous P
IMPYL P,XT,loc32 Signed 32 X 32-bit multiply (lower half)
IMPYL ACC,XT,loc32 Signed 32 X 32-bit multiply (lower half)
IMPYSL P,XT,loc32 Signed 32-bit multiply (lower half) and subtract P
IMPYXUL P,XT,loc32 Signed 32 X unsigned 32-bit multiply (lower half)
QMACL P,loc32,*XAR7/++ Signed 32 X 32-bit multiply and accumulate (upper half)
QMPYAL P,XT,loc32 Signed 32-bit multiply (upper half) and add previous P
QMPYL ACC,XT,loc32 Signed 32 X 32-bit multiply (upper half)

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com Register Operations

121SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

Table 6-3. Register Operations (continued)
Mnemonic Description
QMPYL P,XT,loc32 Signed 32 X 32-bit multiply (upper half)
QMPYSL P,XT,loc32 Signed 32-bit multiply (upper half) and subtract previous P
QMPYUL P,XT,loc32 Unsigned 32 X 32-bit multiply (upper half)
QMPYXUL P,XT,loc32 Signed 32 X unsigned 32-bit multiply (upper half)
Direct Memory Operations
ADD loc16,#16bitSigned Add constant to specified location
AND loc16,#16bitSigned Bitwise AND
CMP loc16,#16bitSigned Compare
DEC loc16 Decrement by 1
DMOV loc16 Data move contents of 16-bit location
INC loc16 Increment by 1
MOV *(0:16bit),loc16 Move value
MOV loc16,*(0:16bit) Move value
MOV loc16,#16bit Save 16-bit constant
MOV loc16,#0 Clear 16-bit location
MOVB loc16,#8bit,COND Store byte conditionally
OR loc16,#16bit Bitwise OR
TBIT loc16,#bit Test bit
TBIT loc16,T Test bit specified by T register
TCLR loc16,#bit Test and clear specified bit
TSET loc16,#bit Test and set specified bit
XOR loc16,#16bit Bitwise exclusive OR
IO Space Operations
IN loc16,*(PA) Input data from port
OUT *(PA),loc16 Output data to port
UOUT *(PA),loc16 Unprotected output data to I/O port
Program Space Operations
PREAD loc16,*XAR7 Read from program memory
PWRITE *XAR7,loc16 Write to program memory
XPREAD loc16,*AL C2xLP source-compatible program read
XPREAD loc16,*(pma) C2xLP source-compatible program read
XPWRITE *AL,loc16 C2xLP source-compatible program write
Branch/Call/Return Operations
B 16bitOff,COND Conditional branch
BANZ 16bitOff,ARn-- Branch if auxiliary register not equal to zero
BAR 16bOf,ARn,ARn,EQ/NEQ Branch on auxiliary register comparison
BF 16bitOff,COND Branch fast
FFC XAR7,22bitAddr Fast function call
IRET Interrupt return
LB 22bitAddr Long branch
LB *XAR7 Long indirect branch
LC 22bitAddr Long call immediate
LC *XAR7 Long indirect call
LCR 22bitAddr Long call using RPC
LCR *XARn Long indirect call using RPC
LOOPZ loc16,#16bit Loop while zero
LOOPNZ loc16,#16bit Loop while not zero

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

Register Operations www.ti.com

122 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

Table 6-3. Register Operations (continued)
Mnemonic Description
LRET Long return
LRETE Long return and enable interrupts
LRETR Long return using RPC
RPT #8bit/loc16 Repeat next instruction
SB 8bitOff,COND Short conditional branch
SBF 8bitOff,EQ/NEQ/TC/NTC Short fast conditional branch
XB pma C2XLP source-compatible branch
XB pma,COND C2XLP source-compatible conditional branch
XB pma,*,ARPn C2XLP source-compatible branch function call
XB *AL C2XLP source-compatible function call
XBANZ pma,*ind{,ARPn} C2XLP source-compatible branch if ARn is not zero
XCALL pma C2XLP source-compatible call
XCALL pma,COND C2XLP source-compatible conditional call
XCALL pma,*,ARPn C2XLP source-compatible call with ARP modification
XCALL *AL C2XLP source-compatible indirect call
XRET Alias for XRETC UNC
XRETC COND C2XLP source-compatible conditional return
Interrupt Register Operations
AND IER,#16bit Bitwise AND to disable specified CPU interrupts
AND IFR,#16bit Bitwise AND to clear pending CPU interrupts
IACK #16bit Interrupt acknowledge
INTR INT1/../INT14

NMI
EMUINT
DLOGINT
RTOSINT

Emulate hardware interrupts

MOV IER,loc16 Load the interrupt-enable register
MOV loc16,IER Store interrupt enable register
OR IER,#16bit Bitwise OR
OR IFR,#16bit Bitwise OR
TRAP #0..31 Software trap
Status Register Operations (ST0, ST1)
CLRC Mode Clear status bits
CLRC XF Clear the XF status bit and output signal
CLRC AMODE Clear the AMODE bit
C28ADDR Clear the AMODE status bit
CLRC Objmode Clear the Objmode bit
C27OBJ Clear the Objmode bit
CLRC M0M1MAP Clear the M0M1MAP bit
C27MAP Set the M0M1MAP bit
CLRC OVC Clear OVC bits
ZAP OVC Clear overflow counter
DINT Disable maskable interrupts (set INTM bit)
EINT Enable maskable interrupt (clear INTM bit)
MOV PM,AX Load product shift mode bits PM = AX(2:0)
MOV OVC,loc16 Load the overflow counter
MOVU OVC,loc16 Load overflow counter with unsigned value
MOV loc16,OVC Store the overflow counter
MOVU loc16,OVC Store the unsigned overflow counter

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com Register Operations

123SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

Table 6-3. Register Operations (continued)
Mnemonic Description
SETC Mode Set multiple status bits
SETC XF Set XF bit and output signal
SETC M0M1MAP Set the M0M1MAP bit
C28MAP Set M0M1MAP bit
SETC Objmode Set Objmode bit
C28OBJ Set the Objmode bit
SETC AMODE Set AMODE bit
LPADDR Alias for SETC AMODE
SPM PM Set product shift mode bits
Miscellaneous Operations
ABORTI Abort interrupt
ASP Align stack pointer
EALLOW Enable access to protected space
IDLE Put processor in IDLE mode
NASP Un-align stack pointer
NOP {*ind} No operation with optional indirect address modification
ZAPA Zero accumulator P register and OVC
EDIS Disable access to protected space
ESTOP0 Emulation Stop 0
ESTOP1 Emulation Stop 1

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

ABORTI — Abort Interrupt www.ti.com

124 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

ABORTI Abort Interrupt

Syntax Options ABORTI

Opcode 0000 0000 0000 0001

Objmode X

RPT –

CYC 2

Operands None

Description This instruction is available for emulation purposes. Generally, a program uses the IRET
instruction to return from an interrupt. The IRET instruction restores all of the values that
were saved to the stack during the automatic context save. In restoring status register
ST1 and the debug status register (DBGSTAT), IRET restores the debug context that
was present before the interrupt.

In some target applications, you might have interrupts that must not be returned from by
the IRET instruction. Not using IRET can cause a problem for the emulation logic,
because the emulation logic assumes that the original debug context will be restored.
The abort interrupt (ABORTI) instruction is provided as a means to indicate that the
debug context will not be restored and the debug logic needs to be reset to its default
state. As part of its operation, the ABORTI instruction:
• Sets the DBGM bit in ST1. This disables debug events.
• Modifies select bits in the DBGSTAT register. This effect is a resetting of the debug

context. If the CPU was in the debug-halt state before the interrupt occurred, the
CPU does not halt when the interrupt is aborted.

The ABORTI instruction does not modify the DBGIER, the IER, the INTM bit or any
analysis registers (for example, registers used for breakpoints, watch points, and data
logging).

Flags and Modes

Flags and Modes Description
DBGM The DBGM bit is set.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com ABS ACC — Absolute Value of Accumulator

125SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

ABS ACC Absolute Value of Accumulator

Syntax Options ABS ACC

Opcode 1111 1111 0101 0110

Objmode X

RPT –

CYC 1

Operands ACC – Accumulator register

Description The content of the ACC register is replaced with its absolute value:
if(ACC = 0x8000 0000)

V = 1;
If (OVM = 1)

ACC = 0x7FFF FFFF;
else

ACC = 0x8000 0000;
else

if(ACC < 0)
ACC = −ACC;

Flags and Modes

Flags and Modes Description
N After the operation, the N flag is set if bit 31 of the ACC is 1, else N is cleared.
Z After the operation, the Z flag is set if the ACC is zero, else Z is cleared.
C C is cleared by this operation.

V If (ACC = 0x8000 0000) at the start of the operation, this is considered an overflow
value and V is set. Otherwise, V is not affected.

OVM

If (ACC = 0x8000 0000) at the start of the operation, this is considered an overflow
value, and the ACC value after the operation depends on the state of OVM: If OVM is
cleared, ACC will be filled with 0x8000 0000. If OVM is set ACC will be saturated to
0x7FFF FFFF.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Take absolute value of VarA, make sure value is saturated:
MOVL ACC,@VarA ; Load ACC with contents of VarA
SETC OVM ; Turn overflow mode on
ABS ACC ; Absolute of ACC and saturate
MOVL @VarA,ACC ; Store result into VarA

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

ABSTC ACC — Absolute Value of Accumulator and Load TC www.ti.com

126 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

ABSTC ACC Absolute Value of Accumulator and Load TC

Syntax Options ABSTC ACC

Opcode 0101 0110 0101 1111

Objmode 1

RPT –

CYC 1

Operands ACC – Accumulator register

Description Replace the content of the ACC register with its absolute value and load the test control
(TC) bit with the sign bit XORed with the previous value of the test control bit:
if(ACC = 0x8000 0000)

{
If (OVM = 1)

ACC = 0x7FFF FFFF;
else

ACC = 0x8000 0000;
V = 1;
TC = TC XOR 1;
{

else
{
if(ACC < 0)

ACC = −ACC;
TC = TC XOR 1;

}
C = 0;

Flags and Modes

Flags and Modes Description
N After the operation, the N flag is set if bit 31 of the ACC is 1, else N is cleared.
Z After the operation, the Z flag is set if the ACC is zero, else Z is cleared.
C The C flag bit is cleared.

V If (ACC = 0x8000 0000) at the start of the operation, this is considered an overflow
value and V is set; otherwise, V is not affected.

TC If ACC < 0) at the start of the operation, then TC = TC XOR 1; otherwise, TC is not
affected.

OVM

If at the start of the operation, ACC = 0x8000 0000, then this is considered an overflow
value and the ACC value after the operation depends on OVM. If OVM is cleared and
TC == 1, ACC will be filled with 0x8000 0000. If OVM is set and TC = 1, ACC will be
saturated to 0x7FFF FFFF.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com ABSTC ACC — Absolute Value of Accumulator and Load TC

127SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Calculate signed: Quot16 = Num16/Den16, Rem16 = Num16%Den16
CLRC TC ; Clear TC flag, used as sign flag
MOV ACC,@Den16 << 16 ; AH = Den16, AL = 0
ABSTC ACC ; Take abs value, TC = sign ^ TC
MOV T,@AH ; Temp save Den16 in T register
MOV ACC,@Num16 << 16 ; AH = Num16, AL = 0
ABSTC ACC ; Take abs value, TC = sign ^ TC
MOVU ACC,@AH ; AH = 0, AL = Num16
RPT #15 ; Repeat operation 16 times
||SUBCU ACC,@T ; Conditional subtract with Den16
MOV @Rem16,AH ; Store remainder in Rem16
MOV ACC,@AL << 16 ; AH = Quot16, AL = 0
NEGTC ACC ; Negate if TC = 1
MOV @Quot16,AH ; Store quotient in Quot16

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

ADD ACC,#16bit<<#0..15 — Add Value to Accumulator www.ti.com

128 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

ADD ACC,#16bit<<#0..15 Add Value to Accumulator

Syntax Options ADD ACC,#16bit<<#0..15

Opcode 1111 1111 0001 SHFT
CCCC CCCC CCCC CCCC

Objmode X

RPT –

CYC 1

Operands ACC – Accumulator register

#16bit – 16-bit immediate constant value

#0..15 – Shift value (default is "<<#0" if no value specified)

Description Add the left shifted 16-bit immediate constant value to the ACC register. The shifted
value is sign extended if sign extension mode is turned on (SXM = 1) else the shifted
value is zero extended (SXM = 0). The lower bits of the shifted value are zero filled:
if(SXM = 1) // sign extension mode enabled

ACC = ACC + S:16bit << shift value;
else // sign extension mode disabled

ACC = ACC + 0:16bit << shift value;

Smart Encoding:

If #16bit is an 8-bit number and the shift is 0, then the assembler will encode this
instruction as ADDB ACC, #8bit to improve efficiency. To override this encoding, use the
ADDW ACC, #16bit instruction alias.

Flags and Modes

Flags and Modes Description
Z After the addition, the Z flag is set if the ACC value is zero, else the flag is cleared.
N After the addition, the N flag is set if bit 31 of the ACC is 1, else the flag is cleared.
C If the addition generates a carry, C is set; otherwise C is cleared.
V If an overflow occurs, V is set; otherwise V is not affected.

OVC

If (OVM = 0, disabled) then if the operation generates a positive overflow, then the
counter is incremented and if the operation generates a negative overflow, then the
counter is decremented. If (OVM = 1, enabled) then the counter is not affected by the
operation.

SXM If sign extension mode bit is set; then the 16-bit immediate constant will be sign-
extended before the addition. Else, the value will be zero extended.

OVM If overflow mode bit is set; then the ACC value will saturate maximum positive
(0x7FFFFFFF) or maximum negative (0x80000000) if the operation overflowed.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Calculate signed value: ACC = (VarB << 10) + (23 << 6);
SETC SXM ; Turn sign extension mode on
MOV ACC,@VarB << #10 ; Load ACC with VarB left shifted by 10
ADD ACC,#23 << #6 ; Add 23 left shifted by 6 to ACC

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com ADD ACC,loc16 <<T — Add Value to Accumulator

129SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

ADD ACC,loc16 <<T Add Value to Accumulator

Syntax Options ADD ACC,loc16 <<T

Opcode 0101 0110 0010 0011
0000 0000 LLLL LLLL

Objmode 1

RPT –

CYC N+1

Operands ACC – Accumulator register

loc16 – Addressing mode (see Chapter 5)

T – Upper 16 bits of the multiplicand register, XT(31:16)

Description Add to the ACC register the left-shifted contents of the 16-bit location pointed to by the
“loc16” addressing mode. The shift value is specified by the four least significant bits of
the T register, T(3:0) = shift value = 0..15. Higher order bits of T are ignored. The shifted
value is sign extended if sign extension mode is turned on (SXM = 1) else the shifted
value is zero extended (SXM = 0). The lower bits of the shifted value are zero filled:
if(SXM = 1) // sign extension mode enabled

ACC = ACC + S:[loc16] << T(3:0);
else // sign extension mode disabled

ACC = ACC + 0:[loc16] << T(3:0);

Flags and Modes

Flags and Modes Description
Z After the addition, the Z flag is set if the ACC value is zero, else Z is cleared.
N After the addition, the N flag is set if bit 31 of the ACC is 1, else N is cleared.
C If the addition generates a carry, C is set; otherwise C is cleared.
V If an overflow occurs, V is set; otherwise V is not affected.

OVC
If OVM = 0, disabled and the operation generates a positive overflow, then the counter
is incremented; if the operation generates a negative overflow, then the counter is
decremented. If OVM = 1, enabled, then the counter is not affected by the operation.

SXM If sign extension mode bit is set; then the 16-bit operand, addressed by the ”loc16”
field, will be sign extended before the addition. Else, the value will be zero extended.

OVM If overflow mode bit is set; then the ACC value will saturate maximum positive
(0x7FFFFFFF) or maximum negative (0x80000000) if the operation overflowed.

Repeat If this operation is repeated, then the instruction will be executed N+1 times. The state of
the Z, N, C flags will reflect the final result. The V flag will be set if an intermediate
overflow occurs. The OVC flag will count intermediate overflows, if overflow mode is
disabled.

Example ; Calculate signed value: ACC = (VarA << SB) + (VarB << SB)
SETC SXM ; Turn sign extension mode on
MOV T,@SA ; Load T with shift value in SA
MOV ACC,@VarA << T ; Load in ACC shifted contents of VarA
MOV T,@SB ; Load T with shift value in SB
ADD ACC,@VarB << T ; Add to ACC shifted contents of VarB

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

ADD ACC,loc16 << #0..16 — Add Value to Accumulator www.ti.com

130 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

ADD ACC,loc16 << #0..16 Add Value to Accumulator

Syntax Options

Syntax Options Opcode Objmode RPT CYC
ADD ACC,loc16<<#0 1000 0001 LLLL LLLL 1 Y N+1

ADD ACC,loc16 << #1..15 0101 0110 0000 0100
0000 SHFT LLLL LLLL

1 Y N+1

ADD ACC,loc16 << #16 0000 0101 LLLL LLLL X Y N+1

ADD ACC,loc16<<0...15 1010 SHFT LLLL LLLL 0 – N+1

Operands ACC – Accumulator register

loc16 – Addressing mode (see Chapter 5)

#0..16 – Shift value (default is "<<#0" if no value specified)

Description Add the left shifted 16-bit location pointed to by the ”loc16” addressing mode to the ACC
register. The shifted value is sign extended if sign extension mode is turned on (SXM =
1) else the shifted value is zero extended (SXM = 0). The lower bits of the shifted value
are zero-filled:
if(SXM = 1) // sign extension mode enabled

ACC = ACC + S:[loc16] << shift value;
else // sign extension mode disabled

ACC = ACC + 0:[loc16] << shift value;

Flags and Modes

Flags and Modes Description
Z After the addition, the Z flag is set if ACC is zero, else Z is cleared.
N After the addition, the N flag is set if bit 31 of the ACC is 1, else N is cleared.

C If the addition generates a carry, C is set; otherwise C is cleared.
Exception: If a shift of 16 is used, the ADD instruction can set C but not clear C.

V If an overflow occurs, V is set; otherwise V is not affected.

OVC

If (OVM = 0, disabled) then if the operation generates a positive overflow, then the
counter is incremented and if the operation generates a negative overflow, then the
counter is decremented. If (OVM = 1, enabled) then the counter is not affected by the
operation.

SXM If sign extension mode bit is set; then the 16-bit operand, addressed by the ”loc16”
field, will be sign extended before the addition. Else, the value will be zero extended.

OVM If overflow mode bit is set; then the ACC value will saturate maximum positive
(0x7FFFFFFF) or maximum negative (0x80000000) if the operation overflowed.

Repeat If the operation is repeatable, then the instruction will be executed N+1 times. The state
of the Z, N, C flags will reflect the final result. The V flag will be set if an intermediate
overflow occurs. The OVC flag will count intermediate overflows, if overflow mode is
disabled. If the operation is not repeatable, the instruction will execute only once.

Example ; Calculate signed value: ACC = VarA << 10 + VarB << 6;
SETC SXM ; Turn sign extension mode on
MOV ACC,@VarA << #10 ; Load ACC with VarA left shifted by 10
ADD ACC,@VarB << #6 ; Add VarB left shifted by 6 to ACC

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com ADD AX, loc16 — Add Value to AX

131SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

ADD AX, loc16 Add Value to AX

Syntax Options ADD AX, loc16

Opcode 1001 010A LLLL LLLL

Objmode X

RPT –

CYC 1

Operands AX – Accumulator high (AH) or accumulator low (AL) register

loc16 – Addressing mode (see Chapter 5)

Description Add the contents of the location pointed to by the “loc16” addressing mode to the
specified AX register (AH or AL) and store the result in the AX register.

Flags and Modes

Flags and Modes Description

N After the addition, AX is tested for a negative condition. If bit 15 of AX is 1, then the
negative flag bit is set, otherwise it is cleared.

Z After the addition, AX is tested for a zero condition. The zero flag bit is set if the
operation results in AX = 0; otherwise it is cleared.

C If the addition generates a carry, C is set; otherwise, C is cleared.

V

If an overflow occurs, V is set; otherwise V is not affected. Signed positive overflow
occurs if the result crosses the max positive value (0x7FFF) in the positive direction.
Signed negative overflow occurs if the result crosses the max negative value (0x8000)
in the negative direction.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Add the contents of VarA with VarB and store in VarC
MOV AL,@VarA ; Load AL with contents of VarA
ADD AL,@VarB ; Add to AL contents of VarB
MOV @VarC,AL ; Store result in VarC

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

ADD loc16, AX — Add AX to Specified Location www.ti.com

132 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

ADD loc16, AX Add AX to Specified Location

Syntax Options ADD loc16, AX

Opcode 0111 001A LLLL LLLL

Objmode X

RPT –

CYC 1

Operands loc16 – Addressing mode (see Chapter 5)

AX – Accumulator high (AH) or accumulator low (AL) register

Description Add the contents of the specified AX register (AH or AL) to the location pointed to by the
“loc16” addressing mode and store the results in location pointed to by “loc16”:
[loc16] = [loc16] + AX;

This is a read-modify-write operation.

Flags and Modes

Flags and Modes Description

N After the addition, [loc16] is tested for a negative condition. If bit 15 of [loc16] is 1, then
the negative flag bit is set, otherwise it is cleared.

Z After the addition, [loc16] is tested for a zero condition. The zero flag bit is set if the
operation generates [loc16] = 0; otherwise it is cleared

C If the addition generates a carry, C is set; otherwise C is cleared.

V

If an overflow occurs, V is set; otherwise V is not affected. Signed positive overflow
occurs if the result crosses the max positive value (0x7FFF) in the positive direction.
Signed negative overflow occurs if the result crosses the max negative value (0x8000)
in the negative direction.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Add the contents of VarA to index register AR0:
MOV AL,@VarA ; Load AL with contents of VarA
ADD @AR0,AL ; AR0 = AR0 + A
; Add the contents of VarB to VarC:
MOV AH,@VarB ; Load AH with contents of VarB
ADD @VarC,AH ; VarC = VarC + AH

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com ADD loc16,#16bitSigned — Add Constant to Specified Location

133SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

ADD loc16,#16bitSigned Add Constant to Specified Location

Syntax Options ADD loc16,#16bitSigned

Opcode 0000 1000 LLLL LLLL
CCCC CCCC CCCC CCCC

Objmode X

RPT –

CYC 1

Operands loc16 – Addressing mode (see Chapter 5)

#16bit-signed – 16-bit immediate signed constant value

Description Add the specified signed 16-bit immediate constant to the signed 16-bit content of the
location pointed to by the “loc16” addressing mode and store the 16-bit result in the
location pointed to by “loc16”:
[loc16] = [loc16] + 16bitSigned;

Smart Encoding:

If loc16 = AL or AH and #16bitSigned is an 8-bit number then the assembler will encode
this instruction as ADDB AX, #16bitSigned to improve efficiency. To override this
encoding, use the ADDW loc16, #16bitSigned instruction alias.

Flags and Modes

Flags and Modes Description
N After the addition, if bit 15 of [loc16] is 1, then the N bit is set; else N cleared.
Z After the addition, if [loc16] is zero, the Z is set, else Z is cleared.
C If the addition generates a carry, C is set; otherwise, C is cleared.
V If an overflow occurs, V is set; otherwise, V is cleared.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Calculate:
; VarA = VarA + 10
; VarB = VarB − 3
ADD @VarA,#10 ; VarA = VarA + 10
ADD @VarB,#−3 ; VarB = VarB − 3

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

ADDB ACC,#8bit — Add 8-bit Constant to Accumulator www.ti.com

134 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

ADDB ACC,#8bit Add 8-bit Constant to Accumulator

Syntax Options ADDB ACC,#8bit

Opcode 0000 1001 CCCC CCCC

Objmode X

RPT –

CYC 1

Operands ACC – Accumulator register

#8bit – 8-bit immediate unsigned constant value

Description Add an 8-bit, zero-extended constant to the ACC register:
ACC = ACC + 0:8bit;

Flags and Modes

Flags and Modes Description
Z After the addition, the Z flag is set if ACC is zero, else Z is cleared.
N After the addition, the N flag is set if bit 31 of the ACC is 1, else N is cleared.
C If the addition generates a carry, C is set; otherwise C is cleared.
V If an overflow occurs, V is set; otherwise V is not affected.

OVC

If (OVM = 0, disabled) then if the operation generates a positive overflow, then the
counter is incremented and if the operation generates a negative overflow, then the
counter is decremented. If (OVM = 1, enabled) then the counter is not affected by the
operation.

OVM If overflow mode bit is set; then the ACC value will saturate maximum positive
(0x7FFFFFFF) or maximum negative (0x80000000) if the operation overflowed.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Increment contents of 32-bit location VarA:
MOVL ACC,@VarA ; Load ACC with contents of VarA
ADDB ACC,#1 ; Add 1 to ACC
MOVL @VarA,ACC ; Store result back into VarA

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com ADDB AX, #8bitSigned — Add 8-bit Constant to AX

135SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

ADDB AX, #8bitSigned Add 8-bit Constant to AX

Syntax Options ADDB AX, #8bitSigned

Opcode 1001 110A CCCC CCCC

Objmode X

RPT –

CYC 1

Operands AX – Accumulator high (AH) or accumulator low (AL) register

#8bit-signed – 8-bit immediate signed 2s complement constant value (-128 to 127)

Description Add the sign extended 8-bit constant to the specified AX register (AH or AL) and store
the result in the AX register:
AX = AX + S:8bit;

Flags and Modes

Flags and Modes Description

N After the addition, AX is tested for a negative condition. If bit 15 of AX is 1, then the
negative flag bit is set; otherwise it is cleared.

Z After the addition, AX is tested for a zero condition. The zero flag bit is set if the
operation results in AX = 0, otherwise it is cleared.

C If the addition generates a carry, C is set; otherwise C is cleared.

V

If an overflow occurs, V is set; otherwise V is not affected. Signed positive overflow
occurs if the result crosses the max positive value (0x7FFF) in the positive direction.
Signed negative overflow occurs if the result crosses the max negative value (0x8000)
in the negative direction.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Add 2 to VarA and subtract 3 from VarB:

MOV AL,@VarA ; Load AL with contents of VarA
ADDB AL,#2 ; Add to AL the value 0x0002 (2)
MOV @VarA,AL ; Store result in VarA
MOV AL,@VarB ; Load AL with contents of VarB
ADDB AL,#−3 ; Add to AL the value 0xFFFD (−3)
MOV @VarB,AL ; Store result in VarB

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

ADDB SP, #7bit — Add 7-bit Constant to Stack Pointer www.ti.com

136 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

ADDB SP, #7bit Add 7-bit Constant to Stack Pointer

Syntax Options ADDB SP, #7bit

Opcode 1111 1110 0CCC CCCC

Objmode X

RPT –

CYC 1

Operands SP – Stack pointer

#7bit – 7-bit immediate unsigned constant value

Description Add a 7-bit unsigned constant to SP and store the result in SP:
SP = SP + 0:7bit;

Flags and Modes None

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example FuncA: ; Function with local variables on stack.
ADDB SP, #N ; Reserve N 16-bit words of space for

; local variables on stack:

.

.

.
SUBB SP, #N ; Deallocate reserved stack space.
LRETR ; Return from function.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com ADDB XARn, #7bit — Add 7-bit Constant to Auxiliary Register

137SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

ADDB XARn, #7bit Add 7-bit Constant to Auxiliary Register

Syntax Options ADDB XARn, #7bit

Opcode 1101 1nnn 0CCC CCCC

Objmode X

RPT –

CYC 1

Operands XARn – XAR0−XAR7, 32-bit auxiliary registers

Description Add a 7-bit unsigned constant to XARn and store the result in XARn:
XARn = XARn + 0:7bit;

Flags and Modes None

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example MOVL XAR1,#VarA ; Initialize XAR1 pointer with address
; of VarA

MOVL XAR2,*XAR1 ; Load XAR2 with contents of VarA
ADDB XAR2,#10h ; XAR2 = VarA + 0x10

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

ADDCL ACC,loc32 — Add 32-bit Value Plus Carry to Accumulator www.ti.com

138 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

ADDCL ACC,loc32 Add 32-bit Value Plus Carry to Accumulator

Syntax Options ADDCL ACC,loc32

Opcode 0101 0110 0100 0000
xxxx xxxx LLLL LLLL

Objmode 1

RPT –

CYC 1

Operands ACC – Accumulator register

loc32 – Addressing mode (see Chapter 5)

Description Add to the ACC register the 32-bit content of the location pointed to by the “loc32”
addressing mode:
ACC = ACC + [loc32] + C;

Flags and Modes

Flags and Modes Description
Z After the addition, the Z flag is set if the ACC is zero, else Z is cleared.
N After the addition, the N flag is set if bit 31 of the ACC is 1, else N is cleared.

C The state of the carry bit before execution is included in the addition. If the addition
generates a carry, C is set; otherwise C is cleared.

V If an overflow occurs, V is set; otherwise V is not affected.

OVC

If (OVM = 0, disabled) then if the operation generates a positive overflow, then the
counter is incremented and if the operation generates a negative overflow, then the
counter is decremented. If (OVM = 1, enabled) then the counter is not affected by the
operation.

OVM If overflow mode bit is set; then the ACC value will saturate maximum positive
(0x7FFFFFFF) or maximum negative (0x80000000) if the operation overflows.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Add two 64-bit values (VarA and VarB) and store result in VarC:
MOVL ACC,@VarA+0 ; Load ACC with contents of the low

; 32 bits of VarA
ADDUL ACC,@VarB+0 ; Add to ACC the contents of the low

; 32 bits of VarB
MOVL @VarC+0,ACC ; Store low 32-bit result into VarC
MOVL ACC,@VarA+2 ; Load ACC with contents of the high

; 32 bits of VarA
ADDCL ACC,@VarB+2 ; Add to ACC the contents of the high

; 32 bits of VarB with carry
MOVL @VarC+2,ACC ; Store high 32-bit result into VarC

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com ADDCU ACC,loc16 — Add Unsigned Value Plus Carry to Accumulator

139SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

ADDCU ACC,loc16 Add Unsigned Value Plus Carry to Accumulator

Syntax Options ADDCU ACC,loc16

Opcode 0000 1100 LLLL LLLL

Objmode X

RPT –

CYC 1

Operands ACC – Accumulator register

loc16 – Addressing mode (see Chapter 5)

Description Add the 16-bit contents of the location pointed to by the “loc16” addressing mode, zero
extended, plus the content of the carry flag bit to the ACC register:
ACC = ACC + 0:[loc16] + C;

Flags and Modes

Flags and Modes Description
Z After the addition, the Z flag is set if the ACC value is zero, else Z is cleared.
N After the addition, the N flag is set if bit 31 of the ACC is 1, else N is cleared.

C The state of the carry bit before execution is included in the addition. If the addition
generates a carry, C is set; otherwise C is cleared.

V If an overflow occurs, V is set; otherwise V is not affected.

OVC

If (OVM = 0, disabled) then if the operation generates a positive overflow, then the
counter is incremented and if the operation generates a negative overflow, then the
counter is decremented. If (OVM = 1, enabled) then the counter is not affected by the
operation.

OVM If overflow mode bit is set; then the ACC value will saturate maximum positive
(0x7FFFFFFF) or maximum negative (0x80000000) if the operation overflowed.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Add three 32-bit unsigned variables by 16-bit parts:
MOVU ACC,@VarAlow ; AH = 0, AL = VarAlow
ADD ACC,@VarAhigh << 16 ; AH = VarAhigh, AL = VarAlow
ADDU ACC,@VarBlow ; ACC = ACC + 0:VarBlow
ADD ACC,@VarBhigh << 16 ; ACC = ACC + VarBhigh << 16
ADDCU ACC,@VarClow ; ACC = ACC + VarClow + Carry
ADD ACC,@VarChigh << 16 ; ACC = ACC + VarChigh << 16

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

ADDL ACC,loc32 — Add 32-bit Value to Accumulator www.ti.com

140 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

ADDL ACC,loc32 Add 32-bit Value to Accumulator

Syntax Options ADDL ACC,loc32

Opcode 0000 0111 LLLL LLLL

Objmode X

RPT Y

CYC N+1

Operands ACC – Accumulator register

loc32 – Addressing mode (see Chapter 5)

Description Add to the ACC register the 32-bit content of the location pointed to by the “loc32”
addressing mode:
ACC = ACC + [loc32];

Flags and Modes

Flags and Modes Description
N After the addition, the N flag is set if bit 31 of the ACC is 1, else N is cleared.
Z After the addition, the Z flag is set if the ACC is zero, else Z is cleared.
C If the addition generates a carry, C is set; otherwise C is cleared.
V If an overflow occurs, V is set; otherwise V is not affected.

OVC

If (OVM = 0, disabled) then if the operation generates a positive overflow, then the
counter is incremented and if the operation generates a negative overflow, then the
counter is decremented. If (OVM = 1, enabled) then the counter is not affected by the
operation.

OVM If overflow mode bit is set; then the ACC value will saturate maximum positive
(0x7FFFFFFF) or maximum negative (0x80000000) if the operation overflows.

Repeat If this operation is repeated, then the instruction will be executed N+1 times. The state of
the Z, N, C flags will reflect the final result. The V flag will be set if an intermediate
overflow occurs. The OVC flag will count intermediate overflows, if overflow mode is
disabled.

Example ; Calculate the 32-bit value: VarC = VarA + VarB
MOVL ACC,@VarA ; Load ACC with contents of VarA
ADDL ACC,@VarB ; Add to ACC the contents of VarB
MOVL @VarC,ACC ; Store result into VarC

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com ADDL ACC,P << PM — Add Shifted P to Accumulator

141SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

ADDL ACC,P << PM Add Shifted P to Accumulator

Syntax Options ADDL ACC,P << PM

Opcode 0001 0000 1010 1100

Objmode X

RPT Y

CYC N+1

Note: This instruction is an alias for the ”MOVA T,loc16” operation with “loc16 = @T”
addressing mode.

Operands ACC – Accumulator register

P – Product register

<< PM – Product shift mode

Description Add to the ACC register the contents of the P register, shifted as specified by the
product shift mode (PM):
ACC = ACC + P << PM

Flags and Modes

Flags and Modes Description
Z After the addition, the N flag is set if bit 31 of the ACC is 1, else N is cleared.
N After the addition, the N flag is set if bit 31 of the ACC is 1, else N is cleared.
C If the addition generates a carry, C is set; otherwise C is cleared.
V If an overflow occurs, V is set; otherwise V is not affected.

OCV

If (OVM = 0, disabled) then if the operation generates a positive overflow, then the
counter is incremented and if the operation generates a negative overflow, then the
counter is decremented. If (OVM = 1, enabled) then the counter is not affected by the
operation.

OVM If overflow mode bit is set; then the ACC value will saturate maximum positive
(0x7FFFFFFF) or maximum negative (0x80000000) if the operation overflowed.

PM

The value in the PM bits sets the shift mode for the output operation from the product
register. If the product shift value is positive (logical left shift operation), then the low
bits are zero filled. If the product shift value is negative (arithmetic right shift operation),
the upper bits are sign extended.

Repeat If this operation is repeated, then the instruction will be executed N+1 times. The state of
the Z, N, C flags will reflect the final result. The V flag will be set if an intermediate
overflow occurs. The OVC flag will count intermediate overflows if overflow mode is
disabled.

Example ; Calculate: Y = ((M*X >> 4) + (B << 11)) >> 10
; Y, M, X, B are Q15 values
SPM −4 ; Set product shift to >> 4
SETC SXM ; Enable sign extension mode
MOV T,@M ; T = M
MPY P,T,@X ; P = M * X
MOV ACC,@B << 11 ; ACC = S:B << 11
ADDL ACC,P << PM ; ACC = (M*X >>4) + (S:B << 11)
MOVH @Y,ACC << 5 ; Store Q15 result into Y

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

ADDL loc32,ACC — Add Accumulator to Specified Location www.ti.com

142 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

ADDL loc32,ACC Add Accumulator to Specified Location

Syntax Options ADDL loc32,ACC

Opcode 0101 0110 0000 0001
0000 0000 LLLL LLLL

Objmode 1

RPT –

CYC 1

Operands loc32 – Addressing mode (see Chapter 5)

ACC – Accumulator register

Description Add to the ACC register the 32-bit content of the location pointed to by the “loc32”
addressing mode:
[loc32] = [loc32] + ACC;

This is a read-modify-write operation.

Flags and Modes

Flags and Modes Description
N After the addition, the N flag is set if bit 31 of the ACC is 1, else N is cleared.
Z After the addition, the Z flag is set if the ACC is zero, else Z is cleared.
C If the addition generates a carry, C is set; otherwise C is cleared.
V If an overflow occurs, V is set; otherwise V is not affected.

OCV

If (OVM = 0, disabled) then if the operation generates a positive overflow, then the
counter is incremented and if the operation generates a negative overflow, then the
counter is decremented. If (OVM = 1, enabled) then the counter is not affected by the
operation.

OVM If overflow mode bit is set, the ACC value will saturate maximum positive
(0x7FFFFFFF) or maximum negative (0x80000000) if the operation overflows.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Increment the 32-bit value VarA:
MOVB ACC,#1 ; Load ACC with 0x00000001
ADDL @VarA,ACC ; VarA = VarA + ACC

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com ADDU ACC,loc16 — Add Unsigned Value to Accumulator

143SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

ADDU ACC,loc16 Add Unsigned Value to Accumulator

Syntax Options ADDU ACC,loc16

Opcode 0000 1101 LLLL LLLL

Objmode X

RPT Y

CYC N+1

Operands ACC – Accumulator register

loc16 – Addressing mode (see Chapter 5)

Description Add the 16-bit contents of the location pointed to by the “loc16” addressing mode to the
ACC register. The addressed location is zero extended before the add:
ACC = ACC + 0:[loc16];

Flags and Modes

Flags and Modes Description
Z After the addition, the Z flag is set if ACC is zero, else Z is cleared.
N After the addition, the N flag is set if bit 31 of the ACC is 1, else N is cleared.
C If the addition generates a carry, C is set; otherwise C is cleared.
V If an overflow occurs, V is set; otherwise V is not affected.

OVC

If (OVM = 0, disabled) then if the operation generates a positive overflow, then the
counter is incremented and if the operation generates a negative overflow, then the
counter is decremented. If (OVM = 1, enabled) then the counter is not affected by the
operation.

OVM If overflow mode bit is set; then the ACC value will saturate maximum positive
(0x7FFFFFFF) or maximum negative (0x80000000) if the operation overflowed.

Repeat If this operation is repeated, then the instruction will be executed N+1 times. The state of
the Z, N, C flags will reflect the final result. The V flag will be set if an intermediate
overflow occurs. The OVC flag will count intermediate overflows, if overflow mode is
disabled.

Example ; Add three 32-bit unsigned variables by 16-bit parts:
MOVU ACC,@VarAlow ; AH = 0, AL = VarAlow
ADD ACC,@VarAhigh << 16 ; AH = VarAhigh, AL = VarAlow
ADDU ACC,@VarBlow ; ACC = ACC + 0:VarBlow
ADD ACC,@VarBhigh << 16 ; ACC = ACC + VarBhigh << 16
ADDCU ACC,@VarClow ; ACC = ACC + VarClow + Carry
ADD ACC,@VarChigh << 16 ; ACC = ACC + VarChigh << 16

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

ADDUL P,loc32 — Add 32-bit Unsigned Value to P www.ti.com

144 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

ADDUL P,loc32 Add 32-bit Unsigned Value to P

Syntax Options ADDUL P,loc32

Opcode 0101 0110 0101 0111
0000 0000 LLLL LLLL

Objmode 1

RPT –

CYC 1

Operands P – Product register

loc32 – Addressing mode (see Chapter 5)

Description Add to the P register the 32-bit content of the location pointed to by the “loc32”
addressing mode. The addition is treated as an unsigned ADD operation:
P = P + [loc32]; // unsigned add

Note: The difference between a signed and unsigned 32-bit add is in the treatment of the
overflow counter (OVC). For a signed ADD, the OVC counter monitors positive/negative
overflow. For an unsigned ADD, the OVC unsigned (OVCU) counter monitors the carry.

Flags and Modes

Flags and Modes Description
N After the addition, if bit 31 of the P register is 1, then set the N flag; otherwise clear N.

Z After the addition, if the value of the P register is 0, then set the Z flag; otherwise clear
Z.

C If the addition generates a carry, set C; otherwise C is cleared.
V If an overflow occurs, V is set; otherwise V is not affected.

OVCU The overflow counter is incremented when the addition operation generates an
unsigned carry. The OVM mode does not affect the OVCU counter.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Add 64-bit VarA + VarB and store result in VarC:
MOVL P,@VarA+0 ; Load P with low 32 bits of VarA MOVL
ACC,@VarA+2 ; Load ACC with high 32 bits of VarA
ADDUL P,@VarB+0 ; Add to P unsigned low 32 bits of VarB
ADDCL ACC,@VarB+2 ; Add to ACC with carry high 32 bits of VarB
MOVL @VarC+0,P ; Store low 32-bit result into VarC
MOVL @VarC+2,ACC ; Store high 32-bit result into VarC

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com ADDUL ACC, loc32 — Add 32-bit Unsigned Value to Accumulator

145SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

ADDUL ACC, loc32 Add 32-bit Unsigned Value to Accumulator

Syntax Options ADDUL ACC, loc32

Opcode 0101 0110 0101 0011
xxxx xxxx LLLL LLLL

Objmode 1

RPT Y

CYC N+1

Operands ACC – Accumulator register

loc32 – Addressing mode (see Chapter 5)

Description Add to the ACC register the unsigned 32-bit content of the location pointed to by the
“loc32” addressing mode:
ACC = ACC + [loc32]; // unsigned add

Note: The difference between a signed and unsigned 32-bit add is in the treatment of the
overflow counter (OVC). For a signed ADD, the OVC counter monitors positive/negative
overflow. For an unsigned ADD, the OVC unsigned (OVCU) counter monitors the carry.

Flags and Modes

Flags and Modes Description
Z After the addition, the Z flag is set if the ACC value is zero, else Z is cleared.
N After the addition, the N flag is set if bit 31 of the ACC is 1, else N is cleared.
C If the addition generates a carry, C is set; otherwise C is cleared.
V If an overflow occurs, V is set; otherwise V is not affected.

OVCU The overflow counter is incremented when the addition operation generates an
unsigned carry. The OVM mode does not affect the OVCU counter.

Repeat If this operation is repeated, then the instruction will be executed N+1 times. The state of
the Z, N, C flags will reflect the final result. The V flag will be set if an intermediate
overflow occurs. The OVCU will count intermediate carries.

Example ; Add two 64-bit values (VarA and VarB) and store result in VarC:
MOVL ACC,@VarA+0 ; Load ACC with contents of the low

; 32 bits of VarA
ADDUL ACC,@VarB+0 ; Add to ACC the contents of the low

; 32 bits of VarB
MOVL @VarC+0,ACC ; Store low 32-bit result into VarC
MOVL ACC,@VarA+2 ; Load ACC with contents of the high

; 32 bits of VarA
ADDCL ACC,@VarB+2 ; Add to ACC the contents of the high

; 32 bits of VarB with carry
MOVL @VarC+2,ACC ; Store high 32-bit result into VarC

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

ADRK #8bit — Add to Current Auxiliary Register www.ti.com

146 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

ADRK #8bit Add to Current Auxiliary Register

Syntax Options ADRK #8bit

Opcode 1111 1100 IIII IIII

Objmode X

RPT –

CYC 1

Operands #8bit – 8-bit immediate constant value

Description Add the 8-bit unsigned constant to the XARn register pointed to by ARP:
XAR(ARP) = XAR(ARP) + 0:8bit;

Flags and Modes

Flags and Modes Description

ARP The 3-bit ARP points to the current valid Auxiliary Register, XAR0 to XAR7. This
pointer determines which Auxiliary register is modified by the operation.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once

Example TableA: .word 0x1111
.word 0x2222
.word 0x3333
.word 0x4444

FuncA:
MOVL XAR1,#TableA ; Initialize XAR1 pointer
MOVZ AR2,*XAR1 ; Load AR2 with the 16-bit value

; pointed to by XAR1 (0x1111)
; Set ARP = 1

ADRK #2 ; Increment XAR1 by 2
MOVZ AR3,*XAR1 ; Load AR3 with the 16-bit value

; pointed to by XAR1 (0x3333)

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com AND ACC,#16bit << #0..16 — Description

147SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

AND ACC,#16bit << #0..16 Description

Syntax Options

Syntax Options Opcode Objmode RPT CYC
AND ACC, #16bit << #0..15 0011 1110 0000 SHFT

CCCC CCCC CCCC CCCC
1 - 1

AND ACC, #16bit << #16 0101 0110 0000 1000
CCCC CCCC CCCC CCCC

1 - 1

Operands ACC – Accumulator register

#16bit – 16-bit immediate constant value

#0..16 – Shift value (default is "<< #0" if no value specified)

Description Perform a bitwise AND operation on the ACC register with the given 16-bit unsigned
constant value left shifted as specified. The value is zero extended and lower order bits
are zero filled before the AND operation. The result is stored in the ACC register:
ACC = ACC AND (0:16bit << shift value);

Flags and Modes

Flags and Modes Description

N The load to ACC is tested for a negative condition. If bit 31 of ACC is 1, then the
negative flag bit is set; otherwise it is cleared.

Z The load to ACC is tested for a zero condition. The zero flag bit is set if the operation
generates ACC = 0; otherwise it is cleared.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Calculate the 32-bit value: VarA = VarA AND 0x0FFFF000
MOVL ACC,@VarA ; Load ACC with contents of VarA
AND ACC,#0xFFFF << 12 ; AND ACC with 0x0FFFF000
MOVL @VarA,ACC ; Store result in VarA

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

AND ACC, loc16 — Bitwise AND www.ti.com

148 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

AND ACC, loc16 Bitwise AND

Syntax Options AND ACC, loc16

Opcode 1000 1001 LLLL LLLL

Objmode 1

RPT Y

CYC N+1

Operands ACC – Accumulator register

loc16 – Addressing mode (see Chapter 5)

Description Perform a bitwise AND operation on the ACC register with the zero-extended content of
the location pointed to by the “loc16” address mode. The result is stored in the ACC
register:
ACC = ACC AND 0:[loc16];

Flags and Modes

Flags and Modes Description
N Clear flag.

Z The load to ACC is tested for a zero condition. The zero flag bit is set if the operation
generates ACC = 0; otherwise it is cleared.

Repeat This operation is repeatable. If the operation follows a RPT instruction, then the AND
instruction will be executed N+1 times. The state of the Z and N flags will reflect the final
result.

Example ; Calculate the 32-bit value: VarA = VarA AND 0:VarB
MOVL ACC,@VarA ; Load ACC with contents of VarA
AND ACC,@VarB ; AND ACC with contents of 0:VarB
MOVL @VarA,ACC ; Store result in VarA

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com AND AX, loc16, #16bit — Bitwise AND

149SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

AND AX, loc16, #16bit Bitwise AND

Syntax Options AND AX, loc16, #16bit

Opcode 1100 110A LLLL LLLL
CCCC CCCC CCCC CCCC

Objmode X

RPT –

CYC 1

Operands AX – Accumulator high (AH) or accumulator low (AL) register

loc16 – Addressing mode (see Chapter 5)

#16bit – 16-bit immediate constant value

Description Perform a bitwise AND operation on the 16-bit contents of the location pointed to by the
“loc16” addressing mode with the specified 16-bit immediate constant. The result is
stored in the specified AX register:
AX = [loc16] AND 16bit;

Flags and Modes

Flags and Modes Description

N The load to AX is tested for a negative condition. If bit 15 of AX is 1, then the negative
flag bit is set; otherwise it is cleared.

Z The load to AX is tested for a zero condition. The zero flag bit is set if the operation
generates AX = 0; otherwise it is cleared.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Branch if either of Bits 2 and 7 of VarA are non-zero:
AND AL,@VarA,#0x0084 ; AL = VarA AND 0x0084
SB Dest,NEQ ; Branch if result is non-zero
; Merge Bits 0,1,2 of VarA with Bits 8,9,10 of VarB and store in
; VarC in bit locations 0,1,2,3,4,5:
AND AL,@VarA,#0x0007 ; Keep bits 0,1,2 of VarA
AND AH,@VarB,#0x0700 ; Keep bits 8,9,10 of VarB
LSR AH,#5 ; Scale back bits 8,9,10 to bits 3,4,5
OR AL,@AH ; Merge bits
MOV @VarC,AL ; Store result in VarC

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

AND IER,#16bit — Bitwise AND to Disable Specified CPU Interrupts www.ti.com

150 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

AND IER,#16bit Bitwise AND to Disable Specified CPU Interrupts

Syntax Options AND IER,#16bit

Opcode 0111 0110 0010 0110
CCCC CCCC CCCC CCCC

Objmode X

RPT –

CYC 2

Operands IER – Interrupt enable register

#16bit – 16-bit immediate constant value (0x0000 to 0xFFFF)

Description Disable specific interrupts by performing a bitwise AND operation with the IER register
and the 16-bit immediate value. The result is stored in the IER register. Any changes
take effect before the next instruction is processed.
IER = IER AND #16bit;

Flags and Modes None

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Disable INT1 and INT6 only. Do not modify state of other
; interrupts enable:
AND IER,#0xFFDE ; Disable INT1 and INT6

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com AND IFR,#16bit — Bitwise AND to Clear Pending CPU Interrupts

151SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

AND IFR,#16bit Bitwise AND to Clear Pending CPU Interrupts

Syntax Options AND IFR,#16bit

Opcode 0111 0110 0010 1111
CCCC CCCC CCCC CCCC

Objmode X

RPT –

CYC 2

Operands IFR – Interrupt flag register

#16bit – 16-bit immediate constant value (0x0000 to 0xFFFF)

Description Clear specific pending interrupts by performing a bitwise AND operation with the IFR
register and the 16-bit immediate value. The result of the AND operation is stored in the
IFR register:
IFR = IFR AND #16bit;

Note: Interrupt hardware has priority over CPU instruction operation in cases where the
interrupt flag is being simultaneously modified by the hardware and the instruction.

Flags and Modes None

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Clear the contents of the IFR register. Disables all
; pending interrupts:
AND IFR,#0x0000 ; Clear IFR register

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

AND loc16, AX — Bitwise AND www.ti.com

152 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

AND loc16, AX Bitwise AND

Syntax Options AND loc16, AX

Opcode 1100 000A LLLL LLLL

Objmode X

RPT –

CYC 1

Operands loc16 – Addressing mode (see Chapter 5)

AX – Accumulator high (AH) or accumulator low (AL) register

Description Perform a bitwise AND operation on the contents of the location pointed to by the “loc16”
addressing mode with the specified AX register. The result is stored in location pointed
to by ”loc16”:
[loc16] = [loc16] AND AX;

This is a read-modify-write operation.

Flags and Modes

Flags and Modes Description

N The load to [loc16] is tested for a negative condition. If bit 15 of [loc16] is 1, then the
negative flag bit is set; otherwise it is cleared.

Z The load to [loc16] is tested for a zero condition. The zero flag bit is set if the operation
generates ([loc16] = 0); otherwise it is cleared.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; AND the contents of VarA with VarB and store in VarB:
MOV AL,@VarA ; Load AL with contents of VarA
AND @VarB,AL ; VarB = VarB AND AL

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com AND AX, loc16 — Bitwise AND

153SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

AND AX, loc16 Bitwise AND

Syntax Options AND AX, loc16

Opcode 1100 111A LLLL LLLL

Objmode X

RPT –

CYC 1

Operands AX – Accumulator high (AH) or accumulator low (AL) register

loc16 – Addressing mode (see Chapter 5)

Description Perform a bitwise AND operation on the contents of the specified AX register with the
16-bit contents of the location pointed to by the “loc16” addressing mode. The result is
stored in the AX register:
AX = AX AND 16bit;

Flags and Modes

Flags and Modes Description

N The load to AX is tested for a negative condition. If bit 15 of AX is 1, then the negative
flag bit is set; otherwise it is cleared.

Z The load to AX is tested for a zero condition. The zero flag bit is set if the operation
generates AX = 0; otherwise it is cleared.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; AND the contents of VarA and VarB and branch if non-zero:
MOV AL,@VarA ; Load AL with contents of VarA
AND AL,@VarB ; AND AL with contents of VarB
SB Dest,NEQ ; Branch if result is non-zero

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

AND loc16,#16bitSigned — Bitwise AND www.ti.com

154 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

AND loc16,#16bitSigned Bitwise AND

Syntax Options AND loc16,#16bitSigned

Opcode 0001 1000 LLLL LLLL
CCCC CCCC CCCC CCCC

Objmode X

RPT –

CYC 1

Operands loc16 – Addressing mode (see Chapter 5)

#16bitsigned – 16-bit signed immediate constant value

Description Perform a bitwise AND operation on the 16-bit content of the location pointed to by the
“loc16” addressing mode and the specified 16-bit immediate constant. The result is
stored in the location pointed to by “loc16”:
[loc16] = [loc16] AND 16bit;

Smart Encoding:

If loc16 = AH or AL and #16bitSigned is an 8-bit number, then the assembler will encode
this instruction as ANDB AX, #8-bit to improve efficiency. To override this, use the
ANDW AX, #16bitSigned instruction alias.

Flags and Modes

Flags and Modes Description
N After the operation if bit 15 of [loc16] 1, set N; otherwise, clear N.
Z After the operation if [loc16] is zero, set Z; otherwise, clear Z.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Clear Bits 3 and 11 of VarA:
; VarA = VarA AND #~(1 << 3 | 1 << 11)
AND @VarA,#~(1 << 3 | 1 ; Clear bits 3 and 11 of VarA << 11)

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com ANDB AX, #8bit — Bitwise AND 8-bit Value

155SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

ANDB AX, #8bit Bitwise AND 8-bit Value

Syntax Options ANDB AX, #8bit

Opcode 1001 000A CCCC CCCC

Objmode X

RPT –

CYC 1

Operands AX – Accumulator high (AH) or accumulator low (AL) register

#8bit – 8-bit immediate constant value

Description Perform a bitwise AND operation with the content of the specified AX register (AH or AL)
with the given 8-bit unsigned immediate constant zero extended. The result is stored in
AX:
AX = AX AND 0:8bit;

Flags and Modes

Flags and Modes Description

N The load to AX is tested for a negative condition. If bit 15 of AX is 1, then the negative
flag bit is set; otherwise it is cleared.

Z The load to AX is tested for a zero condition. The zero flag bit is set if the operation
generates AX = 0; otherwise it is cleared.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Add VarA to VarB, keep LSByte and store result in VarC:
MOV AL,@VarA ; Load AL with contents of VarA
ADD AL,@VarB ; Add to AL contents of VarB
ANDB AL,#0xFF ; AND contents of AL with 0x00FF
MOV @VarC,AL ; Store result in VarC

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

ASP — Align Stack Pointer www.ti.com

156 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

ASP Align Stack Pointer

Syntax Options ASP

Opcode 0111 0110 0001 1011

Objmode X

RPT –

CYC 1

Operands None

Description Ensure that the stack pointer (SP) is aligned to an even address. If the least significant
bit of SP is 1, SP points to an odd address and must be moved by incrementing SP by
1. The SPA bit is set as a record of this alignment. If instead the ASP instruction finds
that the SP already points to an even address, SP is left unchanged and the SPA bit is
cleared to indicate that no alignment has taken place. In either case, the change to the
SPA bit is made in the decode 2 phase of the pipeline.
if(SP = odd)

SP = SP + 1;
SPA = 1;else
SPA = 0;

To undo a previous alignment by the ASP instruction, use the NASP instruction.

Flags and Modes

Flags and Modes Description

SPA If SP holds an odd address before the operation, SPA is set; otherwise, SPA is
cleared.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Alignment of stack pointer in interrupt service routine:
; Vector table:
INTx: .long INTxService ; INTx interrupt vector
.
.

INTxService:
ASP ; Align stack pointer

.

.

.
NASP ; Re-align stack pointer
IRET ; Return from interrupt.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

AX Last bit out

C

SIGN Right shift

(Immediate value)

Discard other bits

AX

www.ti.com ASR AX,#1...16 — Arithmetic Shift Right

157SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

ASR AX,#1...16 Arithmetic Shift Right

Syntax Options ASR AX,#1...16

Opcode 1111 1111 101A SHFT

Objmode X

RPT –

CYC 1

Operands AX – Accumulator high (AH) or accumulator low (AL) register

#1-16 – Shift value

Description Perform an arithmetic right shift on the content of the specified AX register (AH or AL) by
the amount given in the “shift value” field. During the shift, the value is sign extended
and the last bit to be shifted out of the AX register is stored in the carry status flag bit:

Flags and Modes

Flags and Modes Description
N After the shift, if bit 15 of AX is 1 then the negative flag bit is set; otherwise it is cleared.
Z After the shift, if AX is 0, then the Z bit is set; otherwise it is cleared.
C The last bit to be shifted out of AH or AL is stored in C.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Calculate signed value: VarC = (VarA + VarB) >> 2
MOV AL,@VarA ; Load AL with contents of VarA
ADD AL,@VarB ; Add to AL contents of VarB
ASR AL,#2 ; Scale result by 2
MOV @VarC,AL ; Store result in VarC

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

AX Last bit out or cleared

C

SIGN Right shift

(Contents of T [3:0])

Discard other bits

AX

ASR AX,T — Arithmetic Shift Right www.ti.com

158 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

ASR AX,T Arithmetic Shift Right

Syntax Options ASR AX,T

Opcode 1111 1111 0110 010A

Objmode X

RPT –

CYC 1

Operands AX – Accumulator high (AH) or accumulator low (AL) register

T – Upper 16 bits of the multiplicand (XT) register

Description Perform an arithmetic shift right on the content of the specified AX register as specified
by the four least significant bits of the T register, T(3:0) = shift value = 0…15. The
contents of higher order bits are ignored. During the shift, the value is sign extended. If
the T(3:0) register bits specify a shift of 0, then C is cleared; otherwise, C is filled with
the last bit to be shifted out of AX:

Flags and Modes

Flags and Modes Description

N
After the shift, if bit 15 of AX is 1 then the negative flag bit is set; otherwise it is cleared.
Even if the T(3:0) register bits specify a shift of 0, the value of AH or AL is still tested
for the negative condition and N is affected.

Z
After the shift, if AX is 0, then the Z bit is set, otherwise it is cleared. Even if the T(3:0)
register bits specify a shift of 0, the value of AH or AL is still tested for the zero
condition and Z is affected.

C If T(3:0) specifies a shift of 0, then C is cleared; otherwise, C is filled with the last bit to
be shifted out of AH or AL.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Calculate signed value: VarC = VarA >> VarB;
MOV T,@VarB ; Load T with contents of VarB
MOV AL,@VarA ; Load AL with contents of VarA
ASR AL,T ; Scale AL by value in T bits 0 to 3
MOV @VarC,AL ; Store result in VarC

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

ACC:P Last bit out

C

SIGN Right shift

(Immediate value)

Discard other bits

ACC:P

www.ti.com ASR64 ACC:P,#1..16 — Arithmetic Shift Right of 64-bit Value

159SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

ASR64 ACC:P,#1..16 Arithmetic Shift Right of 64-bit Value

Syntax Options ASR64 ACC:P,#1..16

Opcode 0101 0110 1000 SHFT

Objmode 1

RPT –

CYC 1

Operands ACC:P – Accumulator register (ACC) and product register (P)

#1..16 – Shift value

Description Arithmetic shift right the 64-bit combined value of the ACC:P registers by the amount
specified in the shift value field. As the value is shifted, the most significant bits are sign
extended and the last bit shifted out is stored in the carry bit flag:

Flags and Modes

Flags and Modes Description

N After the shift, if bit 31 of the ACC register is 1 then ACC:P is negative and the N bit is
set; otherwise N is cleared.

Z After the shift, the Z flag is set if the combined 64-bit value of the ACC:P is zero;
otherwise, Z is cleared.

C The last bit shifted out of the combined 64-bit value is loaded into the C bit.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Arithmetic shift right the 64-bit Var64 by 10:
MOVL ACC,@Var64+2 ; Load ACC with high 32 bits of Var64
MOVL P,@Var64+0 ; Load P with low 32 bits of Var64
ASR64 ACC:P,#10 ; Arithmetic shift right ACC:P by 10
MOVL @Var64+2,ACC ; Store high 32-bit result into Var64
MOVL @Var64+0,P ; Store low 32-bit result into Var64

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

ACC:P Last bit out or cleared

C

SIGN Right shift

(Contents of T [5:0])

Discard other bits

ACC:P

ASR64 ACC:P,T — Arithmetic Shift Right of 64-bit Value www.ti.com

160 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

ASR64 ACC:P,T Arithmetic Shift Right of 64-bit Value

Syntax Options ASR64 ACC:P,T

Opcode 0101 0110 0010 1100

Objmode 1

RPT –

CYC 1

Operands ACC:P – Accumulator register (ACC) and product register (P)

T – Upper 16 bits of the multiplicand register (XT)

Description Arithmetic shift right the 64-bit combined value of the ACC:P registers by the amount
specified in six least significant bits of the T register, T(5:0) = 0…63. Higher order bits
are ignored. As the value is shifted, the most significant bits are sign extended. If T
specifies a shift of 0, then C is cleared; otherwise, C is filled with the last bit to be shifted
out of the ACC:P registers:

Flags and Modes

Flags and Modes Description

N After the shift, if bit 31 of the ACC register is 1 then ACC:P is negative and the N bit is
set; otherwise N is cleared.

Z After the shift, the Z flag is set if the combined 64-bit value of the ACC:P is zero;
otherwise, Z is cleared.

C If (T[5:0] = 0) clear C; otherwise, the last bit shifted out of the combined 64-bit value is
loaded into the C bit.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Arithmetic shift right the 64-bit Var64 by contents of Var16:
MOVL ACC,@Var64+2 ; Load ACC with high 32 bits of Var64
MOVL P,@Var64+0 ; Load P with low 32 bits of Var64
MOV T,@Var16 ; Load T with shift value from Var16
ASR64 ACC:P,T ; Arithmetic shift right ACC:P by T(5:0)
MOVL @Var64+2,ACC ; Store high 32-bit result into Var64
MOVL @Var64+0,P ; Store low 32-bit result into Var64

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

ACC Last bit out or cleared

C

SIGN Right shift

(Contents of T [4:0])

Discard other bits

ACC

www.ti.com ASRL ACC,T — Arithmetic Shift Right of Accumulator

161SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

ASRL ACC,T Arithmetic Shift Right of Accumulator

Syntax Options ASRL ACC,T

Opcode 0101 0110 0001 0000

Objmode 1

RPT –

CYC 1

Operands ACC – Accumulator register

T – Upper 16 bits of the multiplicand (XT) register

Description Perform an arithmetic shift right on the content of the ACC register as specified by the
five least significant bits of the T register, T(4:0) = 0…31. Higher order bits are ignored.
During the shift, the value is sign extended. If T specifies a shift of 0, then C is cleared;
otherwise, C is filled with the last bit to be shifted out of the ACC register:

Flags and Modes

Flags and Modes Description

Z
After the shift, the Z flag is set if the ACC value is zero, else Z is cleared. Even if the T
register specifies a shift of 0, the content of the ACC register is still tested for the zero
condition and Z is affected.

N
After the shift, the N flag is set if bit 31 of the ACC is 1, else N is cleared. Even if the T
register specifies a shift of 0, the content of the ACC register is still tested for the
negative condition and N is affected.

C If (T(4:0) = 0) then C is cleared; otherwise, the last bit shifted out is loaded into the C
flag bit.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Arithmetic shift right contents of VarA by VarB:
MOVL ACC,@VarA ; ACC = VarA
MOV T,@VarB ; T = VarB (shift value)
ASRL ACC,T ; Arithmetic shift right ACC by T(4:0)
MOVL @VarA,ACC ; Store result into VarA

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

B 16bitOffset,COND — Branch www.ti.com

162 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

B 16bitOffset,COND Branch

Syntax Options B 16bitOffset,COND

Opcode 1111 1111 1110 COND
CCCC CCCC CCCC CCCC

Objmode X

RPT –

CYC 7/4

Operands 16bit-offset – 16-bit signed immediate constant offset value (−32768 to +32767 range)

COND – Conditional codes:

COND Syntax Description Flags Tested
0000 NEQ Not Equal To Z = 0
0001 EQ Equal To Z = 1
0010 GT Greater Than Z = 0 AND N = 0
0011 GEQ Greater Than or Equal To N = 0
0100 LT Less Than N = 1
0101 LEQ Less Than or Equal To Z = 1 OR N = 1
0110 HI Higher C = 1 AND Z = 0
0111 HIS, C Higher or Same, Carry Set C = 1
1000 LO, NC Lower, Carry Clear C = 0
1001 LOS Lower or Same C = 0 OR Z = 1
1010 NOV No Overflow V = 0
1011 OV Overflow V = 1
1100 NTC Test Bit Not Set TC = 0
1101 TC Test Bit Set TC = 1
1110 NBIO BIO Input Equal To Zero BIO = 0
1111 UNC Unconditional –

Description Conditional branch. If the specified condition is true, then branch by adding the signed
16-bit constant value to the current PC value; otherwise continue execution without
branching:
If (COND = true) PC = PC + signed 16-bit offset;
If (COND = false) PC = PC + 2;

Note: If (COND = true) then the instruction takes 7 cycles. If (COND = false) then the
instruction takes 4 cycles.

Flags and Modes

Flags and Modes Description
V If the V flag is tested by the condition, then V is cleared.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com BANZ 16bitOffset,ARn− − — Branch if Auxiliary Register Not Equal to Zero

163SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

BANZ 16bitOffset,ARn− − Branch if Auxiliary Register Not Equal to Zero

Syntax Options BANZ 16bitOffset,ARn− −

Opcode 0000 0000 0000 1nnn
CCCC CCCC CCCC CCCC

Objmode X

RPT –

CYC 4/2

Operands 16bit-offset – 16-bit signed immediate constant value

ARn – Lower 16 bits of auxiliary registers XAR0 to XAR7

Description If the 16-bit content of the specified auxiliary register is not equal to 0, then the 16-bit
sign offset is added to the PC value. This forces program control to the new address (PC
+ 16bitOffset). The 16-bit offset is sign extended to 22 bits before the addition. Then, the
content of the auxiliary register is decremented by 1. The upper 16 bits of the auxiliary
register (ARnH) is not used in the comparison and is not affected by the post decrement:
if(ARn != 0)

PC = PC + signed 16-bit offset;
ARn = ARn - 1;
ARnH = unchanged;

Note: If branch is taken, then the instruction takes 4 cycles If branch is not taken, then
the instruction takes 2 cycles

Flags and Modes None

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Copy the contents of Array1 to Array2:
; int32 Array1[N];
; int32 Array2[N];
; for(i=0; i < N; i++)
; Array2[i] = Array1[i];

MOVL XAR2,#Array1 ; XAR2 = pointer to Array1
MOVL XAR3,#Array2 ; XAR3 = pointer to Array2
MOV @AR0,#(N−1) ; Repeat loop N times

Loop:
MOVL ACC,*XAR2++ ; ACC = Array1[i]
MOVL *XAR3++,ACC ; Array2[i] = ACC
BANZ Loop,AR0−− ; Loop if AR0 != 0, AR0−−

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

BAR 16bitOffset,ARn,ARm,EQ/NEQ — Branch on Auxiliary Register Comparison www.ti.com

164 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

BAR 16bitOffset,ARn,ARm,EQ/NEQ Branch on Auxiliary Register Comparison

Syntax Options

Syntax Options Opcode Objmode RPT CYC
BAR 16bitOffset,ARn,ARm,EQ 1000 1111 10nn nmmm

CCCC CCCC CCCC CCCC
1 – 4/2

BAR 16bitOffset,ARn,ARm,NEQ 1000 1111 11nn nmmm
CCCC CCCC CCCC CCCC

1 – 4/2

Operands 16bit-offset – 16-bit signed immediate constant offset value (−32768 to +32767 range)

ARn – Lower 16 bits of auxiliary registers XAR0 to XAR7

ARm – Lower 16 bits of auxiliary registers XAR0 to XAR7

Syntax Description Condition Tested
NEQ Not Equal To ARn != ARm
EQ Equal To ARn = ARm

Description Compare the 16-bit contents of the two auxiliary registers ARn and ARm registers and
branch if the specified condition is true; otherwise continue execution without branching:
If (tested condition = true) PC = PC + signed 16-bit offset;
If (tested condition = false) PC = PC + 2;

Note: If (tested condition = true) then the instruction takes 4 cycles. If (tested condition =
false) then the instruction takes 2 cycles.

Flags and Modes None

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; String compare:
MOVL XAR2,#StringA ; XAR2 points to StringA
MOVL XAR3,#StringB ; XAR3 points to StringB
MOV @AR4,#0 ; AR4 = 0

Loop:
MOVZ AR0,*XAR2++ ; AR0 = StringA[i]
MOVZ AR1,*XAR3++ ; AR1 = StringB[i], i++
BAR Exit,AR0,AR4,EQ ; Exit if StringA[i] = 0
BAR Loop,AR0,AR1,EQ ; Loop if StringA[i] = StringB[i]

NotEqual: ; StringA and B not the same
.
Exit: ; StringA and B the same

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com BF 16bitOffset,COND — Branch Fast

165SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

BF 16bitOffset,COND Branch Fast

Syntax Options BF 16bitOffset,COND

Opcode 0101 0110 1100 COND
CCCC CCCC CCCC CCCC

Objmode 1

RPT –

CYC 4/4

Operands 16bit-offset – 16-bit signed immediate constant offset value (−32768 to +32767 range)

COND – Conditional codes:

COND Syntax Description Flags Tested
0000 NEQ Not Equal To Z = 0
0001 EQ Equal To Z = 1
0010 GT Greater Than Z = 0 AND N = 0
0011 GEQ Greater Than or Equal To N = 0
0100 LT Less Than N = 1
0101 LEQ Less Than or Equal To Z = 1 OR N = 1
0110 HI Higher C = 1 AND Z = 0
0111 HIS, C Higher or Same, Carry Set C = 1
1000 LO, NC Lower, Carry Clear C = 0
1001 LOS Lower or Same C = 0 OR Z = 1
1010 NOV No Overflow V = 0
1011 OV Overflow V = 1
1100 NTC Test Bit Not Set TC = 0
1101 TC Test Bit Set TC = 1
1110 NBIO BIO Input Equal To Zero BIO = 0
1111 UNC Unconditional –

Description Fast conditional branch. If the specified condition is true, then branch by adding the
signed 16-bit constant value to the current PC value; otherwise continue execution
without branching:
If (COND = true) PC = PC + signed 16-bit offset;
If (COND = false) PC = PC + 2;

Note: The branch fast (BF) instruction takes advantage of dual prefetch queue on the
C28x core that reduces the cycles for a taken branch from 7 to 4:
If (COND = true) then the instruction takes 4 cycles.
If (COND = false) then the instruction takes 4 cycles.

Flags and Modes

Flags and Modes Description
V If the V flag is tested by the condition, then V is cleared.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

M0 M0

M1 M1

C28 at Reset
(M0M1MAP = 1)

Program Space Data Space
00 0000

C27x Compatible Mapping
(M0M1MAP = 0)

Program Space Data Space

M1 M0

00 0000

00 0400

M0

00 07FF

00 0400

M1

00 07FF

Note: The pipeline is flushed when this instruction is executed.

C27MAP — Set the M0M1MAP Bit www.ti.com

166 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

C27MAP Set the M0M1MAP Bit

Syntax Options C27MAP

Opcode 0101 0110 0011 1111

Objmode X

RPT –

CYC 5

Note: This instruction is an alias for the “CLRC M0M1MAP” operation.

Operands None

Description Clear the M0M1MAP status bit, configuring the mapping of the M0 and M1 memory
blocks for C27x object-compatible operation. The memory blocks are mapped as follows:

Note: The pipeline is flushed when this instruction is executed.

Flags and Modes

Flags and Modes Description
M0M1MAP The M0M1MAP bit is cleared.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Set the device mode from reset to C27x object-compatible mode: Reset:
C27OBJ ; Enable C27x Object Mode
C28ADDR ; Enable C27x/C28x Address Mode
.c28_amode ; Tell assembler we are using C27x/C28x addressing
C27MAP ; Enable C27x Mapping Of M0 and M1 blocks

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com C27OBJ — Clear the Objmode Bit

167SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

C27OBJ Clear the Objmode Bit

Syntax Options C27OBJ

Opcode 0101 0110 0011 0110

Objmode X

RPT –

CYC 5

Note: This instruction is an alias for the “CLRC Objmode” operation.

Operands None

Description Clear the Objmode status bit in Status Register ST1, configuring the device to execute
C27x object code. This is the default mode of the processor after reset.

Note: The pipeline is flushed when this instruction is executed.

Flags and Modes Clear the Objmode bit.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Set the device mode from reset to C27x:
Reset:
C27OBJ ; Enable C27x Object Mode
C28ADDR ; Enable C27x/C28x Address Mode
.c28_amode ; Tell assembler we are in C27x/C28x addr mode
C27MAP ; Enable C27x Mapping Of M0 and M1 blocks

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

C28ADDR — Clear the AMODE Status Bit www.ti.com

168 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

C28ADDR Clear the AMODE Status Bit

Syntax Options C28ADDR

Opcode 0101 0110 0001 0110

Objmode X

RPT –

CYC 1

Note: This instruction is an alias for the “CLRC AMODE” operation.

Operands None

Description Clear the AMODE status bit in Status Register ST1, putting the device in C27x/C28x
addressing mode (see Chapter 5).

Note: This instruction does not flush the pipeline.

Flags and Modes

Flags and Modes Description
AMODE The AMODE bit is cleared.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Execute the operation VarC = VarA + VarB written in
; C2xLP syntax:
LPADDR ; Full C2xLP address compatible mode
.lp_amode ; Tell assembler we are in C2xLP mode
LDP #VarA ; Initialize DP (low 64K only)
LACL VarA ; ACC = VarA (ACC high = 0)
ADDS VarB ; ACC = ACC + VarB (unsigned)
SACL VarC ; Store result into VarC
C28ADDR ; Return to C28x address mode
.c28_amode ; Tell assembler we are in C28x mode

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

M0 M0

M1 M1

C28 at Reset
(M0M1MAP = 1)

Program Space Data Space
00 0000

C27x Compatible Mapping
(M0M1MAP = 0)

Program Space Data Space

M1 M0

00 0000

00 0400

M0

00 07FF

00 0400

M1

00 07FF

Note: The pipeline is flushed when this instruction is executed.

www.ti.com C28MAP — Set the M0M1MAP Bit

169SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

C28MAP Set the M0M1MAP Bit

Syntax Options C28MAP

Opcode 0101 0110 0001 1010

Objmode X

RPT –

CYC 5

Note: This instruction is an alias for the “SETC M0M1MAP” instruction.

Operands None

Description Set the M0M1MAP status bit in Status register ST1, configuring the mapping of the M0
and M1 memory blocks for C28x operation. The memory blocks are mapped as follows:

Note: The pipeline is flushed when this instruction is executed.

Flags and Modes

Flags and Modes Description
M0M1MAP The M0M1MAP bit is set.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Set the device mode from reset to C28x mode: Reset:
C28OBJ ; Enable C28x Object Mode
C28ADDR ; Enable C28x Address Mode
.c28_amode ; Tell assembler we are in C28x address mode
C28MAP ; Enable C28x Mapping Of M0 and M1 blocks

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

C28OBJ — Set the Objmode Bit www.ti.com

170 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

C28OBJ Set the Objmode Bit

Syntax Options C28OBJ

Opcode 0101 0110 0001 1111

Objmode X

RPT –

CYC 5

Note: This instruction is an alias for the “SETC Objmode” instruction.

Operands None

Description Set the Objmode status bit, putting the device in C28x object mode (supports C2xLP
source).

Flags and Modes

Flags and Modes Description
Objmode Set the Objmode bit.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Set the device mode from reset to C28x: Reset:
C28OBJ ; Enable C28x Object Mode
C28ADDR ; Enable C27x/C28x Address Mode
.c28_amode ; Tell assembler we are in C27x/C28x address mode
C28MAP ; Enable C28x Mapping Of M0 and M1 blocks

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com CLRC AMODE — Clear the AMODE Bit

171SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

CLRC AMODE Clear the AMODE Bit

Syntax Options CLRC AMODE

Opcode 0101 0110 0001 0110

Objmode X

RPT –

CYC 1

Operands AMODE – Status bit

Description Clear the AMODE status bit in Status Register ST1, enabling C27x/C28x addressing.

Note: This instruction does not flush the pipeline.

Flags and Modes

Flags and Modes Description
AMODE The AMODE bit is cleared.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Execute the operation VarC = VarA + VarB written in C2xLP
; syntax:
SETC AMODE ; Full C2xLP address-compatible mode
.lp_amode ; Tell assembler we are in C2xLP mode
LDP #VarA ; Initialize DP (low 64K only)
LACL VarA ; ACC = VarA (ACC high = 0)
ADDS VarB ; ACC = ACC + VarB (unsigned)
SACL VarC ; Store result into VarC
CLRC AMODE ; Return to C28x address mode
.c28_amode ; Tell assembler we are in C28x mode

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

M0 M0

M1 M1

C28 at Reset
(M0M1MAP = 1)

Program Space Data Space
00 0000

C27x Compatible Mapping
(M0M1MAP = 0)

Program Space Data Space

M1 M0

00 0000

00 0400

M0

00 07FF

00 0400

M1

00 07FF

Note: The pipeline is flushed when this instruction is executed.

CLRC M0M1MAP — Clear the M0M1MAP Bit www.ti.com

172 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

CLRC M0M1MAP Clear the M0M1MAP Bit

Syntax Options CLRC M0M1MAP

Opcode 0101 0110 0011 1111

Objmode X

RPT –

CYC 5

Operands M0M1MAP – Status bit

Description Clear the M0M1MAP status bit in Status Register ST1, configuring the mapping of the
M0 and M1 memory blocks for C27x operation. The memory blocks are mapped as
follows:

Note: The pipeline is flushed when this instruction is executed. This bit is provided for
compatibility for users migrating from C27x. The M0M1MAP bit should always remain set
to 1 for users operating in C28x mode and C2xLP source-compatible mode.

Flags and Modes

Flags and Modes Description
M0M1MAP The M0M1MAP bit is cleared.

Example ; Set the device mode from reset to C27x object-compatible mode:
Reset:

CLRC Objmode ; Enable C27x Object Mode
CLRC AMODE ; Enable C27x/C28x Address Mode
.c28_amode ; Tell assembler we are in C27x/C28x addr mode
CLRC M0M1MAP ; Enable C27x Mapping Of M0 and M1 blocks

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com CLRC Objmode — Clear the Objmode Bit

173SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

CLRC Objmode Clear the Objmode Bit

Syntax Options CLRC Objmode

Opcode 0101 0110 0011 0110

Objmode X

RPT –

CYC 5

Operands Objmode – Status bit

Description Clear the Objmode status bit, enabling the device to execute C27x object code.

Note: The pipeline is flushed when this instruction is executed.

Flags and Modes

Table 6-4. Flags and Modes

Flags and Modes Description
Objmode The Objmode bit is cleared.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Set the device mode from reset to C27x object-compatible mode:
Reset:

CLRC Objmode ; Enable C27x Object Mode
CLRC AMODE ; Enable C27x/C28x Address Mode
.c28_amode ; Tell assembler we are in C27x/C28x addr mode
CLRC M0M1MAP ; Enable C27x Mapping Of M0 and M1 blocks

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

CLRC OVC — Clear Overflow Counter www.ti.com

174 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

CLRC OVC Clear Overflow Counter

Syntax Options CLRC OVC

Opcode 0101 0110 0101 1100

Objmode 1

RPT –

CYC 1

Note: This instruction is an alias for the “ZAP OVC” operation.

Operands OVC – Overflow counter bits in Status Register 0 (ST0)

Description Clear the overflow counter (OVC) bits in ST0.

Flags and Modes

Flags and Modes Description
OVC The 6-bit overflow counter bits (OVC) are cleared.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Calculate: VarD = sat(VarA + VarB + VarC)
CLRC OVC ; Zero overflow counter
MOVL ACC,@VarA ; ACC = VarA
ADDL ACC,@VarB ; ACC = ACC + VarB
ADDL ACC,@VarC ; ACC = ACC + VarC
SAT ACC ; Saturate if OVC != 0
MOVL @VarD,ACC ; Store saturated result into VarD

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com CLRC XF — Clear XF Status Bit

175SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

CLRC XF Clear XF Status Bit

Syntax Options CLRC XF

Opcode 0101 0110 0001 1011

Objmode X

RPT –

CYC 1

Operands XF – XF status bit and output signal

Description Clear the XF status bit and pull the corresponding output signal low.

Flags and Modes

Flags and Modes Description
XF The XF status bit is cleared.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Pulse XF signal high if branch not taken:
MOV AL,@VarA ; Load AL with contents of VarA
SB Dest,NEQ ; ACC = VarA
SETC XF ; Set XF bit and signal high
CLRC XF ; Clear XF bit and signal low
.
. Dest:

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

CLRC Mode — Clear Status Bits www.ti.com

176 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

CLRC Mode Clear Status Bits

Syntax Options

Syntax Options Opcode Objmode RPT CYC
CLRC mode 0010 1001 CCCC CCCC X – 1, 2

CLRC SXM 0010 1001 0000 0001 X – 1

CLRC OVM 0010 1001 0000 0010 X – 1

CLRC TC 0010 1001 0000 0100 X – 1

CLRC C 0010 1001 0000 1000 X – 1

CLRC INTM 0010 1001 0001 0000 X – 2

CLRC DBGM 0010 1001 0010 0000 X – 2

CLRC PAGE0 0010 1001 0100 0000 X – 1

CLRC VMAP 0010 1001 1000 0000 X – 1

Description Clear the specified status bits. Any change affects the next instruction in the pipeline.
The mode operand is a mask value that relates to the status bits in this way:

Mode bit Status Register Flag Cycles
0 ST0 SXM 1
1 ST0 OVM 1
2 ST0 TC 1
3 ST0 C 1
4 ST1 INTM 2
5 ST1 DBGM 2
6 ST1 PAGE0 1
7 ST1 VMAP 1

Note: The assembler accepts any number of flag names in any order.

Flags and Modes

Flags and Modes Description
SXM
OVM
TC C
INTM
DBGM
PAGE0
VMAP

Any of the specified bits can be cleared by the instruction.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Modify flag settings:
SETC INTM,DBGM ; Set INTM and DBGM bits to 1
CLRC TC,C,SXM,OVM ; Clear TC, C, SXM, OVM bits to 0
CLRC #0xFF ; Clear all bits to 0
SETC #0xFF ; Set all bits to 1
SETC C,SXM,TC,OVM ; Set TC, C, SXM, OVM bits to 1
CLRC DBGM,INTM ; Clear INTM and DBGM bits to 0

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com CMP AX, loc16 — Compare

177SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

CMP AX, loc16 Compare

Syntax Options CMP AX, loc16

Opcode 0101 010A LLLL LLLL

Objmode X

RPT –

CYC 1

Operands AX – Accumulator high (AH) or accumulator low (AL) register

loc16 – Addressing mode (see Chapter 5)

Description The content of the specified AX register (AH or AL) is compared with the 16-bit content
of the location pointed to by the “loc16” addressing mode. The result of (AX−- [loc16]) is
evaluated and the status flag bits set accordingly. The AX register and content of the
location pointed to by “loc16” are left unchanged:
Set Flags On (AX − [loc16]);

Flags and Modes

Flags and Modes Description

N

If the result of the operation is negative, then N is set; otherwise it is cleared. The CMP
instruction assumes infinite precision when it determines the sign of the result. For
example, consider the subtraction 0x8000 − 0x0001. If the precision were limited to 16
bits, the result would cause an overflow to the positive number 0x7FFF and N would be
cleared. However, because the CMP instruction assumes infinite precision, it would set
N to indicate that 0x8000 − 0x0001 actually results in a negative number.

Z The comparison is tested for a zero condition. The zero flag bit is set if the operation (
AX − [loc16]) = 0, otherwise it is cleared.

C If the subtraction generates a borrow, then C is cleared; otherwise C is set.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Branch if VarA is higher then VarB:
MOV AL,@VarA ; Load AL with contents of VarA
CMPB AL,@VarB ; Set Flags On (AL − VarB)
SB Dest,HI ; Branch if VarA higher then VarB

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

CMP loc16,#16bitSigned — Compare www.ti.com

178 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

CMP loc16,#16bitSigned Compare

Syntax Options CMP loc16,#16bitSigned

Opcode 0001 1011 LLLL LLLL
CCCC CCCC CCCC CCCC

Objmode X

RPT –

CYC 1

Operands loc16 – Addressing mode (see Chapter 5)

#16bitsigned – 16-bit immediate signed constant value

Description Compare the 16-bit contents of the location pointed to by the “loc16” addressing mode to
the signed 16-bit immediate constant value. To perform the comparison, the result of
([loc16] − #16bitSigned) is evaluated and the status flag bits are set accordingly. The
content of “loc16” is left unchanged:
Modify flags on ([loc16] − 16bitSigned);

Smart Encoding:

If loc16 = AL or AH and #16bitSigned is an 8-bit number, then the assembler will encode
this instruction as CMPB AX, #8bit, to override this encoding, use the CMPW AX,
#16bitSigned instruction alias.

Flags and Modes

Flags and Modes Description

N

If the result of the operation is negative, then N is set; otherwise it is cleared. The CMP
instruction assumes infinite precision when it determines the sign of the result. For
example, consider the subtraction 0x8000 − 0x0001. If the precision were limited to 16
bits, the result would cause an overflow to the positive number 0x7FFF and N would be
cleared. However, because the CMP instruction assumes infinite precision, it would set
N to indicate that 0x8000 − 0x0001 actually results in a negative number.

Z The comparison is tested for a zero condition. The zero flag bit is set if the operation
([loc16] − 16bitSigned) = 0, otherwise it is cleared.

C If the subtraction generates a borrow, then C is cleared; otherwise C is set.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example The examples in this chapter assume that the device is already operating in C28x Mode
(Objmode = 1, AMODE = 0). To put the device into C28x mode following a reset, you
must first set the Objmode bit in ST1 by executing the “C28OBJ” (or “SETC Objmode”)
instruction.
; Calculate:
; if(VarA > 20)
; VarA = 0;
CMP @VarA,#20 ; Set flags on (VarA − 20)
MOVB @VarA,#0,GT ; Zero VarA if greater then

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com CMP64 ACC:P — Compare 64-bit Value

179SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

CMP64 ACC:P Compare 64-bit Value

Syntax Options CMP64 ACC:P

Opcode 0101 0110 0101 1110

Objmode 1

RPT –

CYC 1

Operands ACC:P – Accumulator register (ACC) and product register (P)

Description The 64-bit content of the combined ACC:P registers is compared against zero and the
flags are set appropriately:
if((V = 1) & (ACC(bit 31) = 1))

N = 0;
else

N = 1;
if((V = 1) & (ACC(bit 31) = 0))

N = 1;
else

N = 0;
if(ACC:P = 0x8000 0000 0000 0000)

Z = 1;
else

Z = 0;
V = 0;

Note: This operation should be used as follows:
CMP64 ACC:P ; Clear V flag perform 64-bit operation
CMP64 ACC:P ; Set Z,N flags, V=0 conditionally branch

Flags and Modes

Flags and Modes Description

N

The content of the ACC register is tested to determine if the 64-bit ACC:P value is
negative. The CMP64 instruction takes into account the state of the overflow flag (V) to
increase precision when determining if ACC is negative. For example, consider the
subtraction on ACC of 0x8000 0000 − 0x0000 0001. This results in an overflow to a
positive number (0x7FFF FFFF) and V would be set. Because the CMP64 instruction
takes into account the overflow, it would interpret the result as a negative number and
not a positive number. If the value is ACC is found to be negative, then N is set;
otherwise N is cleared.

Z The zero flag bit is set if the combined 64 bits of ACC:P is zero, otherwise it is cleared.

V The state of the V flag is used along with bit 31 of the ACC register to determine if the
value in the ACC:P register is negative. V is cleared by the operation.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; If 64-bit VarA > 64-bit VarB, branch:
MOVL P,@VarA+0 ; Load P with low 32 bits of VarA
MOVL ACC,@VarA+2 ; Load ACC with high 32 bits of VarA
SUBUL P,@VarB+0 ; Sub from P unsigned low 32 bits of VarB
CMP64 ACC:P ; Clear V flag
SUBBL ACC,@VarB+2 ; Sub from ACC with borrow high 32 bits of VarB
CMP64 ACC:P ; Set Z,N flags appropriately for ACC:P
SB Dest,GT ; branch if VarA > VarB

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

CMPB AX, #8bit — Compare 8-bit Value www.ti.com

180 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

CMPB AX, #8bit Compare 8-bit Value

Syntax Options CMPB AX, #8bit

Opcode 0101 001A CCCC CCCC

Objmode X

RPT –

CYC 1

Operands AX – Accumulator high (AH) or accumulator low (AL) register

#8bit – 8-bit immediate constant value

Description Compare the content of the specified AX register (AH or AL) with the zero-extended 8-bit
unsigned immediate constant. The result of (AX − 0:8bit) is evaluated and the status flag
bits are set accordingly. The content of the AX register is left unchanged:
Set Flags On (AX − 0:8bit);

Flags and Modes

Flags and Modes Description

N

If the result of the operation is negative, then N is set; otherwise it is cleared. The
CMPB instruction assumes infinite precision when it determines the sign of the result.
For example, consider the subtraction 0x8000 − 0x0001. If the precision were limited to
16 bits, the result would cause an overflow to the positive number 0x7FFF and N would
be cleared. However, because the CMPB instruction assumes infinite precision, it
would set N to indicate that 0x8000 − 0x0001 actually results in a negative number.

Z The comparison is tested for a zero condition. The zero flag bit is set if the operation
(AX − [0:8bit]) = 0, otherwise it is cleared.

C If the subtraction generates a borrow, then C is cleared; otherwise C is set.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Check if VarA is within range 0x80 <= VarA <= 0xF0:
MOV AL,@VarA ; Load AL with contents of VarA
CMPB AL,#0xF0 ; Set Flags On (AL − 0x00F0)
SB OutOfRange,GT ; Branch if VarA greater then 0x00FF
CMPB AL,#0x80 ; Set Flags On (AL − 0x0080)
SB OutOfRange,LT ; Branch if VarA less then 0x0080

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com CMPL ACC,loc32 — Compare 32-bit Value

181SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

CMPL ACC,loc32 Compare 32-bit Value

Syntax Options CMPL ACC,loc32

Opcode 0000 1111 LLLL LLLL

Objmode X

RPT –

CYC 1

Operands ACC – Accumulator register

loc32 – Addressing mode (see Chapter 5)

Description The content of the ACC register is compared with the 32-bit location pointed to by the
“loc32” addressing mode. The status flag bits are set according to the result of (ACC −
[loc32]). The ACC register and the contents of the location pointed to by “loc32” are left
unchanged:
Modify flags on (ACC − [loc32]);

Flags and Modes

Flags and Modes Description

N

If the result of the operation is negative, then N is set; otherwise it is cleared. The
CMPL instruction assumes infinite precision when it determines the sign of the result.
For example, consider the subtraction 0x8000 0000 − 0x0000 0001. If the precision
were limited to 32 bits, the result would cause an overflow to the positive number
0x7FFF FFFF and N would be cleared. However, because the CMPL instruction
assumes infinite precision, it would set N to indicate that 0x8000 0000 − 0x0000 0001
actually results in a negative number.

Z The comparison is tested for a zero condition. The zero flag bit is set if the operation
(AX − [loc32]) = 0, otherwise it is cleared.

C If the subtraction generates a borrow, C is cleared; otherwise C is set.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once

Example ; Swap the contents of 32-bit VarA and VarB if VarB is higher:
MOVL ACC,@VarB ; ACC = VarB
MOVL P,@VarA ; P = VarA
CMPL ACC,@P ; Set flags on (VarB - VarA)
MOVL @VarA,ACC,HI ; VarA = ACC if higher
MOVL @P,ACC,HI ; P = ACC if higher
MOVL @VarA,P ; VarA = P

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

CMPL ACC,P << PM — Compare 32-bit Value www.ti.com

182 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

CMPL ACC,P << PM Compare 32-bit Value

Syntax Options CMPL ACC,P << PM

Opcode 1111 1111 0101 1001

Objmode X

RPT –

CYC 1

Operands ACC – Accumulator register

P – Product register

<<PM – Product shift mode

Description The content of the ACC register is compared with the content of the P register, shifted by
the amount specified by the product shift mode (PM). The status flag bits are set
according to the result of (ACC −[P << PM]). The content of the ACC register and the P
register are left unchanged:
Modify flags on (ACC − [P << PM]);

Flags and Modes

Flags and Modes Description

N

If the result of the operation is negative, then N is set; otherwise it is cleared. The
CMPL instruction assumes infinite precision when it determines the sign of the result.
For example, consider the subtraction 0x8000 0000 − 0x0000 0001. If the precision
were limited to 32 bits, the result would cause an overflow to the positive number
0x7FFF FFFF and N would be cleared. However, because the CMPL instruction
assumes infinite precision, it would set N to indicate that 0x8000 0000 − 0x0000 0001
actually results in a negative number.

Z The comparison is tested for a zero condition. The zero flag bit is set if the operation
(AX − [P<<PM]) = 0, otherwise, it is cleared.

C If the subtraction generates a borrow, C is cleared; otherwise C is set.

PM

The value in the PM bits sets the shift mode for the output operation from the product
register. If the product shift value is positive (logical left shift operation), then the low
bits are zero filled. If the product shift value is negative (arithmetic right shift operation),
the upper bits are sign extended.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Compare the following (VarA − VarB << 4):
MOVL ACC,@VarA ; ACC = VarA
SPM −4 ; Set the product shift mode to "<< 4"
MOVL P,@VarB ; P = VarB
CMPL ACC,P << PM ; Compare (VarA − VarB << 4)

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com CMPR 0/1/2/3 — Compare Auxiliary Registers

183SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

CMPR 0/1/2/3 Compare Auxiliary Registers

Syntax Options

Syntax Options Opcode Objmode RPT CYC
CMPR 0 0101 0110 0001 1101 1 – 1

CMPR 1 0101 0110 0001 1001 1 – 1

CMPR 2 0101 0110 0001 1000 1 – 1

CMPR 3 0101 0110 0001 1100 1 – 1

Operands None

Description Compare AR0 to the 16-bit auxiliary register pointed to by ARP. The comparison type is
determined by the instruction.
CMPR 0: if(AR0 = AR[ARP]) TC = 1, else TC = 0
CMPR 1: if(AR0 > AR[ARP]) TC = 1, else TC = 0
CMPR 2: if(AR0 > AR[ARP]) TC = 1, else TC = 0
CMPR 3: if(AR0 != AR[ARP]) TC = 1, else TC = 0

Flags and Modes

Flags and Modes Description

ARP The 3-bit ARP points to the current valid Auxiliary Register, XAR0 to XAR7. This
pointer determines which Auxiliary register is compared to AR0.

TC If the test is true, TC is set, else TC is cleared.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example TableA: .word 0x1111
.word 0x2222

FuncA:
MOVL XAR1,#VarA ; Initialize XAR1 Pointer
MOVZ AR0,*XAR1++ ; Load AR0 with 0x1111, clear AR0H,

; ARP = 1

MOVZ AR1,*XAR1 ; Load AR1 with 0x2222, clear AR1H
CMPR 0 ; AR0 = AR1? No, clear TC
B Equal,TC ; Don’t branch
CMPR 2 ; AR1 > AR2? Yes, set TC
B Less,TC ; Branch to "Less"

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

CSB ACC — Count Sign Bits www.ti.com

184 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

CSB ACC Count Sign Bits

Syntax Options CSB ACC

Opcode 0101 0110 0011 0101

Objmode 1

RPT –

CYC 1

Operands ACC – Accumulator register

Description Count the sign bits in the ACC register by determining the number of leading 0s or 1s in
the ACC register and storing the result, minus one, in the T register:
T = 0, 1 sign bit
T = 1, 2 sign bits
.
.
T = 31, 32 sign bits

Note: The count sign bit operation is often used in normalization operations and is
particularly useful for algorithms such as; calculating Square Root of a number,
calculating the inverse of a number, searching for the first ”1” bit in a word.

Flags and Modes

Flags and Modes Description
N N is set if bit 31 of ACC is 1, else N is cleared.
Z Z is set if ACC is 0, else Z is cleared.

TC The TC bit will reflect the state of the sign bit after the operation (TC=1 for negative).

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once

Example ; Normalize the contents of VarA:
MOVL ACC,@VarA ; Load ACC with contents of VarA
CSB ACC ; Count sign bits
LSLL ACC,T ; Logical shift left ACC by T(4:0)
MOVL @VarA,ACC ; Store result into VarA

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com DEC loc16 — Decrement by 1

185SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

DEC loc16 Decrement by 1

Syntax Options DEC loc16

Opcode 0000 1011 LLLL LLLL

Objmode X

RPT –

CYC 1

Operands loc16 – Addressing mode (see Chapter 5)

Description Subtract 1 from the signed content of the location pointed to by the “loc16” addressing
mode.

Flags and Modes

Flags and Modes Description
N After the operation if bit 15 of [loc16] is 1, set N; otherwise, clear N.
Z After the operation if [loc16] is zero, set Z; otherwise, clear Z.
C If the subtraction generates a borrow, C is cleared; otherwise C is set.
V If an overflow occurs, V is set; otherwise V is not affected.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; VarA = VarA − 1;
DEC @VarA ; Decrement contents of VarA

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

DINT — Disable Maskable Interrupts (Set INTM Bit) www.ti.com

186 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

DINT Disable Maskable Interrupts (Set INTM Bit)

Syntax Options DINT

Opcode 0011 1011 0001 0000

Objmode X

RPT –

CYC 2

Note: This instruction is an alias for the “SETC mode” operation with the ”mode” field =
INTM.

Operands None

Description Disable all maskable CPU interrupts by setting the INTM status bit. Any change affects
the next instruction in the pipeline. DINT has no effect on the unmaskable reset or NMI
interrupts.

Flags and Modes

Flags and Modes Description
INTM The instruction sets this bit to disable interrupts.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Make the operation "VarC = VarA + VarB" atomic:
DINT ; Disable interrupts (INTM = 1)
MOVL ACC,@VarA ; ACC = VarA
ADDL ACC,@VarB ; ACC = ACC + VarB
MOVL @VarC,ACC ; Store result into VarC
EINT ; Enable interrupts (INTM = 0)

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

loc32

XT

16−bits

VarA_1

VarA_2

XAR7

Temp

16−bits

VarB_1

VarB_2

VarA_1 VarA_2 VarB_1 VarB_2

VarA_1 * VarB_1 << PM VarA_2 * VarB_2 << PM

ACC P

www.ti.com DMAC ACC:P,loc32,*XAR7/++ — 16-Bit Dual Multiply and Accumulate

187SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

DMAC ACC:P,loc32,*XAR7/++ 16-Bit Dual Multiply and Accumulate

Syntax Options

Syntax Options Opcode Objmode RPT CYC
DMAC

ACC:P,loc32,*XAR7
0101 0110 0100 1011
1100 0111 LLLL LLLL

1 Y N+2

DMAC
ACC:P,loc32,*XAR7+

+

0101 0110 0100 1011
1000 0111 LLLL LLLL

1 Y N+2

Operands ACC:P – Accumulator register (ACC) and product register (P)

loc32 – Addressing mode (see Chapter 5)

Note: The @ACC and @P register addressing modes cannot be used. No illegal
instruction trap will be generated if used (assembler will flag an error).

*XAR7 /++ – Indirect program-memory addressing using auxiliary register XAR7, can
access full 4M x 16 program space range (0x000000 to 0x3FFFFF)

Description Dual 16-bit x 16-bit signed multiply and accumulate. The first multiplication takes place
between the upper words of the 32-bit locations pointed to by the “loc32” and *XAR7/++
addressing modes and second multiplication takes place with the lower words.

After the operation the ACC contains the result of multiplying and adding the upper word
of the addressed 32-bit operands. The P register contains the result of multiplying and
adding the lower word of the addressed 32-bit operands.
XT = [loc32];
Temp = Prog[*XAR7 or *XAR7++];
ACC = ACC + (XT.MSW * Temp.MSW) << PM;
P = P + (XT.LSW * Temp.LSW) << PM;

Z, N, V, C flags and OVC counter are affected by the operation on ACC only. The PM
shift affects both the ACC and P operations.

On the C28x devices, memory blocks are mapped to both program and data space
(unified memory), hence the ”*XAR7/++” addressing mode can be used to access data
space variables that fall within the program space address range.

With some addressing mode combinations, you can get conflicting references. In such
cases, the C28x will give the “loc16/loc32” field priority on changes to XAR7. For
example:
DMAC ACC:P,*−−XAR7,*XAR7++ ; −−XAR7 given priority
DMAC ACC:P,*XAR7++,*XAR7 ; *XAR7++ given priority
DMAC ACC:P,*XAR7,*XAR7++ ; *XAR7++ given priority

Flags and Modes

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

DMAC ACC:P,loc32,*XAR7/++ — 16-Bit Dual Multiply and Accumulate www.ti.com

188 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

Flags and Modes Description
Z After the addition, the Z flag is set if the ACC value is zero, else Z is cleared.
N After the addition, the N flag is set if bit 31 of the ACC is 1, else N is cleared.
C If the addition generates a carry of the ACC register, C is set; otherwise C is cleared.
V If an overflow of the ACC register occurs, V is set; otherwise V is not affected.

OVC

If overflow mode is disabled; and if the operation generates a positive overflow of the
ACC register, then the counter is incremented. If overflow mode is disabled; and if the
operation generates a negative overflow of the ACC register, then the counter is
decremented.

OVM
If overflow mode bit is set; then the ACC value will saturate maximum positive
(0x7FFFFFFF) or maximum negative (0x80000000) if the operation overflowed. Note
that OVM only affects the ACC operation.

PM

The value in the PM bits sets the shift mode for the output operation from the product
register. The PM mode affects both the ACC and P register accumulates. If the product
shift value is positive (logical left shift operation), then the low bits are zero filled. If the
product shift value is negative (arithmetic right shift operation), the upper bits are sign
extended.

Repeat This instruction is repeatable. If the operation follows a RPT instruction, then it will be
executed N+1 times. The state of the Z, N, C and OVC flags will reflect the final result in
the ACC. The V flag will be set if an intermediate overflow occurs in the ACC.

Example ; Calculate sum of product using dual 16-bit multiply:
; int16 X[N] ; Data information
; int16 C[N] ; Coefficient information (located in low 4M)
; ; Data and Coeff must be aligned to even address
; ; N must be an even number
; sum = 0;
; for(i=0; i < N; i++)
; sum = sum + (X[i] * C[i]) >> 5;

MOVL XAR2,#X ; XAR2 = pointer to X
MOVL XAR7,#C ; XAR7 = pointer to C
SPM −5 ; Set product shift to ">> 5"
ZAPA ; Zero ACC, P, OVC
RPT #(N/2)−1 ; Repeat next instruction N/2 times

||DMAC P,*XAR2++,*XAR7++ ; ACC = ACC + (X[i+1] * C[i+1]) >> 5
; P = P + (X[i] * C[i]) >> 5 i++

ADDL ACC,@P ; Perform final accumulate
MOVL @sum,ACC ; Store final result into sum

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com DMOV loc16 — Data Move Contents of 16-bit Location

189SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

DMOV loc16 Data Move Contents of 16-bit Location

Syntax Options DMOV loc16

Opcode 1010 0101 LLLL LLLL

Objmode 1

RPT Y

CYC N+1

Operands loc16 – Addressing mode (see Chapter 5)

Note: For this operation, register−addressing modes cannot be used. The modes are:
@ARn, @AH, @AL, @PH, @PL, @SP, @T. An illegal instruction trap will be generated.

Description Copy the contents pointed to by ”loc16” into the next highest address:
loc16 + 1] = [loc16];

Flags and Modes None

Repeat This instruction is repeatable. If the operation is follows a RPT instruction, then it will be
executed N+1 times.

Example ; Calculate using 16-bit multiply:
; int16 X[3];
; int16 C[3];
; Y = (X[0]*C[0] >> 2) + (X[1]*C[1] >> 2) + (X[2]*C[2] >>2);
; X[2] = X[1];
; X[1] = X[0];
SPM −2 ; Set product shift to >> 2
MOVP T,@X+2 ; T = X[2]
MPYS P,T,@C+2 ; P = T*C[2], ACC = 0
MOVA T,@X+1 ; T = X[1], ACC = X[2]*C[2] >> 2
MPY P,T,@C+1 ; P = T*C[1]
MOVA T,@X+0 ; T = X[0], ACC = ACC + X[1]*C[1] >> 2
MPY P,T,@C+0 ; P = T*C[0]
ADDL ACC,P << PM ; ACC = ACC + X[0]*C[0] >> 2
DMOV @X+1 ; X[2] = X[1]
DMOV @X+0 ; X[1] = X[0]
MOVL @Y,ACC ; Store result into Y

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

EALLOW — Enable Write Access to Protected Space www.ti.com

190 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

EALLOW Enable Write Access to Protected Space

Syntax Options EALLOW

Opcode 0111 0110 0010 0010

Objmode X

RPT –

CYC 4

Operands None

Description Enable access to emulation space and other protected registers.

This instruction sets the EALLOW bit in status register ST1. When this bit is set, the
C28x CPU allows write access to the memory-mapped registers as well as other
protected registers. See the data sheet for your particular device to determine which
registers the EALLOW bit protects.

To again protect against writes to the registers, use the EDIS instruction.

EALLOW only controls write access; reads are allowed even if EALLOW has not been
executed.

On an interrupt or trap, the current state of the EALLOW bit is saved off onto the stack
within ST1 and the EALLOW bit is autocratically cleared. Therefore, at the start of an
interrupt service routine access to the protected registers is disabled. The IRET
instruction will restore the current state of the EALLOW bit saved on the stack.

The EALLOW bit is overridden via the JTAG port, allowing full control of register
accesses during debug from Code Composer Studio.

Flags and Modes

Flags and Modes Description
EALLOW The EALLOW flag is set.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Enable access to RegA and RegB which are EALLOW protected:
EALLOW ; Enable access to selected registers
AND @RegA,#0x4000 ; RegA = RegA AND 0x0400
MOV @RegB,#0 ; RegB = 0
EDIS ; Disable access to selected registers

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com EDIS — Disable Write Access to Protected Registers

191SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

EDIS Disable Write Access to Protected Registers

Syntax Options EDIS

Opcode 0111 0110 0001 1010

Objmode X

RPT –

CYC 4

Operands None

Description Disable access to emulation space and other protected registers.

This instruction clears the EALLOW bit in status register ST1. When this bit is clear, the
C28x CPU does not allow write access to the memory−mapped emulation registers and
other protected registers. See the data sheet for your particular device to determine
which registers the EALLOW bit protects.

To allow write access to the registers, use the EALLOW instruction.

Flags and Modes

Flags and Modes Description
EALLOW The EALLOW flag is cleared.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Enable access to RegA and RegB which are EALLOW protected:
EALLOW ; Enable access to selected registers
NOP ; Wait 2 cycles for enable to take

; effect. The number of cycles is device
; and/or register dependant.

NOP
AND @RegA,#0x4000 ; RegA = RegA AND 0x0400
MOV @RegB,#0 ; RegB = 0
EDIS ; Disable access to selected registers

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

EINT — Enable Maskable Interrupts (Clear INTM Bit) www.ti.com

192 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

EINT Enable Maskable Interrupts (Clear INTM Bit)

Syntax Options EINT

Opcode 0010 1001 0001 0000

Objmode X

RPT –

CYC 2

Note: This instruction is an alias for the “CLRC mode” operation with the ”mode” field =
INTM.

Operands None

Description Enable interrupts by clearing the INTM status bit. Any change affects the next instruction
in the pipeline.

Flags and Modes

Flags and Modes Description
INTM This bit is cleared by the instruction to enable interrupts.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Make the operation "VarC = VarA + VarB" atomic:
DINT ; Disable interrupts (INTM = 1)
MOVL ACC,@VarA ; ACC = VarA
ADDL ACC,@VarB ; ACC = ACC + VarB
MOVL @VarC,ACC ; Store result into VarC
EINT ; Enable interrupts (INTM = 0)

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com ESTOP0 — Emulation Stop 0

193SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

ESTOP0 Emulation Stop 0

Syntax Options ESTOP0

Opcode 0111 0110 0010 0101

Objmode X

RPT –

CYC 4

Operands None

Description Emulation Stop 0

This instruction is available for emulation purposes. It is used to create a software
breakpoint.

When an emulator is connected to the C28x and emulation is enabled, this instruction
causes the C28x to halt, regardless of the state of the DBGM bit in status register ST1.
In addition, ESTOP0 does not increment the PC.

When an emulator is not connected or when a debug program has disabled emulation,
the ESTOP0 instruction is treated the same way as a NOP instruction. It simply
advances the PC to the next instruction.

Flags and Modes None

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

ESTOP1 — Emulation Stop 1 www.ti.com

194 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

ESTOP1 Emulation Stop 1

Syntax Options ESTOP1

Opcode 0111 0110 0010 0100

Objmode X

RPT –

CYC 1

Operands None

Description Emulation Stop 1

This instruction is available for emulation purposes. It is used to create an embedded
software breakpoint.

When an emulator is connected to the C28x and emulation is enabled, this instruction
causes the C28x to halt, regardless of the state of the DBGM bit in status register ST1.
Before halting the processor, ESTOP1 increments the PC so that it points to the
instruction following the ESTOP1.

When an emulator is not connected or when a debug program has disabled emulation,
the ESTOP0 instruction is treated the same way as a NOP instruction. It simply
advances the PC to the next instruction.

Flags and Modes None

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com FFC XAR7,22bit — Fast Function Call

195SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

FFC XAR7,22bit Fast Function Call

Syntax Options FFC XAR7,22bit

Opcode 0000 0000 11CC CCCC
CCCC CCCC CCCC CCCC

Objmode X

RPT –

CYC 4

Operands XAR7 – Auxiliary register XAR7

22bit – 22-bit program-address (0x00 0000 to 0x3F FFFF range)

Description Fast function call. The return PC value is stored into the XAR7 register and the 22-bit
immediate destination address is loaded into the PC:
XAR7(21:0) = PC + 2;
XAR7(31:22) = 0;
PC = 22 bit;

Flags and Modes None

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Fast function call of FuncA:
FFC XAR7,FuncA ; Call FuncA, return address in XAR7
.
.

FuncA: ; Function A:
.
.
LB *XAR7 ; Return: branch to address in XAR7

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

FLIP AX — Flip Order of Bits in AX Register www.ti.com

196 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

FLIP AX Flip Order of Bits in AX Register

Syntax Options FLIP AX

Opcode 0101 0110 0111 000A

Objmode 1

RPT –

CYC 1

Operands AX – Accumulator high (AH) or accumulator low (AL) register

Description Bit reverse the contents of the specified AX register (AH or AL):
temp = AX;
AX(bit 0) = temp(bit 15);
AX(bit 1) = temp(bit 14);
.
.
AX(bit 14) = temp(bit 1);
AX(bit 15) = temp(bit 0);

Flags and Modes

Flags and Modes Description

N After the operation, if bit 15 of AX is 1 then the negative flag bit is set; otherwise it is
cleared.

Z After the operation, if AX is 0, then the Z bit is set, otherwise it is cleared.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Flip the contents of 32-bit variable VarA:
MOV AH,@VarA+0 ; Load AH with low 16 bits of VarA
MOV AL,@VarA+1 ; Load AL with high 16 bits of VarA
FLIP AL ; Flip contents of AL
FLIP AH ; Flip contents of AH
MOVL @VarA,ACC ; Store 32-bit result in VarA

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com IACK #16bit — Interrupt Acknowledge

197SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

IACK #16bit Interrupt Acknowledge

Syntax Options IACK #16bit

Opcode 0111 0110 0011 1111
CCCC CCCC CCCC CCCC

Objmode X

RPT –

CYC 1

Operands #16bit – 16-bit constant immediate value (0x0000 to 0xFFFF range)

Description Acknowledge an interrupt by outputting the specified 16-bit constant on the low 16 bits of
the data bus. Certain peripherals will provide the capability to capture this value to
provide low-cost trace. See the data sheet for details for your device.
data_bus(15:0) = 16bit;

Flags and Modes None

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

IDLE — Put Processor in Idle Mode www.ti.com

198 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

IDLE Put Processor in Idle Mode

Syntax Options IDLE

Opcode 0111 0110 0010 0001

Objmode X

RPT –

CYC 5

Operands None

Description Put the processor into idle mode and wait for enabled or nonmaskable interrupt. Devices
using the 28x CPU may use the IDLE instruction in combination with external logic to
achieve different low-power modes. See the device-specific datasheets for more detail.
The idle instruction causes the following sequence of events:
1. The pipeline is flushed.
2. All outstanding memory cycles are completed.
3. The IDLESTAT bit of status register ST1 is set.
4. Clocks to the CPU are stopped after the entire instruction buffer is full, placing the

device in the idle state. In the idle state, CLKOUT (the clock output from the CPU)
and all clocks to blocks outside the CPU (including the emulation block) continue to
operate as long as CLKIN (the clock input to the CPU) is driven. The PC continues to
hold the address of the IDLE instruction; the PC is not incremented before the CPU
enters the idle state.

5. The IDLE output CPU signal is activated (driven high).
6. The device waits for an enabled or nonmaskable hardware interrupt. If such an

interrupt occurs, the IDLESTAT bit is cleared, the PC is incremented by 1, and the
device exits the idle state.

If the interrupt is maskable, it must be enabled in the interrupt enable register (IER).
However, the device exits the idle state regardless of the value of the interrupt global
mask bit (INTM) of status register ST1.

After the device exits the idle mode, the CPU must respond to the interrupt request. If
the interrupt can be disabled by the INTM bit in status register ST1, the next event
depends on INTM:
• If (INTM = 0), then the interrupt is enabled, and the CPU executes the corresponding

interrupt service routine. On return from the interrupt, execution begins at the
instruction following the IDLE instruction.

• If (INTM = 1), then the interrupt is blocked and program execution continues at the
instruction immediately following the IDLE.

If the interrupt cannot be disabled by INTM, the CPU executes the corresponding
interrupt service routine. On return from the interrupt, execution begins at the instruction
following the IDLE.

Flags and Modes

Flags and Modes Description

IDLESTAT Before entering the idle mode, IDLESTAT is set; after exiting the idle mode IDLESTAT
is cleared.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com IMACL P,loc32,*XAR7/++ — Signed 32 X 32-Bit Multiply and Accumulate (Lower Half)

199SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

IMACL P,loc32,*XAR7/++ Signed 32 X 32-Bit Multiply and Accumulate (Lower Half)

Syntax Options

Syntax Options Opcode Objmode RPT CYC
IMACL P,loc32,*XAR7 0101 0110 0100 1101

1100 0111 LLLL LLLL
1 Y N+2

IMACL
P,loc32,*XAR7++

0101 0110 0100 1101
1000 0111 LLLL LLLL

1 Y N+2

Operands P – Product register

loc32 – Addressing mode (see Chapter 5)

Note: The @ACC addressing mode cannot be used when the instruction is repeated. No
illegal instruction trap will be generated if used (assembler will flag an error).

*XAR7/++ – Indirect program-memory addressing using auxiliary register XAR7; can
access full 4Mx16 program space range (0x000000 to 0x3FFFFF)

Description 32-bit x 32-bit signed multiply and accumulate. First, add the unsigned previous product
(stored in the P register), ignoring the product shift mode (PM), to the ACC register.
Then, multiply the signed 32-bit content of the location pointed to by the “loc32”
addressing mode by the signed 32-bit content of the program-memory location pointed
to by the XAR7 register. The product shift mode (PM) then determines which part of the
lower 38 bits of the 64-bit result are stored in the P register. If specified, post-increment
the XAR7 register by 1:
ACC = ACC + unsigned P;
temp(37:0) = lower_38 bits(signed [loc32]

* signed Prog[*XAR7 or XAR7++]);
if(PM = +4 shift)

P(31:4) = temp(27:0), P(3:0) = 0;
if(PM = +1 shift)

P(31:1) = temp(30:0), P(0) = 0;
if(PM = 0 shift)

P(31:0) = temp(31:0);
if(PM = −1 shift)

P(31:0) = temp(32:1);
if(PM = −2 shift)

P(31:0) = temp(33:2);
if(PM = −3 shift)

P(31:0) = temp(34:3);
if(PM = −4 shift)

P(31:0) = temp(35:4);
if(PM = −5 shift)

P(31:0) = temp(36:5);
if(PM = −6 shift)

P(31:0) = temp(37:6);

On the C28x devices, memory blocks are mapped to both program and data space
(unified memory), hence the ”*XAR7/++” addressing mode can be used to access data
space variables that fall within the program space address range. With some addressing
mode combinations, you can get conflicting references. In such cases, the C28x will give
the “loc16/loc32” field priority on changes to XAR7. For example:
IMACL P,*−−XAR7,*XAR7++ ; −−XAR7 given priority
IMACL P,*XAR7++,*XAR7 ; *XAR7++ given priority
IMACL P,*XAR7,*XAR7++ ; *XAR7++ given priority

Flags and Modes

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

IMACL P,loc32,*XAR7/++ — Signed 32 X 32-Bit Multiply and Accumulate (Lower Half) www.ti.com

200 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

Flags and Modes Description
Z After the addition, the Z flag is set if the ACC value is zero, else Z is cleared.
N After the addition, the N flag is set if bit 31 of the ACC is 1, else N is cleared.
C If the addition generates a carry, C is set; otherwise C is cleared.
V If an overflow occurs, V is set; otherwise V is not affected.

OVCU The overflow counter is incremented when the addition operation generates an
unsigned carry. The OVM mode does not affect the OVCU counter.

PM The value in the PM bits sets the shift mode that determines which portion of the lower
38 bits of the 64-bit results are stored in the P register.

Repeat This instruction is repeatable. If the operation follows a RPT instruction, then it will be
executed N+1 times. The state of the Z, N, C and OVC flags will reflect the final result in
the ACC. The V flag will be set if an intermediate overflow occurs in the ACC.

Example ; Calculate sum of product using 32-bit multiply and retain
; 64-bit result:
; int32 X[N]; // Data information
; int32 C[N]; // Coefficient information (located in

// low 4M)
; int64 sum = 0;
; for(i=0; i < N; i++)
; sum = sum + (X[i] * C[i]) >> 5;
; Calculate low 32 bits:

MOVL XAR2,#X ; XAR2 = pointer to X
MOVL XAR7,#C ; XAR7 = pointer to C
SPM −5 ; Set product shift to ">> 5"
ZAPA ; Zero ACC, P, OVCU
RPT #(N−1) ; Repeat next instruction N times

||IMACL P,*XAR2++,*XAR7++ ;OVCU:ACC = OVCU:ACC + P,
;P = (X[i] * C[i]) << 5
;i++

ADDUL ACC,@P ; OVCU:ACC = OVCU:ACC + P
MOVL @sum+0,ACC ; Store low 32 bits result into sum

; Calculate high 32 bits:
MOVU @AL,OVC ; ACC = OVCU (carry count)
MOVB AH,#0
MPYB P,T,#0 ; P = 0
MOVL XAR2,#X ; XAR2 = pointer to X
MOVL XAR7,#C ; XAR7 = pointer to C
RPT #(N−1) ; Repeat next instruction N times

||QMACL P,*XAR2++,*XAR7++ ; ACC = ACC + P >> 5,
; P = (X[i] * C[i]) >> 32,
; i++

ADDL ACC,P << PM ; ACC = ACC + P >> 5
MOVL @sum+2,ACC ; Store high 32 bits result into sum

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com IMPYAL P,XT,loc32 — Signed 32-Bit Multiply (Lower Half) and Add Previous P

201SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

IMPYAL P,XT,loc32 Signed 32-Bit Multiply (Lower Half) and Add Previous P

Syntax Options IMPYAL P,XT,loc32

Opcode 0101 0110 0100 1100
0000 0000 LLLL LLLL

Objmode 1

RPT –

CYC 1

Operands P – Product register

XT – Multiplicand register.

loc32 – Addressing mode (see Chapter 5)

Description Add the unsigned content of the P register, ignoring the product shift mode (PM), to the
ACC register. Multiply the signed 32-bit content of the XT register by the signed 32-bit
content of the location pointed to by the “loc32” addressing mode. The product shift
mode (PM) then determines which part of the lower 38 bits of the 64-bit result are stored
in the P register:
ACC = ACC + unsigned P;
temp(37:0) = lower_38 bits(signed XT * signed [loc32]);
if(PM = +4 shift)

P(31:4) = temp(27:0), P(3:0) = 0;
if(PM = +1 shift)

P(31:1) = temp(30:0), P(0) = 0;
if(PM = 0 shift)

P(31:0) = temp(31:0);
if(PM = −1 shift)

P(31:0) = temp(32:1);
if(PM = −2 shift)

P(31:0) = temp(33:2);
if(PM = −3 shift)

P(31:0) = temp(34:3);
if(PM = −4 shift)

P(31:0) = temp(35:4);
if(PM = −5 shift)

P(31:0) = temp(36:5);
if(PM = −6 shift)

P(31:0) = temp(37:6);

Flags and Modes

Flags and Modes Description
Z After the addition, the Z flag is set if the ACC value is zero, else Z is cleared.
N After the addition, the N flag is set if bit 31 of the ACC is 1, else N is cleared.
C If the addition generates a carry, C is set; otherwise C is cleared.
V If an overflow occurs, V is set; otherwise V is not affected.

OVCU The overflow counter is incremented when the addition operation generates an
unsigned carry. The OVM mode does not affect the OVCU counter.

PM The value in the PM bits sets the shift mode that determines which portion of the lower
38 bits of the 64-bit results are stored in the P register.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

IMPYAL P,XT,loc32 — Signed 32-Bit Multiply (Lower Half) and Add Previous P www.ti.com

202 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Calculate signed result:
; Y64 = (X0*C0 + X1*C1 + X2*C2) >> 2
SPM −2 ; Set product shift mode to ">> 2"
ZAPA ; Zero ACC, P, OVCU
MOVL XT,@X0 ; XT = X0
IMPYL P,XT,@C0 ; P = low 32 bits of (X0*C0 << 2)
MOVL XT,@X1 ; XT = X1
IMPYAL P,XT,@C1 ; OVCU:ACC = OVCU:ACC + P,

; P = low 32 bits of (X1*C1 << 2)
MOVL XT,@X2 ; XT = X2
IMPYAL P,XT,@C2 ; OVCU:ACC = OVCU:ACC + P,

; P = low 32 bits of (X2*C2 << 2)
ADDUL ACC,@P ; OVCU:ACC = OVCU:ACC + P
MOVL @Y64+0,ACC ; Store low 32-bit result into Y64
MOVU @AL,OVC ; ACC = OVCU (carry count)
MOVB AH,#0
QMPYL P,XT,@C2 ; P = high 32 bits of (X2*C2)
MOVL XT,@X1 ; XT = X1
QMPYAL P,XT,@C1 ; ACC = ACC + P >> 2,

; P = high 32 bits of (X1*C1)
MOVL XT,@X0 ; XT = X0
QMPYAL P,XT,@C0 ; ACC = ACC + P >> 2,

; P = high 32 bits of (X0*C0)
ADDL ACC,P << PM ; ACC = ACC + P >> 2
MOVL @Y64+2,ACC ; Store high 32-bit result into Y64

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com IMPYL ACC,XT,loc32 — Signed 32 X 32-Bit Multiply (Lower Half)

203SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

IMPYL ACC,XT,loc32 Signed 32 X 32-Bit Multiply (Lower Half)

Syntax Options IMPYL ACC,XT,loc32

Opcode 0101 0110 0100 0100
0000 0000 LLLL LLLL

Objmode 1

RPT –

CYC 2

Operands ACC – Accumulator register

XT – Multiplicand register

loc32 – Addressing mode (see Chapter 5)

Description Multiply the signed 32-bit content of the XT register by the signed 32-bit content of the
location pointed to by the “loc32” addressing mode and store the lower 32 bits of the 64-
bit result in the ACC register:
ACC = signed XT * signed [loc32];

Flags and Modes

Flags and Modes Description
Z After the operation, the Z flag is set if the ACC value is zero, else Z is cleared.
N After the operation, the N flag is set if bit 31 of the ACC is 1, else N is cleared.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Calculate result: Y32 = M32*X32 + B32
MOVL XT,@M32 ; XT = M32
IMPYL ACC,XT,@X32 ; ACC = low 32 bits of (M32*X32)
ADDL ACC,@B32 ; ACC = ACC + B32
MOVL @Y32,ACC ; Store result into Y32

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

IMPYL P,XT,loc32 — Signed 32 X 32-Bit Multiply (Lower Half) www.ti.com

204 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

IMPYL P,XT,loc32 Signed 32 X 32-Bit Multiply (Lower Half)

Syntax Options IMPYL P,XT,loc32

Opcode 0101 0110 0000 0101
0000 0000 LLLL LLLL

Objmode 1

RPT –

CYC 1

Operands P – Product register

XT – Multiplicand register.

loc32 – Addressing mode (see Chapter 5)

Description Multiply the signed 32-bit content of the XT register by the signed 32-bit content of the
location pointed to by the “loc32” addressing mode. The product shift mode (PM) then
determines which part of the lower 38 bits of the 64-bit result gets stored in the P
register as shown in the diagram below:
temp(37:0) = lower_38 bits(signed XT * signed [loc32]);
if(PM = +4 shift)

P(31:4) = temp(27:0), P(3:0) = 0;
if(PM = +1 shift)

P(31:1) = temp(30:0), P(0) = 0;
if(PM = 0 shift)

P(31:0) = temp(31:0);
if(PM = −1 shift)

P(31:0) = temp(32:1);
if(PM = −2 shift)

P(31:0) = temp(33:2);
if(PM = −3 shift)

P(31:0) = temp(34:3);
if(PM = −4 shift)

P(31:0) = temp(35:4);
if(PM = −5 shift)

P(31:0) = temp(36:5);
if(PM = −6 shift)

P(31:0) = temp(37:6);

Flags and Modes

Flags and Modes Description

PM The value in the PM bits sets the shift mode that determines which portion of the lower
38 bits of the 64-bit results are stored in the P register.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Calculate signed result: Y64 = M32*X32
MOVL XT,@M32 ; XT = M32
IMPYL P,XT,@X32 ; P = low 32 bits of (M32*X32)
QMPYL ACC,XT,@X32 ; ACC = high 32 bits of (M32*X32)
MOVL @Y64+0,P ; Store result into Y64
MOVL @Y64+2,ACC

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com IMPYSL P,XT,loc32 — Signed 32-Bit Multiply (Low Half) and Subtract P

205SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

IMPYSL P,XT,loc32 Signed 32-Bit Multiply (Low Half) and Subtract P

Syntax Options IMPYSL P,XT,loc32

Opcode 0101 0110 0100 0011
0000 0000 LLLL LLLL

Objmode 1

RPT –

CYC 1

Operands P – Product register

XT – Multiplicand register.

loc32 – Addressing mode (see Chapter 5)

Description Subtract the unsigned content of the P register, ignoring the product shift mode (PM),
from the ACC register. Multiply the signed 32-bit content of the XT register by the signed
32-bit content of the location pointed to by the “loc32” addressing mode. The product
shift mode (PM) then determines which part of the lower 38 bits of the 64-bit result are
stored in the P register:
ACC = ACC - unsigned P;
temp(37:0) = lower_38 bits(signed XT * signed [loc32]);
if(PM = +4 shift)

P(31:4) = temp(27:0), P(3:0) = 0;
if(PM = +1 shift)

P(31:1) = temp(30:0), P(0) = 0;
if(PM = 0 shift)

P(31:0) = temp(31:0);
if(PM = −1 shift)

P(31:0) = temp(32:1);
if(PM = −2 shift)

P(31:0) = temp(33:2);
if(PM = −3 shift)

P(31:0) = temp(34:3);
if(PM = −4 shift)

P(31:0) = temp(35:4);
if(PM = −5 shift)

P(31:0) = temp(36:5);
if(PM = −6 shift)

P(31:0) = temp(37:6);

Flags and Modes

Flags and Modes Description
Z After the subtraction, the Z flag is set if the ACC value is zero, else Z is cleared.
N After the subtraction, the N flag is set if bit 31 of the ACC is 1, else N is cleared.
C If the subtraction generates a borrow, C is cleared; otherwise C is set.
V If an overflow occurs, V is set; otherwise V is not affected.

OVCU The overflow counter is decremented when the subtraction operation generates an
unsigned borrow. The OVM mode does not affect the OVCU counter.

PM The value in the PM bits sets the shift mode that determines which portion of the lower
38 bits of the 64-bit results are stored in the P register.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

IMPYSL P,XT,loc32 — Signed 32-Bit Multiply (Low Half) and Subtract P www.ti.com

206 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Calculate signed result:
; Y64 = (−X0*C0 − X1*C1 − X2*C2) >> 2

SPM −2 ; Set product shift mode to ">> 2"
ZAPA ; Zero ACC, P, OVCU
MOVL XT,@X0 ; XT = X0
IMPYL P,XT,@C0 ; P = low 32 bits of (X0*C0 << 2)
MOVL XT,@X1 ; XT = X1
IMPYSL P,XT,@C1 ; OVCU:ACC = OVCU:ACC − P,

; P = low 32 bits of (X1*C1 << 2)
MOVL XT,@X2 ; XT = X2
IMPYSL P,XT,@C2 ; OVCU:ACC = OVCU:ACC − P,

; P = low 32 bits of (X2*C2 << 2)
SUBUL ACC,@P ; OVCU:ACC = OVCU:ACC − P
MOVL @Y64+0,ACC ; Store low 32-bit result into Y64
MOVU @AL,OVC ; ACC = OVCU (borrow count)
MOVB AH,#0
NEG ACC ; Negate borrow
QMPYL P,XT,@C2 ; P = high 32 bits of (X2*C2)
MOVL XT,@X1 ; XT = X1
QMPYSL P,XT,@C1 ; ACC = ACC − P >> 2,|

; P = high 32 bits of (X1*C1)
MOVL XT,@X0 ; XT = X0
QMPYSL P,XT,@C0 ; ACC = ACC − P >> 2,

; P = high 32 bits of (X0*C0)
SUBL ACC,P << PM ; ACC = ACC − P >> 2
MOVL @Y64+2,ACC ; Store high 32-bit result into Y64

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com IMPYXUL P,XT,loc32 — Signed 32 X Unsigned 32-Bit Multiply (Lower Half)

207SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

IMPYXUL P,XT,loc32 Signed 32 X Unsigned 32-Bit Multiply (Lower Half)

Syntax Options IMPYXUL P,XT,loc32

Opcode 0101 0110 0110 0101
0000 0000 LLLL LLLL

Objmode 1

RPT –

CYC 1

Operands P – Product register

XT – Multiplicand register.

loc32 – Addressing mode (see Chapter 5)

Description Multiply the signed 32-bit content of the XT register by the unsigned 32-bit content of the
location pointed to by the “loc32” addressing mode. The product shift mode (PM) then
determines which part of the lower 38 bits of the 64-bit result are stored in the P register:
temp(37:0) = lower_38 bits(signed XT * unsigned [loc32]);
if(PM = +4 shift)

P(31:4) = temp(27:0), P(3:0) = 0;
if(PM = +1 shift)

P(31:1) = temp(30:0), P(0) = 0;
if(PM = 0 shift)

P(31:0) = temp(31:0);
if(PM = −1 shift)

P(31:0) = temp(32:1);
if(PM = −2 shift)

P(31:0) = temp(33:2);
if(PM = −3 shift)

P(31:0) = temp(34:3);
if(PM = −4 shift)

P(31:0) = temp(35:4);
if(PM = −5 shift)

P(31:0) = temp(36:5);
if(PM = −6 shift)

P(31:0) = temp(37:6);

Flags and Modes

Flags and Modes Description

PM The value in the PM bits sets the shift mode that determines which portion of the lower
38 bits of the 64-bit results are stored in the P register.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

IMPYXUL P,XT,loc32 — Signed 32 X Unsigned 32-Bit Multiply (Lower Half) www.ti.com

208 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

Example ; Calculate result: Y64 = M64*X64 + B64
; Y64 = Y1:Y0, M64 = M1:M0, X64 = X1:X0, B64 = B1:B0

MOVL XT,@X0 ; XT = X0
IMPYL P,XT,@M0 ; P = low 32 bits of (uns M0 * uns X0)
MOVL ACC,@B0 ; ACC = B0
ADDUL ACC,@P ; ACC = ACC + P
MOVL @Y0,ACC ; Store result into Y0
QMPYUL P,XT,@M0 ; P = high 32 bits of (uns M0 * uns X0)
MOVL XT,@X1 ; XT = X1
MOVL ACC,@P ; ACC = P
IMPYXUL P,XT,@M0 ; P = low 32 bits of (uns M0 * sign X1)
MOVL XT,@M1 ; XT = M1
ADDCL ACC,@P ; ACC = ACC + P + carry
IMPYXUL P,XT,@X0 ; P = low 32 bits of (sign M1 * uns X0)
ADDUL ACC,@P ; ACC = ACC + P
ADDUL ACC,@B1 ; ACC = ACC + B1
MOVL @Y1,P ; Store result into Y1

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com IN loc16,*(PA) — Input Data From Port

209SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

IN loc16,*(PA) Input Data From Port

Syntax Options IN loc16,*(PA)

Opcode 1011 0100 LLLL LLLL
CCCC CCCC CCCC CCCC

Objmode 1

RPT Y

CYC N+2

Operands loc16 – Addressing mode (see Chapter 5)

*(PA) – Immediate I/O space memory address

Description Load the location pointed to by the “loc16” addressing mode with the content of the
specified I/O location pointed to by ”*(PA)”:
[loc16] = IOspace[PA];

I/O Space is limited to 64K range (0x0000 to 0xFFFF). On the external interface
(XINTF), the I/O strobe signal (XIS), if available on your particular device, is toggled
during the operation. The I/O address appears on the lower 16 XINTF address lines
(XA[15:0]) and the upper address lines are zeroed. The data is read on the lower 16
data lines (XD[15:0]).

Note: I/O space may not be implemented on all C28x devices. See the data sheet for
your particular device for details.

Flags and Modes

Flags and Modes Description

N If (loc16 = @AX), then after the move AX is tested for a negative condition. The
negative flag bit is set if bit 15 of AX is 1, otherwise it is cleared.

Z If (loc16 = @AX), then after the move, AX is tested for a zero condition. The zero flag
bit is set if AX = 0, otherwise it is cleared.

Repeat This instruction is repeatable. If the operation follows a RPT instruction, then it will be
executed N+1 times. When repeated, the “(PA)” I/O space address is post-incremented
by 1 during each repetition.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

IN loc16,*(PA) — Input Data From Port www.ti.com

210 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

Example ; IORegA address = 0x0300;
; IOREgB address = 0x0301;
; IOREgC address = 0x0302;
; IORegA = 0x0000;
; IORegB = 0x0400;
; IORegC = VarA;
; if(IORegC = 0x2000)

; IORegC = 0x0000;
IORegA .set 0x0300 ; Define IORegA address
IORegB .set 0x0301 ; Define IORegB address
IORegC .set 0x0302 ; Define IORegC address

MOV @AL,#0 ; AL = 0
UOUT *(IORegA),@AL ; IOspace[IORegA] = AL
MOV @AL,#0x0400 ; AL = 0x0400
UOUT *(IORegB),@AL ; IOspace[IORegB] = AL
OUT *(IORegC),@VarA ; IOspace[IORegC] = VarA
IN @AL,*(IORegC) ; AL = IOspace[IORegC]
CMP @AL,#0x2000 ; Set flags on (AL − 0x2000)
SB $10,NEQ ; Branch if not equal
MOV @AL,#0 ; AL = 0
UOUT *(IORegC),@AL ; IOspace[IORegC] = AL

$10:

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com INC loc16 — Increment by 1

211SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

INC loc16 Increment by 1

Syntax Options INC loc16

Opcode 0000 1010 LLLL LLLL

Objmode X

RPT –

CYC 1

Operands loc16 – Addressing mode (see Chapter 5)

Description Add 1 to the signed content of the location pointed to by the “loc16” addressing mode:
[loc16] = [loc16] + 1;

Flags and Modes

Flags and Modes Description
N After the operation if bit 15 of [loc16] 1, set N; otherwise, clear N.
Z After the operation if [loc16] is zero, set Z; otherwise, clear Z.
C If the addition generates a carry, C is set; otherwise C is cleared.
V If an overflow occurs, V is set; otherwise V is not affected.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; VarA = VarA + 1;
INC @VarA ; Increment contents of VarA

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

INTR — Emulate Hardware Interrupt www.ti.com

212 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

INTR Emulate Hardware Interrupt

Syntax Options

Syntax Options Opcode Objmode RPT CYC
INTR INTx 0000 0000 0001 CCCC X – 8

INTR DLOGINT 0000 0000 0001 CCCC X – 8

INTR RTOSINT 0000 0000 0001 CCCC X – 8

INTR NMI 0111 0110 0001 0110 X – 8

INTR EMUINT 0111 0110 0001 1100 X – 8

Operands INTx – Maskable CPU interrupt vector name, x = 1 to 14

DLOGINT – Maskable CPU datalogging interrupt

RTOSINT – Maskable CPU real-time operating system interrupt

NMI – Nonmaskable interrupt

EMUINT – Maskable emulation interrupt

Description Emulate an interrupt. The INTR instruction transfers program control to the interrupt
service routine that corresponds to the vector specified by the instruction. The INTR
instruction is not affected by the INTM bit in status register ST1. It is also not affected by
enable bits in the interrupt enable register (IER) or the debug interrupt enable register
(DBGIER). Once the INTR instruction reaches the decode 2 phase of the pipeline,
hardware interrupts cannot be serviced until the INTR instruction is finished executing
(until the interrupt service routine begins).

INTx, where x = Interrupt Vector INTx, where x = Interrupt Vector
0 RESET 8 INT8
1 INT1 9 INT9
2 INT2 10 INT10
3 INT3 11 INT11
4 INT4 12 INT12
5 INT5 13 INT13
6 INT6 14 INT14
7 INT7

Part of the operation involves saving pairs of 16-bit CPU registers onto the stack pointed
to by the SP register. Each pair of registers is saved in a single 32-bit operation. The
register forming the low word of the pair is saved first (to an even address); the register
forming the high word of the pair is saved next (to the following odd address). For
example, the first value saved is the concatenation of the T register and the status
register ST0 (T:ST0). ST0 is saved first, then T.

This instruction should not be used with vectors 1−12 when the peripheral interrupt
expansion (PIE) block is enabled.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com INTR — Emulate Hardware Interrupt

213SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

if(not the NMI vector)
Clear the corresponding IFR bit;
Flush the pipeline;
temp = PC + 1;
Fetch specified vector;
SP = SP + 1;
[SP] = T:ST0;
SP = SP + 2;
[SP] = AH:AL;
SP = SP + 2;
[SP] = PH:PL;
SP = SP + 2;
[SP] = AR1:AR0;
SP = SP + 2;
[SP] = DP:ST1;
SP = SP + 2;
[SP] = DBGSTAT:IER;
SP = SP + 2;
[SP] = temp;
Clear corresponding IER bit;
INTM = 0; // disable INT1−INT14, DLOGINT, RTOSINT
DBGM = 1; // disable debug events
EALLOW = 0; // disable access to emulation registers
LOOP = 0; // clear loop flag
IDLESTAT = 0; //clear idle flag
PC = fetched vector;

Flags and Modes

Flags and Modes Description
DBGM Debug events are disabled by setting the DBGM bit.
INTM Setting the INTM bit disables maskable interrupts.

EALLOW EALLOW is cleared to disable access to protected registers.
LOOP The loop flag is cleared.

IDLESTAT The idle flag is cleared.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

IRET — Interrupt Return www.ti.com

214 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

IRET Interrupt Return

Syntax Options IRET

Opcode 0111 0110 0000 0010

Objmode X

RPT –

CYC 8

Operands None

Description Return from an interrupt. The IRET instruction restores the PC value and other register
values that were automatically saved by an interrupt operation. The order in which the
values are restored is opposite to the order in which they were saved. All values are
popped from the stack using 32-bit operations. The stack pointer is not forced to align to
an even address during the register restore operations:
SP = SP - 2;
PC = [SP];
SP = SP - 2;

DBGSTAT:IER = [SP];
SP = SP − 2;
DP:ST1 = [SP];

SP = SP - 2;
AR1:AR0 = [SP];

SP = SP - 2;
PH:PL = [SP];
SP = SP - 2;
AH:AL = [SP];
SP = SP - 2;
T:ST0 = [SP];
SP = SP - 1;

Note: Interrupts cannot be serviced until the IRET instruction completes execution.

Flags and Modes

Flags and Modes Description
SXM The operation restores the state of all flags and modes of the ST0 register.
OVM
TC
C
Z

N V
PM

OVC
INTM
DBGM

PAGEO
VMAP
SPA
EAL-
LOW

AMODE
OBJ-

MODE
XF

ARP

The operation restores the state of the specified flags and modes of the ST1 register.
The following bits are not affected: LOOP, IDLESTAT, M0M1MAP

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com IRET — Interrupt Return

215SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Full interrupt context Save and Restore:
; Vector table:
INTx: .long INTxService ; INTx interrupt vector
.
.
.
; Interrupt context save:
INTxService: ; ACC, P, T, ST0, ST1, DP, AR0,

; AR1, IER, DPGSTAT registers saved
; on stack.
; Return PC saved on stack.
; IER bit corresponding to INTx
; is disabled.
; ST1(EALLOW bit = 0).
; ST1(LOOP bit = 0).
; ST1(DBGM bit = 1).
; ST1(INTM bit = 1).

PUSH AR1H:AR0H ; Save remaining registers. PUSH XAR2
PUSH XAR3
PUSH XAR4
PUSH XAR5
PUSH XAR6
PUSH XAR7
PUSH XT
; Interrupt user code:

.

.

.
; Interrupt context restore:
POP XT ; Restore registers.
POP XAR7
POP XAR6
POP XAR5
POP XAR4
POP XAR3
POP XAR2
POP AR1H:AR0H
IRET ; Return from interrupt.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

LB *XAR7 — Long Indirect Branch www.ti.com

216 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

LB *XAR7 Long Indirect Branch

Syntax Options LB *XAR7

Opcode 0111 0110 0010 0000

Objmode X

RPT –

CYC 4

Operands *XAR7 – Indirect program-memory addressing using auxiliary register XAR7, can access
full 4Mx16 program space range (0x000000 to 0x3FFFFF)

Description Long branch indirect. Load the PC with the lower 22 bits of the XAR7 register:
PC = XAR7(21:0);

Flags and Modes None

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Branch to subroutines in SwitchTable selected by Switch value: SwitchTable:
; Switch address table:

.long Switch0 ; Switch0 address

.long Switch1 ; Switch1 address

.

.

MOVL XAR2,#SwitchTable ; XAR2 = pointer to SwitchTable
MOVZ AR0,@Switch ; AR0 = Switch index
MOVL XAR7,*+XAR2[AR0] ; XAR7 = SwitchTable[Switch]
LB *XAR7 ; Indirect branch using XAR7

SwitchReturn:
.
.

Switch0: ; Function A:
.
.
LB SwitchReturn ; Return: long branch

Switch1: ; Function B:
.
.
LB SwitchReturn ; Return: long branch

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com LB 22bit — Long Branch

217SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

LB 22bit Long Branch

Syntax Options LB 22bit

Opcode 0000 0000 01CC CCCC
CCCC CCCC CCCC CCCC

Objmode X

RPT –

CYC 4

Operands 22bit – 22-bit program-address (0x000000 to 0x3FFFFF range)

Description Long branch. Load the PC with the selected 22-bit program address:
PC = 22bit;

Flags and Modes None

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Branch to subroutines in SwitchTable selected by Switch
; value:
SwitchTable: ; Switch address table:

.long Switch0 ; Switch0 address

.long Switch1 ; Switch1 address

.

.

MOVL XAR2,#SwitchTable ; XAR2 = pointer to SwitchTable
MOVZ AR0,@Switch ; AR0 = Switch index
MOVL XAR7,*+XAR2[AR0] ; XAR7 = SwitchTable[Switch]
LB *XAR7 ; Indirect branch using XAR7

SwitchReturn:
.
.

Switch0: ; Function A:
.
.
LB SwitchReturn ; Return: long branch

Switch1: ; Function B:
.
.
LB SwitchReturn ; Return: long branch

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

LC *XAR7 — Long Indirect Call www.ti.com

218 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

LC *XAR7 Long Indirect Call

Syntax Options LC *XAR7

Opcode 0111 0110 0000 0100

Objmode X

RPT –

CYC 4

Operands *XAR7 – Indirect program-memory addressing using auxiliary register XAR7, can access
full 4Mx16 program space range (0x000000 to 0x3FFFFF)

Description Indirect long call. The return PC value is pushed onto the software stack, pointed to by
SP register, in two 16-bit operations. Next, the destination address stored in the XAR7
register is loaded into the PC:
temp(21:0) = PC + 1;
[SP] = temp(15:0);
SP = SP + 1;
[SP] = temp(21:16);
SP = SP + 1;
PC = XAR7(21:0);

Note: For more efficient function calls when operating with Objmode = 1, use the LCR
and LRETR instructions instead of the LC and LRET instructions.

Flags and Modes None

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Call to subroutines in SwitchTable selected by Switch value:
SwitchTable: ; Switch address table:

.long Switch0 ; Switch0 address

.long Switch1 ; Switch1 address

.

.
MOVL XAR2,#SwitchTable ; XAR2 = pointer to SwitchTable
MOVZ AR0,@Switch ; AR0 = Switch index
MOVL XAR7,*+XAR2[AR0] ; XAR7 = SwitchTable[Switch]
LC *XAR7 ; Indirect call using XAR7
.
.

Switch0: ; Subroutine 0:
.
.
LRET ; Return

Switch1: ; Subroutine 1:
.
.
LRET ; Return

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com LC 22bit — Long Call

219SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

LC 22bit Long Call

Syntax Options LC 22bit

Opcode 0000 0000 10CC CCCC
CCCC CCCC CCCC CCCC

Objmode X

RPT –

CYC 4

Operands 22bit – 22-bit program-address (0x00 0000 to 0x3F FFFF range)

Description Long function call. The return PC value is pushed onto the software stack, pointed to by
SP register, in two 16-bit operations. Next, the immediate 22-bit destination address is
loaded onto the PC:
temp(21:0) = PC + 2;
[SP] = temp(15:0);
SP = SP + 1;
[SP] = temp(21:16)
SP = SP + 1;
PC = 22bit;

Note: For more efficient function calls when operating with Objmode = 1, use the LCR
and LRETR instructions instead of the LC and LRET instructions.

Flags and Modes None

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Standard function call of FuncA:
LC FuncA ; Call FuncA, return address on stack
.
.

FuncA: ; Function A:
.
.
LRET ; Return from address on stack

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

LCR #22bit — Long Call Using RPC www.ti.com

220 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

LCR #22bit Long Call Using RPC

Syntax Options LCR #22bit

Opcode 0111 0110 01CC CCCC
CCCC CCCC CCCC CCCC

Objmode 1

RPT –

CYC 4

Operands 22bit – 22-bit program-address (0x00 0000 to 0x3F FFFF range)

Description Long call using return PC pointer (RPC). The current RPC value is pushed onto the
software stack, pointed to by SP register, in two 16-bit operations. Next, the RPC
register is loaded with the return address. Next, the 22-bit immediate destination address
is loaded into the PC:
[SP] = RPC(15:0);
SP = SP + 1;
[SP] = RPC(21:16);
SP = SP + 1;
RPC = PC + 2;
PC = 22bit;

Note: The LCR and LRETR operations, enable 4 cycle call and 4 cycle return. The
standard LC and LRET operations only enable a 4 cycle call and 8 cycle return. The
LCR and LRETR operations can be nested and can freely replace the LC and LRET
operations. This is the case on interrupts also. Only on a task switch operation, does the
RPC need to be manually saved and restored.

Flags and Modes None

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; RPC call of FuncA:
LCR FuncA ; Call FuncA, return address in RPC
.
.

FuncA: ; Function A:
.
.
LRETR ; RPC return

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com LCR *XARn — Long Indirect Call Using RPC

221SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

LCR *XARn Long Indirect Call Using RPC

Syntax Options LCR *XARn

Opcode 0011 1110 0110 0RRR

Objmode 1

RPT –

CYC 4

Operands *XARn – Indirect program-memory addressing using auxiliary register XAR0 to XAR7,
can access full 4Mx16 program space range (0x000000 to 0x3FFFFF)

Description Long indirect call using return PC pointer (RPC). The current RPC value is pushed onto
the software stack, pointed to by SP register, in two 16-bit operations. Next, the RPC
register is loaded with the return address. Next, the destination address stored in the
XARn register is loaded into the PC:
[SP] = RPC(15:0);
SP = SP + 1;
[SP] = RPC(21:16);
SP = SP + 1;
RPC = PC + 1;
PC = XARn(21:0);

Note: The LCR and LRETR operations, enable 4 cycle call and 4 cycle return. The
standard LC and LRET operations only enable a 4 cycle call and 8 cycle return. The
LCR and LRETR operations can be nested and can freely replace the LC and LRET
operations. This is the case on interrupts also. Only on a task switch operation, does the
RPC need to be manually saved and restored.

Flags and Modes None

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Call to subroutines in SwitchTable selected by Switch value:
SwitchTable: ; Switch address table:

.long Switch0 ; Switch0 address

.long Switch1 ; Switch1 address

.
MOVL XAR2,#SwitchTable ; XAR2 = pointer to SwitchTable
MOVZ AR0,@Switch ; AR0 = Switch index
MOVL XAR6,*+XAR2[AR0] ; XAR6 = SwitchTable[Switch]
LCR *XAR6 ; Indirect RPC call using XAR6
.

Switch0: ; Subroutine 0:
.
.
LRETR ; RPC Return

Switch1: ; Subroutine 1:
.
LRETR ; RPC Return

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

LOOPNZ loc16,#16bit — Loop While Not Zero www.ti.com

222 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

LOOPNZ loc16,#16bit Loop While Not Zero

Syntax Options LOOPNZ loc16,#16bit

Opcode 0010 1110 LLLL LLLL
CCCC CCCC CCCC CCCC

Objmode X

RPT –

CYC 5N+5

Operands loc16 – Addressing mode (see Chapter 5)

#16bit – 16-bit immediate value (0x0000 to 0xFFFF range)

Description Loop while not zero.
while([loc16] & 16bit != 0);

The LOOPNZ instruction uses a bitwise AND operation to compare the value referenced
by the “loc16” addressing mode and the 16-bit mask value. The instruction performs this
comparison repeatedly for as long as the result of the operation is not 0. The process
can be described as follows:
1. Set the LOOP bit in status register ST1.
2. Generate the address for the value referenced by the “loc16” addressing mode.
3. If “loc16” is an indirect-addressing operand, perform any specialized modification to

the SP or the specified auxiliary register and/or the ARPn pointer.
4. Compare the addressed value with the mask value by using a bitwise AND operation.
5. If the result is 0, clear the LOOP bit and increment the PC by 2. If the result is not 0,

then return to step 1.

The loop created by steps 1 through 5 can be interrupted by hardware interrupts. When
an interrupt occurs, if the LOOPNZ instruction is still active, the return address saved on
the stack points to the LOOPNZ instruction. Therefore, upon return from the interrupt the
LOOPNZ instruction is fetched again.

While the result of the AND operation is not 0, the LOOPNZ instruction begins again
every five cycles in the decode 2 phase of the pipeline. Thus the memory location or
register is read once every five cycles. If you use an indirect addressing mode for the
“loc16” operand, you can specify an increment or decrement for the pointer (SP or
auxiliary register). If you do, the pointer is modified each time in the decode 2 phase of
the pipeline. This means that the mask value is compared with a new data-memory
value each time.

The LOOPNZ instruction does not flush prefetched instructions from the pipeline.
However, when an interrupt occurs, prefetched instructions are flushed.

When any interrupt occurs, the current state of the LOOP bit is saved as ST1 is saved
on the stack. The LOOP bit in ST1 is then cleared by the interrupt. The LOOP bit is a
passive status bit. The LOOPNZ instruction changes LOOP, but LOOP does not affect
the instruction.

You can abort the LOOPNZ instruction within an interrupt service routine. Test the LOOP
bit saved on the stack. If it is set, then increment (by 2) the return address on the stack.
Upon return from the interrupt, this incremented address is loaded into the PC and the
instruction following the LOOPNZ is executed.

Flags and Modes

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com LOOPNZ loc16,#16bit — Loop While Not Zero

223SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

Flags and Modes Description
N If bit 15 of the result of the AND operation is 1, set N; otherwise, clear N.
Z If the result of the AND operation is 0, set Z; otherwise, clear Z.

LOOP

LOOP is repeatedly set while the result of the AND operation is not 0. LOOP is cleared
when the result is 0. If an interrupt occurs before the LOOPNZ instruction enters the
decode 2 phase of the pipeline, the instruction is flushed from the pipeline and, thus,
does not affect the LOOP bit.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Wait until bit 3 in RegA is cleared before writing to RegB:
LOOPNZ @RegA,#0x0004 ; Loop while (RegA AND 0x0004 != 0)
MOV @RegB,#0x8000 ; RegB = 0x8000

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

LOOPZ loc16,#16bit — Loop While Zero www.ti.com

224 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

LOOPZ loc16,#16bit Loop While Zero

Syntax Options LOOPZ loc16,#16bit

Opcode 0010 1100 LLLL LLLL
CCCC CCCC CCCC CCCC

Objmode X

RPT –

CYC 5N+5

Operands loc16 – Addressing mode (see Chapter 5)

#16bit – 16-bit immediate value (0x0000 to 0xFFFF range)

Description Loop while zero.
while([loc16] & 16bit = 0);

The LOOPZ instruction uses a bitwise AND operation to compare the value referenced
by the “loc16” addressing mode and the 16-bit mask value. The instruction performs this
comparison repeatedly for as long as the result of the operation is 0. The process can be
described as follows:
1. Set the LOOP bit in status register ST1.
2. Generate the address for the value referenced by the “loc16” addressing mode.
3. If “loc16” is an indirect-addressing operand, perform any specialized modification to

the SP or the specified auxiliary register and/or the ARPn pointer.
4. Compare the addressed value with the mask value by using a bitwise AND operation.
5. If the result is not 0, clear the LOOP bit and increment the PC by 2. If the result is 0,

then return to step 1.

The loop created by steps 1 through 5 can be interrupted by hardware interrupts. When
an interrupt occurs, if the LOOPZ instruction is still active, the return address saved on
the stack points to the LOOPZ instruction. Therefore, upon return from the interrupt the
LOOPZ instruction is fetched again.

While the result of the AND operation is 0, the LOOPZ instruction begins again every
five cycles in the decode 2 phase of the pipeline. Thus the memory location or register is
read once every five cycles. If you use an indirect addressing mode for the “loc16”
operand, you can specify an increment or decrement for the pointer (SP or auxiliary
register). If you do, the pointer is modified each time in the decode 2 phase of the
pipeline. This means that the mask value is compared with a new data-memory value
each time.

The LOOPZ instruction does not flush prefetched instructions fr4om the pipeline.
However, when an interrupt occurs, prefetched instructions are flushed.

When any interrupt occurs, the current state of the LOOP bit is saved as ST1 is saved
on the stack. The LOOP bit in ST1 is then cleared by the interrupt. The LOOP bit is a
passive status bit. The LOOPZ instruction changes LOOP, but LOOP does not affect the
instruction.

You can abort the LOOPZ instruction within an interrupt service routine. Test the LOOP
bit saved on the stack. If it is set, then increment (by 2) the return address on the stack.
Upon return from the interrupt, this incremented address is loaded into the PC and the
instruction following the LOOPZ is executed.

Flags and Modes

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com LOOPZ loc16,#16bit — Loop While Zero

225SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

Flags and Modes Description
N If bit 15 of the result of the AND operation is 1, set N; otherwise, clear N.
Z If the result of the AND operation is 0, set Z; otherwise, clear Z.

LOOP

LOOP is repeatedly set while the result of the AND operation is 0. LOOP is cleared
when the result is not 0. If an interrupt occurs before the LOOPZ instruction enters the
decode 2 phase of the pipeline, the instruction is flushed from the pipeline and, thus,
does not affect the LOOP bit.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Wait until bit 3 in RegA is set before writing to RegB:
LOOPZ @RegA,#0x0004 ; Loop while (RegA AND 0x0004 = 0)
MOV @RegB,#0x8000 ; RegB = 0x8000

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

LPADDR — Set the AMODE Bit www.ti.com

226 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

LPADDR Set the AMODE Bit

Syntax Options LPADDR

Opcode 0101 0110 0001 1110

Objmode X

RPT –

CYC 1

Operands None

Description Set the AMODE status bit, putting the device in C2xLP compatible addressing mode
(see Chapter 5).

Note: This instruction does not flush the pipeline.

Flags and Modes

Flags and Modes Description
AMODE The AMODE bit is set.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Execute the operation "VarC = VarA + VarB" written in C2xLP syntax:
LPADDR ; Full C2xLP address compatible mode
.lp_amode ; Tell assembler we are in C2XLP mode
LDP #VarA ; Initialize DP (low 64K only)
LACL VarA ; ACC = VarA (ACC high = 0)
ADDS VarB ; ACC = ACC + VarB (unsigned)
SACL VarC ; Store result into VarC
C28ADDR ; Return to C28x address mode
.c28_amode ; Tell assembler we are in C28x mode

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com LRET — Long Return

227SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

LRET Long Return

Syntax Options LRET

Opcode 0111 0110 0001 0100

Objmode X

RPT –

CYC 8

Operands None

Description Long return. The return address is popped, from the software stack into the PC, in two
16-bit operations:
SP = SP - 1;
temp(31:16) = [SP];
SP = SP − 1;
temp(15:0) = [SP];
PC = temp(21:0);

Flags and Modes None

Note: For more efficient function calls when operating with Objmode = 1, use the LCR
and LRETR instructions in place of the LC and LRET instructions.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Standard function call of FuncA:
LC FuncA ; Call FuncA, return address on stack
.
.

FuncA: ; Function A:
.
.
LRET ; Return from address on stack

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

LRETE — Long Return and Enable Interrupts www.ti.com

228 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

LRETE Long Return and Enable Interrupts

Syntax Options LRETE

Opcode 0111 0110 0001 0000

Objmode X

RPT –

CYC 8

Operands None

Description Long return and enable interrupts. The return address is popped, from the software stack
into the PC, in two 16-bit operations. Next, the global interrupt flag (INTM) is cleared.
This enables global maskable interrupts:
SP = SP – 1;
temp(31:16) = [SP];
SP = SP − 1;
temp(15:0) = [SP];
PC = temp(21:0);
INTM = 0;

Flags and Modes

Flags and Modes Description
INTM This instruction enables interrupts by clearing the INTM bit.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Standard function call of FuncA. Disable interrupts on entry and
; enable interrupts on exit:

LC FuncA ; Call FuncA, return address on stack
.
.

FuncA: ; Function A:
SETC INTM ; Disable interrupts
.
.
LRETE ; Return from address on stack,

; Enable interrupts

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com LRETR — Long Return Using RPC

229SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

LRETR Long Return Using RPC

Syntax Options LRETR

Opcode 0000 0000 0000 0110

Objmode 1

RPT –

CYC 4

Operands None

Description Long return using return PC pointer (RPC). The return address stored in the RPC
register is loaded onto the PC. Next, the RPC register is loaded from the software stack
in two 16-bit operations:
PC = RPC;
SP = SP - 1;
temp(31:16) = [SP];
SP = SP − 1;
temp(15:0) = [SP];
RPC = temp(21:0);

Note: The LCR and LRETR operations, enable 4 cycle call and 4 cycle return. The
standard LC and LRET operations only enable a 4 cycle call and 8 cycle return. The
LCR and LRETR operations can be nested and can freely replace the LC and LRET
operations. This is the case on interrupts also. Only on a task switch operation, does the
RPC need to be manually saved and restored.

Flags and Modes None

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; RPC call of FuncA:
LCR FuncA ; Call FuncA, return address in RPC
.
.

FuncA: ; Function A:
.
.
LRETR ; RPC return

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

Last bit out

C

ACC

Left shift
0

(Immediate value)

Discard other bits

ACC

LSL ACC,#1..16 — Logical Shift Left www.ti.com

230 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

LSL ACC,#1..16 Logical Shift Left

Syntax Options LSL ACC,#1..16

Opcode 1111 1111 0011 SHFT

Objmode X

RPT Y

CYC N+1

Operands ACC – Accumulator register

#1..16 – Shift value

Description Perform a logical shift left on the content of the ACC register by the amount specified by
the shift value. During the shift, the low order bits of the ACC register are zero filled and
the last bit shifted out is stored in the carry flag bit:

Flags and Modes

Flags and Modes Description

N After the shift, if bit 31 of ACC is 1 then the negative flag bit is set; otherwise it is
cleared.

Z After the shift, if ACC is 0, then the Z bit is set, otherwise it is cleared.
C The last bit to be shifted out of ACC is stored in C.

Repeat This instruction is repeatable. If the operation follows a RPT instruction, then the LSL
instruction will be executed N+1 times. The state of the Z, N, and C flags will reflect the
final result.

Example ; Logical shift left contents of VarA by 4:
MOVL ACC,@VarA ; ACC = VarA
LSL ACC,#4 ; Logical shift left ACC by 4
MOVL @VarA,ACC ; Store result into VarA

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

Last bit out or cleared

C

ACC

Left shift
0

(Contents T [3:0])

Discard other bits

ACC

www.ti.com LSL ACC,T — Logical Shift Left by T(3:0)

231SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

LSL ACC,T Logical Shift Left by T(3:0)

Syntax Options LSL ACC,T

Opcode 1111 1111 0101 0000

Objmode X

RPT –

CYC 1

Operands ACC – Accumulator register

T – Upper 16 bits of the multiplicand (XT) register

Description Perform a logical shift left on the content of the ACC register by the amount specified by
the four least significant bits of the T register, T(3:0) = 0…15. Higher order bits are
ignored. During the shift, the low order bits of the ACC register are zero filled. If T
specifies a shift of 0, then C is cleared; otherwise, C is filled with the last bit to be shifted
out of the ACC register:

Flags and Modes

Flags and Modes Description

Z
After the shift, the Z flag is set if the ACC value is zero, else Z is cleared. Even if the T
register specifies a shift of 0, the content of the ACC register is still tested for the zero
condition and Z is affected.

N
After the shift, the N flag is set if bit 31 of the ACC is 1, else N is cleared. Even if the T
register specifies a shift of 0, the content of the ACC register is still tested for the
negative condition and N is affected.

C If (T(3:0) = 0) then C is cleared; otherwise, the last bit shifted out is loaded into the C
flag bit.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Logical shift left contents of VarA by VarB:
MOVL ACC,@VarA ; ACC = VarA
MOV T,@VarB ; T = VarB (shift value)
LSL ACC,T ; Logical shift left ACC by T(3:0)
MOVL @VarA,ACC ; Store result into VarA

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

Last bit out

C

AX

Left shift
0

(Immediate value)

Discard other bits

AX

LSL AX,#1...16 — Logical Shift Left www.ti.com

232 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

LSL AX,#1...16 Logical Shift Left

Syntax Options LSL AX,#1...16

Opcode 1111 1111 100A SHFT

Objmode X

RPT –

CYC 1

Operands AX – Accumulator high (AH) or accumulator low (AL) register

#1..16 – Shift value

Description Perform a logical shift left on the content of the specified AX register (AH or AL) by the
amount given “shift value” field. During the shift, the low order bits of the AX register are
zero filled and the last bit to be shifted out is stored in the carry bit flag:

Flags and Modes

Flags and Modes Description
N After the shift, if bit 15 of AX is 1 then the negative flag bit is set; otherwise it is cleared.
Z After the shift, if AX is 0, then the Z bit is set, otherwise it is cleared.
C The last bit to be shifted out of AH or AL is stored in C.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Multiply index register AR0 by 2:
MOV AL,@AR0 ; Load AL with contents of AR0
LSL AL,#1 ; Scale result by 1 (*2)
MOV @AR0,AL ; Store result back in AR0

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

Last bit out or cleared

C

AX

Left shift
0

(Contents of T [3:0])

Discard other bits

AX

www.ti.com LSL AX,T — Logical Shift Left by T(3:0)

233SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

LSL AX,T Logical Shift Left by T(3:0)

Syntax Options LSL AX,T

Opcode 1111 1111 0110 011A

Objmode X

RPT –

CYC 1

Operands AX – Accumulator high (AH) or accumulator low (AL) register

T – Upper 16 bits of the multiplicand (XT) register

Description Perform a logical shift left on the content of the specified AX register by the amount
specified by the four least significant bits of the T register, T(3:0). The contents of higher
order bits are ignored. During the shift, the low order bits of the AX register are zero
filled. If the T(3:0) register bits specify a shift of 0, then C is cleared; otherwise, C is filled
with the last bit to be shifted out of AX:

Flags and Modes

Flags and Modes Description

N
After the shift, if bit 15 of AX is 1 then the negative flag bit is set; otherwise it is cleared.
Even if the T(3:0) register bits specify a shift of 0, the value of AH or AL is still tested
for the negative condition and N is affected.

Z
After the shift, if AX is 0, then the Z bit is set, otherwise it is cleared. Even if the T(3:0)
register bits specify a shift of 0, the value of AH or AL is still tested for the zero
condition and Z is affected.

C If T(3:0) specifies a shift of 0, then C is cleared; otherwise, C is filled with the last bit to
be shifted out of AH or AL.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Calculate value: VarC = VarA << VarB;
MOV T,@VarB ; Load T with contents of VarB
MOV AL,@VarA ; Load AL with contents of VarA
LSL AL, T ; Scale AL by value in T bits 0 to 3
MOV @VarC,AL ; Store result in VarC

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

Last bit out

C

ACC:P

Left shift
0

(Immediate value)

Discard other bits

ACC:P

LSL64 ACC:P,#1..16 — Logical Shift Left www.ti.com

234 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

LSL64 ACC:P,#1..16 Logical Shift Left

Syntax Options LSL64 ACC:P,#1..16

Opcode 0101 0110 1010 SHFT

Objmode 1

RPT –

CYC 1

Operands ACC:P – Accumulator register (ACC) and product register (P)

#1..16 – Shift value

Description Logical shift left the 64-bit combined value of the ACC:P registers by the amount
specified in the shift value field. During the shift, the low order bits are zero-filled and the
last bit shifted out is stored in the carry bit flag:

Flags and Modes

Flags and Modes Description

n After the shift, if bit 31 of the ACC register is 1 then ACC:P is negative and the N bit is
set; otherwise N is cleared.

Z After the shift, the Z flag is set if the combined 64-bit value of the ACC:P is zero;
otherwise, Z is cleared.

C The last bit shifted out of the combined 64-bit value is loaded into the C bit.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Logical shift left the 64-bit Var64 by 10:
MOVL ACC,@Var64+2 ; Load ACC with high 32 bits of Var64
MOVL P,@Var64+0 ; Load P with low 32 bits of Var64
LSL64 ACC:P,#10 ; Logical shift left ACC:P by 10
MOVL @Var64+2,ACC ; Store high 32-bit result into Var64
MOVL @Var64+0,P ; Store low 32-bit result into Var64

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

Last bit out or cleared

C

ACC:P

Left shift
0

(Contents of T [5:0])

Discard other bits

ACC:P

www.ti.com LSL64 ACC:P,T — 64-Bit Logical Shift Left by T(5:0)

235SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

LSL64 ACC:P,T 64-Bit Logical Shift Left by T(5:0)

Syntax Options LSL64 ACC:P,T

Opcode 0101 0110 0101 0010

Objmode 1

RPT –

CYC 1

Operands ACC:P – Accumulator register (ACC) and product register (P)

T – Upper 16 bits of the multiplicand register (XT)

Description Logical shift left the 64-bit combined value of the ACC:P registers by the amount
specified in the six least significant bits of the T register, T(5:0) = 0…63. Higher order
bits are ignored. During the shift, the low order bits are zero-filled. If T specifies a shift of
0, then C is cleared; otherwise, C is filled with the last bit to be shifted out of the ACC:P
registers:

Flags and Modes

Flags and Modes Description

N After the shift, if bit 31 of the ACC register is 1 then ACC:P is negative and the N bit is
set; otherwise N is cleared.

Z After the shift, the Z flag is set if the combined 64-bit value of the ACC:P is zero;
otherwise, Z is cleared.

C If (T(5:0) = 0) clear C; otherwise, the last bit shifted out of the combined 64-bit value is
loaded into the C bit.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Logical shift left the 64-bit Var64 by contents of Var16:
MOVL ACC,@Var64+2 ; Load ACC with high 32 bits of Var64
MOVL P,@Var64+0 ; Load P with low 32 bits of Var64
MOV T,@Var16 ; Load T with shift value from Var16
LSL64 ACC:P,T ; Logical shift left ACC:P by T(5:0)
MOVL @Var64+2,ACC ; Store high 32-bit result into Var64
MOVL @Var64+0,P ; Store low 32-bit result into Var64

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

Last bit out or cleared

C

ACC

Left shift
0

(Contents of T [4:0])

Discard other bits

ACC

LSLL ACC,T — Logical Shift Left by T (4:0) www.ti.com

236 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

LSLL ACC,T Logical Shift Left by T (4:0)

Syntax Options LSLL ACC,T

Opcode 0101 0110 0011 1011

Objmode 1

RPT –

CYC 1

Operands ACC – Accumulator register

T – Upper 16 bits of the multiplicand (XT) register

Description Perform a logical shift left on the content of the ACC register by the amount specified by
the five least significant bits of the T register, T(4:0) = 0…31. Higher order bits are
ignored. During the shift, the low order bits of the ACC register are zero filled. If T
specifies a shift of 0, then C is cleared; otherwise, C is filled with the last bit to be shifted
out of the ACC register:

Flags and Modes

Flags and Modes Description

Z
After the shift, the Z flag is set if the ACC value is zero, else Z is cleared. Even if the T
register specifies a shift of 0, the content of the ACC register is still tested for the zero
condition and Z is affected.

N
After the shift, the N flag is set if bit 31 of the ACC is 1, else N is cleared. Even if the T
register specifies a shift of 0, the content of the ACC register is still tested for the
negative condition and N is affected.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Logical shift left contents of VarA by VarB:

MOVL ACC,@VarA ; ACC = VarA
MOV T,@VarB ; T = VarB (shift value)
LSLL ACC,T ; Logical shift left ACC by T(4:0)
MOVL @VarA,ACC ; Store result into VarA

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

AX Last bit out

C

0 Right shift

(Immediate value)

Discard other bits

AX

www.ti.com LSR AX,#1...16 — Logical Shift Right

237SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

LSR AX,#1...16 Logical Shift Right

Syntax Options LSR AX,#1...16

Opcode 1111 1111 110A SHFT

Objmode X

RPT –

CYC 1

Operands AX – Accumulator high (AH) or accumulator low (AL) register

#1..16 – Shift value

Description Perform a logical right shift on the content of the specified AX register by the amount
given by the “shift value” field. During the shift, the high order bits of the AX register are
zero filled and the last bit to be shifted out is stored in the carry flag bit:

Flags and Modes

Flags and Modes Description
N After the shift, if bit 15 of AX is 1 then the negative flag bit is set; otherwise it is cleared.
Z After the shift, if AX is 0, then the Z bit is set, otherwise it is cleared.
C The last bit to be shifted out of AH or AL is stored in C.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Divide index register AR0 by 2:
MOV AL,@AR0 ; Load AL with contents of AR0
LSR AL,#1 ; Scale result by 1 (/2)
MOV @AR0,AL ; Store result back in AR0

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

AX Last bit out or cleared

C

0 Right shift

(Contents of T [3:0])

Discard other bits

AX

LSR AX,T — Logical Shift Right by T(3:0) www.ti.com

238 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

LSR AX,T Logical Shift Right by T(3:0)

Syntax Options LSR AX,T

Opcode 1111 1111 0110 001A

Objmode X

RPT –

CYC 1

Operands AX – Accumulator high (AH) or accumulator low (AL) register

T – Upper 16 bits of the multiplicand (XT) register

Description Perform a logical shift right on the content of the specified AX register (AH or AL) as
specified by the four least significant bits of the T register, T(3:0). The contents of higher
order bits are ignored. During the shift, the high order bits of the AX register are zero
filled If the T(3:0) register bits specify a shift of 0, then C is cleared; otherwise, C is filled
with the last bit to be shifted out of AX:

Flags and Modes

Flags and Modes Description

N
After the shift, if bit 15 of AX is 1 then the negative flag bit is set; otherwise it is cleared.
Even if the T(3:0) register bits specify a shift of 0, the value of AH or AL is still tested
for the negative condition and N is affected.

Z
After the shift, if AX is 0, then the Z bit is set, otherwise it is cleared. Even if the T(3:0)
register bits specify a shift of 0, the value of AH or AL is still tested for the zero
condition and Z is affected.

C If T(3:0) specifies a shift of 0, then C is cleared; otherwise, C is filled with the last bit to
be shifted out of AH or AL.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Calculate un-signed value: VarC = VarA >> VarB;
MOV T,@VarB ; Load T with contents of VarB
MOV AL,@VarA ; Load AL with contents of VarA
LSR AL, T ; Scale AL by value in T bits 0 to 3
MOV @VarC,AL ; Store result in VarC

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

ACC:P Last bit out

C

0 Right shift

(Immediate value)

Discard other bits

ACC:P

www.ti.com LSR64 ACC:P,#1..16 — 64-Bit Logical Shift Right

239SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

LSR64 ACC:P,#1..16 64-Bit Logical Shift Right

Syntax Options LSR64 ACC:P,#1..16

Opcode 0101 0110 1001 SHFT

Objmode 1

RPT –

CYC 1

Operands ACC:P – Accumulator register (ACC) and product register (P)

#1..16 – Shift value

Description Logical shift right the 64-bit combined value of the ACC:P registers by the amount
specified in the shift value field. As the value is shifted, the most significant bits are zero
filled and the last bit shifted out is stored in the carry bit flag:

Flags and Modes

Flags and Modes Description

N After the shift, if bit 31 of the ACC register is 1 then ACC:P is negative and the N bit is
set; otherwise N is cleared.

Z After the shift, the Z flag is set if the combined 64-bit value of the ACC:P is zero;
otherwise, Z is cleared.

C The last bit shifted out of the combined 64-bit value is loaded into the C bit.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Logical shift right the 64-bit Var64 by 10:
MOVL ACC,@Var64+2 ; Load ACC with high 32 bits of Var64

MOVL P,@Var64+0 ; Load P with low 32 bits of Var64
LSR64 ACC:P,#10 ; Logical shift right ACC:P by 10
MOVL @Var64+2,ACC ; Store high 32-bit result into Var64
MOVL @Var64+0,P ; Store low 32-bit result into Var64

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

ACC:P Last bit out or cleared

C

0 Right shift

(Contents of T [5:0])

Discard other bits

ACC:P

LSR64 ACC:P,T — 64-Bit Logical Shift Right by T(5:0) www.ti.com

240 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

LSR64 ACC:P,T 64-Bit Logical Shift Right by T(5:0)

Syntax Options LSR64 ACC:P,T

Opcode 0101 0110 0101 1011

Objmode 1

RPT –

CYC 1

Operands ACC:P – Accumulator register (ACC) and product register (P)

T – Upper 16 bits of the multiplicand register (XT)

Description Logical shift right the 64-bit combined value of the ACC:P registers by the amount
specified by the six least significant bits of the T register, T(5:0) = 0…63. Higher order
bits are ignored. As the value is shifted, the most significant bits are zero filled. If T
specifies a shift of 0, then C is cleared; otherwise, C is filled with the last bit to be shifted
out of the ACC:P registers:

Flags and Modes

Flags and Modes Description

N After the shift, if bit 31 of the ACC register is 1 then ACC:P is negative and the N bit is
set; otherwise N is cleared.

Z After the shift, the Z flag is set if the combined 64-bit value of the ACC:P is zero;
otherwise, Z is cleared.

C If (T(5:0) = 0) clear C; otherwise, the last bit shifted out of the combined 64-bit value is
loaded into the C bit.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Arithmetic shift right the 64-bit Var64 by contents of Var16:
MOVL ACC,@Var64+2 ; Load ACC with high 32 bits of Var64
MOVL P,@Var64+0 ; Load P with low 32 bits of Var64
MOV T,@Var16 ; Load T with shift value from Var16
LSR64 ACC:P,T ; Logical shift right ACC:P by T(5:0)
MOVL @Var64+2,ACC ; Store high 32-bit result into Var64
MOVL @Var64+0,P ; Store low 32-bit result into Var64

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

ACC Last bit out or cleared

C

0 Right shift

(Contents of T [4:0])

Discard other bits

ACC

www.ti.com LSRL ACC,T — Logical Shift Right by T (4:0)

241SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

LSRL ACC,T Logical Shift Right by T (4:0)

Syntax Options LSRL ACC,T

Opcode 0101 0110 0010 0010

Objmode 1

RPT –

CYC 1

Operands ACC – Accumulator register

T – Upper 16 bits of the multiplicand (XT) register

Description Perform a logical shift right on the content of the ACC register as specified by the five
least significant bits of the T register, T(4:0) = 0…31. Higher order bits are ignored.
During the shift, the high order bits of ACC are zero-filled. If T specifies a shift of 0, then
C is cleared; otherwise, C is filled with the last bit to be shifted out of the ACC register:

Flags and Modes

Flags and Modes Description

Z
After the shift, the Z flag is set if the ACC value is zero, else Z is cleared. Even if the T
register specifies a shift of 0, the content of the ACC register is still tested for the zero
condition and Z is affected.

N
After the shift, the N flag is set if bit 31 of the ACC is 1, else N is cleared. Even if the T
register specifies a shift of 0, the content of the ACC register is still tested for the
negative condition and N is affected.

C If (T(4:0) = 0) then C is cleared; otherwise, the last bit shifted out is loaded into the C
flag bit.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Logical shift right contents of VarA by VarB:
MOVL ACC,@VarA ; ACC = VarA
MOV T,@VarB ; T = VarB (shift value)
LSRL ACC,T ; Logical shift right ACC by T(4:0)
MOVL @VarA,ACC ; Store result into VarA

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

MAC P,loc16,0:pma — Multiply and Accumulate www.ti.com

242 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

MAC P,loc16,0:pma Multiply and Accumulate

Syntax Options MAC P,loc16,0:pma

Opcode 0001 0100 LLLL LLLL
CCCC CCCC CCCC CCCC

Objmode X

RPT Y

CYC N+2

Operands P – Product register

loc16 – Addressing mode (see Chapter 5)

0:pma – Immediate program memory address, access low 64K range of program space
only (0x000000 to 0x00FFFF)

Description
1. Add the previous product (stored in the P register), shifted as specified by the

product shift mode (PM), to the ACC register.
2. Load the T register with the content of the location pointed to by the “loc16”

addressing mode.
3. Multiply the signed 16-bit content of the T register by the signed 16-bit content of the

addressed program memory location and store the 32-bit result in the P register:
ACC = ACC + P << PM;
T = [loc16];
P = signed T * signed Prog[0x00:pma];

The C28x forces the upper 6 bits of the program memory address, specified by the
“0:pma” addressing mode, to 0x00 when using this form of the MAC instruction. This
limits the program memory address to the low 64K of program address space (0x000000
to 0x00FFFF). On the C28x devices, memory blocks are mapped to both program and
data space (unified memory), hence the “0:pma” addressing mode can be used to
access data space variables that fall within its address range.

Flags and Modes

Flags and Modes Description
Z After the addition, the Z flag is set if the ACC value is zero, else Z is cleared.
N After the addition, the N flag is set if bit 31 of the ACC is 1, else N is cleared.
C If the addition generates a carry, C is set; otherwise C is cleared.
V If an overflow occurs, V is set; otherwise V is not affected.

OVC
If overflow mode is disabled; and if the operation generates a positive overflow, then
the counter is incremented. If overflow mode is disabled; and if the operation generates
a negative overflow, then the counter is decremented.

OVM If overflow mode bit is set; then the ACC value will saturate maximum positive
(0x7FFFFFFF) or maximum negative (0x80000000) if the operation overflowed.

PM

The value in the PM bits sets the shift mode for the output operation from the product
register. If the product shift value is positive (logical left shift operation), then the low
bits are zero filled. If the product shift value is negative (arithmetic right shift operation),
the upper bits are sign extended.

Repeat This instruction is repeatable. If the operation follows a RPT instruction, then it will be
executed N+1 times. The state of the Z, N, C and OVC flags will reflect the final result.
The V flag will be set if an intermediate overflow occurs. When repeated, the program-
memory address is incremented by 1 during each repetition.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com MAC P,loc16,0:pma — Multiply and Accumulate

243SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

Example ; Calculate sum of product using 16-bit multiply:
; int16 X[N] ; Data information
; int16 C[N] ; Coefficient information, located in low 64K
; sum = 0;
; for(i=0; i < N; i++)
; sum = sum + (X[i] * C[i]) >> 5;

MOVL XAR2,#X ; XAR2 = pointer to X
SPM −5 ; Set product shift to ">> 5"
ZAPA ; Zero ACC, P, OVC
RPT #N−1 ; Repeat next instruction N times

||MAC P,*XAR2++,0:C ; ACC = ACC + P >> 5,
; P = *XAR2++ * *C++

ADDL ACC,P << PM ; Perform final accumulate
MOVL @sum,ACC ; Store final result into sum

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

MAC P ,loc16,*XAR7/++ — Multiply and Accumulate www.ti.com

244 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

MAC P ,loc16,*XAR7/++ Multiply and Accumulate

Syntax Options

Syntax Options Opcode Objmode RPT CYC
MAC P, loc16, *XAR7 0101 0110 0000 0111

1100 0111 LLLL LLLL
1 Y N+2

MAC P, loc16, *XAR7++ 0101 0110 0000 0111
1000 0111 LLLL LLLL

1 Y N+2

Operands P – Product register

loc16 – Addressing mode (see Chapter 5)

*XAR7/++ – Indirect program-memory addressing using auxiliary register XAR7, can
access full 4M x 16 program space range (0x000000 to 0x3FFFFF)

Description Use the following steps for this instruction:
1. Add the previous product (stored in the P register), shifted as specified by the

product shift mode (PM), to the ACC register.
2. Load the T register with the content of the location pointed to by the “loc16”

addressing mode.
3. Multiply the signed 16-bit content of the T register by the signed 16-bit content of the

program memory location pointed to by the XAR7 register and store the 32-bit result
in the P register. If specified, post-increment the XAR7 register by 1:
ACC = ACC + P << PM;
T = [loc16];
P = signed T * signed Prog[*XAR7 or *XAR7++];

On the C28x devices, memory blocks are mapped to both program and data space
(unified memory), hence the “XAR7/++” addressing mode can be used to access data
space variables that fall within the program space address range.

With some addressing mode combinations, you can get conflicting references. In such
cases, the C28x will give the “loc16/loc32” field priority on changes to XAR7. For
example:
MAC P,*−−XAR7,*XAR7++ ; −−XAR7 given priority
MAC P,*XAR7++,*XAR7 ; *XAR7++ given priority
MAC P,*XAR7,*XAR7++ ; *XAR7++ given priority

Flags and Modes

Flags and Modes Description
Z After the addition, the Z flag is set if the ACC value is zero, else Z is cleared.
N After the addition, the N flag is set if bit 31 of the ACC is 1, else N is cleared.
C If the addition generates a carry, C is set; otherwise C is cleared.
V If an overflow occurs, V is set; otherwise V is not affected.

OVC
If overflow mode is disabled; and if the operation generates a positive overflow, then
the counter is incremented. If overflow mode is disabled; and if the operation generates
a negative overflow, then the counter is decremented.

OVM If overflow mode bit is set; then the ACC value will saturate maximum positive
(0x7FFFFFFF) or maximum negative (0x80000000) if the operation overflowed.

PM

The value in the PM bits sets the shift mode for the output operation from the product
register. If the product shift value is positive (logical left shift operation), then the low
bits are zero filled. If the product shift value is negative (arithmetic right shift operation),
the upper bits are sign extended.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com MAC P ,loc16,*XAR7/++ — Multiply and Accumulate

245SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

Repeat This instruction is repeatable. If the operation follows a RPT instruction, then it will be
executed N+1 times. The state of the Z, N, C and OVC flags will reflect the final result.
The V flag will be set if an intermediate overflow occurs.

Example ; Calculate sum of product using 16-bit multiply:
; int16 X[N] ; Data information
; int16 C[N] ; Coefficient information (located in low 4M)
; sum = 0;
; for(i=0; i < N; i++)
; sum = sum + (X[i] * C[i]) >> 5;

MOVL XAR2,#X ; XAR2 = pointer to X
MOVL XAR7,#C ; XAR7 = pointer to C
SPM −5 ; Set product shift to ">> 5"
ZAPA ; Zero ACC, P, OVC
RPT #N−1 ; Repeat next instruction N times

||MAC P,*XAR2++,*XAR7++ ; ACC = ACC + P >> 5,
; P = *XAR2++ * *XAR7++

ADDL ACC,P << PM ; Perform final accumulate
MOVL @sum,ACC ; Store final result into sum

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

MAX AX, loc16 — Find the Maximum www.ti.com

246 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

MAX AX, loc16 Find the Maximum

Syntax Options MAX AX, loc16

Opcode 0101 0110 0111
001A 0000 0000 LLLL LLLL

Objmode 1

RPT Y

CYC N+1

Operands AX – Accumulator high (AH) or accumulator low (AL) register

loc16 – Addressing modes (see Chapter 5)

Description Compare the signed contents of the specified AX register (AH or AL) with the signed
content of the location pointed to by the “loc16” addressing mode and load the AX
register with the larger of these two values:
if(AX < [loc16]), AX = [loc16];
if(AX >= [loc16]), AX = unchanged;

Flags and Modes

Flags and Modes Description

N If AX is less than the contents of the addressed location (AX <[loc16]) then the
negative flag bit will be set; otherwise, it will be cleared.

Z If AX and the contents of the addressed location are equal (AX = [loc16]) then the zero
flag bit will be set; otherwise, it will be cleared.

V If AX is less than the contents of the addressed location (AX <[loc16]) then the overflow
flag bit will be set. This instruction cannot clear the V flag.

Repeat If the operation is follows a RPT instruction, the instruction will be executed N+1 times.
The state of the N, Z, and V flags will reflect the final result.

Example ; Saturate VarA as follows:
; if(VarA > 2000) VarA = 2000;
; if(VarA < −2000) VarA = −2000;
MOV AL,@VarA ; Load AL with contents of VarA
MOV @AH,#2000 ; Load AH with the value 2000
MIN AL,@AH ; if(AL > AH) AL = AH
NEG AH ; AH = −2000
MAX AL,@AH ; if(AL < AH) AL = AH
MOV @VarA,AL ; Store result into VarA

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com MAXCUL P,loc32 — Conditionally Find the Unsigned Maximum

247SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

MAXCUL P,loc32 Conditionally Find the Unsigned Maximum

Syntax Options MAXCUL P,loc32

Opcode 0101 0110 0101 0001
0000 0000 LLLL LLLL

Objmode 1

RPT –

CYC 1

Operands P – Product register

loc32 – Addressing mode (see Chapter 5)

Description Based on the state of the N and Z flags, conditionally compare the unsigned contents of
the P register with the 32-bit, unsigned content of the location pointed to by the “loc32”
addressing mode and load the P register with the larger of the two numbers:
if((N=1) & (Z=0))

P = [loc32];
if((N=0) & (Z=1) & (P < [loc32]))

V=1, P = [loc32];
if((N=0) & (Z=0))

P = unchanged;

Note: The “P < [loc32]” operation is treated like a 32-bit unsigned compare.

This instruction is typically combined with the MAXL instruction to form a 64-bit
maximum function. It is assumed that the N and Z flags will first be set by using a MAXL
instruction to compare the upper 32 bits of a 64-bit value. The MAXCUL instruction is
then used to conditionally compare the lower 32 bits based on the results of the upper
32-bit comparison.

Flags and Modes

Flags and Modes Description
N If (N = 1 and z = 0) then load P with [loc32].

Z
If (N = 0 and Z = 1) compare the unsigned content of the P with the unsigned [loc32]
and load P with the larger of the two.
If (N = 0 and Z = 0) do nothing.

V If (N = 0 AND Z = 1 AND P < [loc32]) then V is set; otherwise, V is unchanged.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Saturate 64-bit Var64 as follows:
; if(Var64 > MaxPos64) Var64 = MaxPos64
; if(Var64 < MaxNeg64) Var64 = MaxNeg64

MOVL ACC,@Var64+2 ; Load ACC:P with Var64
MOVL P,@Var64+0

MINL ACC,@MaxPos64+2 ; if(ACC:P > MaxPos64) ACC:P = MaxPos64
MINCUL P,@MaxPos64+0
SB saturate,OV
MAXL ACC,@MaxNeg64+2 ; if(ACC:P < MaxNeg64) ACC:P = MaxNeg64
MAXCUL P,@MaxNeg64+0
Saturate:
MOVL @Var64+2,ACC ; Store result into Var64
MOVL @Var64,P

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

MAXL ACC,loc32 — Find the 32-bit Maximum www.ti.com

248 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

MAXL ACC,loc32 Find the 32-bit Maximum

Syntax Options MAXL ACC,loc32

Opcode 0101 0110 0110 0001
0000 0000 LLLL LLLL

Objmode 1

RPT Y

CYC N+1

Operands ACC – Accumulator register

loc32 – Addressing mode (see Chapter 5)

Description Compare the content of the ACC register with the location pointed to by the “loc32”
addressing mode and load the ACC register with the larger of these two values:
if(ACC < [loc32]), ACC = [loc32];
if(ACC >= [loc32]), ACC = unchanged;

Flags and Modes

Flags and Modes Description

Z If ACC is equal to the contents of the addressed location (ACC = [loc32]), set Z;
otherwise, clear Z.

N

If ACC is less than the contents of the addressed location, (ACC <[loc32]), set N;
otherwise clear N. The MAXL instruction assumes infinite precision when it determines
the sign of the result. For example, consider the subtraction 0x8000 0000 − 0x0000
0001. If the precision were limited to 32 bits, the result would cause an overflow to the
positive number 0x7FFF FFFF and N would be cleared. However, because the MAXL
instruction assumes infinite precision, it would set N to indicate that 0x8000 0000 −
0x0000 0001 actually results in a negative number.

C If (ACC − [loc32]) generates a borrow, clear the C bit; otherwise set C.

V If ACC is less than the contents of the addressed location (ACC <[loc32]), set V. This
instruction cannot clear the V flag.

Repeat This instruction is repeatable. If the operation follows a RPT instruction, then the MAXL
instruction will be executed N+1 times. The state of the Z, N, and C flags will reflect the
final result. The V flag will be set if an intermediate overflow occurs.

Example ; Saturate VarA as follows:
; if(VarA > MaxPos) VarA = MaxPos
; if(VarA < MaxNeg) VarA = MaxNeg
MOVL ACC,@VarA ; ACC = VarA
MINL ACC,@MaxPos ; if(ACC > MaxPos) ACC = MaxPos
MAXL ACC,@MaxNeg ; if(ACC < MaxNeg) ACC = MaxNeg
MOVL @VarA,ACC ; Store result into VarA

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com MIN AX, loc16 — Find the Minimum

249SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

MIN AX, loc16 Find the Minimum

Syntax Options MIN AX, loc16

Opcode 0101 0110 0111 010A
0000 0000 LLLL LLLL

Objmode 1

RPT Y

CYC N+1

Operands AX – Accumulator high (AH) or accumulator low (AL) register

loc16 – Addressing modes (see Chapter 5)

Description Compare the signed content of the specified AX register (AH or AL) with the content of
the signed location pointed to by the “loc16” addressing mode and load the AX register
with the smaller of these two values:
if(AX > [loc16]), AX = [loc16];
if(AX <=[loc16]), AX = unchanged;

Flags and Modes

Flags and Modes Description

N If AX is less than the contents of the addressed location (AX <[loc16]) then the
negative flag bit will be set; otherwise, it will be cleared.

Z If AX and the contents of the addressed location are equal (AX = [loc16]) then the zero
flag bit will be set; otherwise, it will be cleared.

V If AX is greater then the contents of the addressed location (AX >[loc16]) then the
overflow flag bit will be set. This instruction cannot clear the V flag.

Repeat If the operation is follows a RPT instruction, the instruction will be executed N+1 times.
The state of the N, Z and V flags will reflect the final result.

Example ; Saturate VarA as follows:
; if(VarA > 2000) VarA = 2000;
; if(VarA < −2000) VarA = −2000;
MOV AL,@VarA ; Load AL with contents of VarA
MOV @AH,#2000 ; Load AH with the value 2000
MIN AL,@AH ; if(AL > AH) AL = AH
NEG AH ; AH = −2000
MAX AL,@AH ; if(AL < AH) AL = AH
MOV @VarA,AL ; Store result into VarA

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

MINCUL P,loc32 — Conditionally Find the Unsigned Minimum www.ti.com

250 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

MINCUL P,loc32 Conditionally Find the Unsigned Minimum

Syntax Options MINCUL P,loc32

Opcode 0101 0110 0101 1001
xxxx xxxx LLLL LLLL

Objmode 1

RPT –

CYC 1

Operands P – Product register

loc32 – Addressing mode (see <CrossReference href="#SPRU4307810"/>)

Description Based on the state of the N and Z flags, conditionally compare the unsigned contents of
the P register with the 32-bit, unsigned content of the location pointed to by the “loc32”
addressing mode and load the P register with the smaller of the two numbers:
if((N = 0) & (Z = 0))

P = [loc32];
if((N = 0) & (Z = 1) & (P > [loc32]))

V=1, P = [loc32];
if((N = 1) & (Z = 0))

P = unchanged;

Note: The “p < [loc32]” operation is treated like a 32-bit unsigned compare.

This instruction is typically combined with the MINL instruction to form a 64-bit minimum
function. It is assumed that the N and Z flags will first be set by using a MINL instruction
to compare the upper 32 bits of a 64-bit value. The MINCUL instruction is then used to
conditionally compare the lower 32 bits based on the results of the upper 32-bit
comparison.

Flags and Modes

Flags and Modes Description
N If (N = 1 AND Z = 0), then load the P register with [loc32].

Z
If (N = 0 AND Z =1), compare unsigned and load P with the smaller P register to
[loc32].
If (N = 0 AND Z = 0), do nothing.

V If (N = 0 AND Z = 1 AND P <loc32]) then V is set; otherwise, V is unchanged.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Saturate 64-bit Var64 as follows:
; if(Var64 > MaxPos64) Var64 = MaxPos64
; if(Var64 < MaxNeg64) Var64 = MaxNeg64
MOVL ACC,@Var64+2 ; Load ACC:P with Var64
MOVL P,@Var64+0
MINL ACC,@MaxPos64+2 ; if(ACC:P > MaxPos64) ACC:P = MaxPos64
MINCUL P,@MaxPos64+0
MAXL ACC,@MaxNeg64+2 ; if(ACC:P < MaxNeg64) ACC:P = MaxNeg64
MAXCUL P,@MaxNeg64+0
MOVL @Var64+2,ACC ; Store result into Var64
MOVL @Var64+0,P

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com MINL ACC,loc32 — Find the 32-bit Minimum

251SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

MINL ACC,loc32 Find the 32-bit Minimum

Syntax Options MINL ACC,loc32

Opcode 0101 0110 0101 0000
0000 0000 LLLL LLLL

Objmode 1

RPT Y

CYC N+1

Operands ACC – Accumulator register

loc32 – Addressing mode (see Chapter 5)

Description Compare the content of the ACC register with the location pointed to by the “loc32”
addressing mode and load the ACC register with the smaller of these two values:
if(ACC <= [loc32]), ACC = unchanged;
if(ACC > [loc32]), ACC = [loc32];

Flags and Modes

Flags and Modes Description

Z If ACC is equal to the contents of the addressed location (ACC = [loc32]), set Z;
otherwise clear Z.

N

If ACC is less than the contents of the addressed location, (ACC <[loc32]), set N;
otherwise clear N. The MINL instruction assumes infinite precision when it determines
the sign of the result. For example, consider the subtraction 0x8000 0000 − 0x0000
0001. If the precision were limited to 32 bits, the result would cause an overflow to the
positive number 0x7FFF FFFF and N would be cleared. However, because the MINL
instruction assumes infinite precision, it would set N to indicate that 0x8000 0000 −
0x0000 0001 actually results in a negative number.

C If (ACC − [loc32]) generates a borrow, clear the C bit; otherwise set C.

V If ACC is greater than the contents of the addressed location (ACC <[loc32]), set V.
This instruction cannot clear the V flag.

Repeat This instruction is repeatable. If the operation follows a RPT instruction, then the MINL
instruction will be executed N+1 times. The state of the Z, N, and C flags will reflect the
final result. The V flag will be set if an intermediate overflow occurs.

Example ; Saturate VarA as follows:
; if(VarA > MaxPos) VarA = MaxPos
; if(VarA < MaxNeg) VarA = MaxNeg
MOVL ACC,@VarA ; ACC = VarA
MINL ACC,@MaxPos ; if (ACC > MaxPos) ACC = MaxPos
MAXL ACC,@MaxNeg ; if (ACC < MaxNeg) ACC = MaxNeg
MOVL @VarA,ACC ; Store result into VarA

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

MOV *(0:16bit), loc16 — Move Value www.ti.com

252 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

MOV *(0:16bit), loc16 Move Value

Syntax Options MOV *(0:16bit), loc16

Opcode 1111 0100 LLLL LLLL
CCCC CCCC CCCC CCCC

Objmode X

RPT Y

CYC N+2

Operands *(0:16bit) – Immediate direct memory address, access low 64K range of data space only
(0x00000000 to 0x0000FFFF)

loc16 – Addressing mode (see Chapter 5)

Description Move the content of the location pointed to by the “loc16” addressing mode to the
memory location specified by the ”0:16bit” constant address:
[0x0000:16bit] = [loc16];

Flags and Modes None

Repeat This instruction is repeatable. If the operation follows a RPT instruction, then it will be
executed N+1 times. When repeated, the “(0:16bit)” data-memory address is post-
incremented by 1 during each repetition. Only the lower 16 bits of the address is
affected.
; Copy the contents of Array1 to Array2:
; int16 Array1[N];
; int16 Array2[N]; // Located in low 64K of data space
; for(i=0; i < N; i++)
; Array2[i] = Array1[i];

Example
MOVL XAR2,#Array1 ; XAR2 = pointer to Array1
RPT #(N−1) ; Repeat next instruction N times
||MOV *(0:Array2),*XAR2++ ; Array2[i] = Array1[i],

; i++

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com MOV ACC,#16bit<<#0..15 — Load Accumulator With Shift

253SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

MOV ACC,#16bit<<#0..15 Load Accumulator With Shift

Syntax Options MOV ACC,#16bit<<#0..15

Opcode 1111 1111 0010 SHFT
CCCC CCCC CCCC CCCC

Objmode X

RPT –

CYC 1

Operands ACC – Accumulator register

#16bit – 16-bit immediate constant value

#0..15 – Shift value (default is "<< #0” if no value specified)

Description Load the ACC register with the left shifted contents of the 16-bit immediate value. The
shifted value is sign extended if sign extension mode is turned on (SXM = 1) else the
shifted value is zero extended (SXM = 0). The lower bits of the shifted value are zero
filled:
if(SXM = 1) // sign extension mode enabled

ACC = S:16bit << shift value;
else // sign extension mode disabled

ACC = 0:16bit << shift value;

Flags and Modes

Flags and Modes Description
N After the load, the N flag is set if bit 31 of the ACC is 1, else N is cleared.
Z After the load, the Z flag is set if the ACC value is zero, else Z is cleared.

SXM If sign extension mode bit is set; then the 16-bit constant operand will be sign extended
before the load; else, the value will be zero extended.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Calculate signed value: ACC = −2010 << 10 + VarB << 6;
SETC SXM ; Turn sign extension mode on
MOV ACC,#−2010 << #10 ; Load ACC with −2010 left shifted by 10
ADD ACC,@VarB << #6 ; Add VarB left shifted by 6 to ACC

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

MOV ACC,loc16<<T — Load Accumulator With Shift www.ti.com

254 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

MOV ACC,loc16<<T Load Accumulator With Shift

Syntax Options MOV ACC,loc16<<T

Opcode 0101 0110 0000 0110
0000 0000 LLLL LLLL

Objmode 1

RPT –

CYC 1

Operands ACC – Accumulator register

loc16 – Addressing mode (see Chapter 5)

T – Upper 16 bits of the multiplicand register, XT(31:16)

Description Load the ACC register with the left-shifted contents of the 16-bit location pointed to by
the “loc16” addressing mode. The shift value is specified by the four least significant bits
of the T register, T(3:0) = shift value = 0..15. Higher order bits are ignored. The shifted
value is sign extended if sign extension mode is turned on (SXM = 1) else the shifted
value is zero extended (SXM = 0). The lower bits of the shifted value are zero filled:
if(SXM = 1) // sign extension mode enabled

ACC = S:[loc16] << T(3:0);
else // sign extension mode disabled

ACC = 0:[loc16] << T(3:0);

Flags and Modes

Flags and Modes Description
N After the load, the N flag is set if bit 31 of the ACC is 1, else N is cleared.
Z After the load, the Z flag is set if the ACC value is zero, else Z is cleared.

SXM If sign extension mode bit is set; then the 16-bit operand, addressed by the “loc16”
field, will be sign extended before the load; else the value will be zero extended.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Calculate signed value: ACC = (VarA << SB) + (VarB << SB)
SETC SXM ; Turn sign extension mode on
MOV T,@SA ; Load T with shift value in SA
MOV ACC,@VarA << T ; Load in ACC shifted contents of VarA MOV T,@SB

; Load T with shift value in SB
ADD ACC,@VarB << T ; Add to ACC shifted contents of VarB

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com MOV ACC, loc16<<#0..16 — Load Accumulator With Shift

255SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

MOV ACC, loc16<<#0..16 Load Accumulator With Shift

Syntax Options

Syntax Options Opcode Obj- Mode RPT CYC
MOV ACC,loc16<<#0 1000 0101 LLLL LLLL

1110 0000 LLLL LLLL
1
0

–
–

1
1

MOV ACC,
loc16<<#1..15

0101 0110 0000 0011
0000 SHFT LLLL LLLL

1 – 1

1110 SHFT LLLL LLLL 0 – 1

MOV ACC, loc16<<#16 0010 0101 LLLL LLLL X – 1

Operands ACC – Accumulator register

loc16 – Addressing mode (see Chapter 5)

#0..16 – Shift value (default is "<< #0” if no value specified)

Description Load the ACC register with the left shifted contents of the addressed location pointed to
by the “loc16” addressing mode. The shifted value is sign extended if sign extension
mode is turned on (SXM = 1) else the shifted value is zero extended (SXM = 0). The
lower bits of the shifted value are zero filled:
if(SXM = 1) // sign extension mode enabled

ACC = S:[loc16] << shift value;
else // sign extension mode disabled

ACC = 0:[loc16] << shift value;

Flags and Modes

Flags and Modes Description
N After the load, the N flag is set if bit 31 of the ACC is 1, else N is cleared.
Z After the load, the Z flag is set if the ACC is zero, else Z is cleared.

SXM If sign extension mode bit is set; then the 16-bit operand, addressed by the ”loc16”
field, will be sign extended before the load; else the value will be zero extended.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Calculate signed value: ACC = VarA << 10 + VarB << 6;
SETC SXM ; Turn sign extension mode on
MOV ACC,@VarA << #10 ; Load ACC with VarA left shifted by 10
ADD ACC,@VarB << #6 ; Add VarB left shifted by 6 to ACC

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

MOV AR6/7, loc16 — Load Auxiliary Register www.ti.com

256 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

MOV AR6/7, loc16 Load Auxiliary Register

Syntax Options

Syntax Options Opcode Objmode RPT CYC
MOV AR6, loc16 0101 1110 LLLL LLLL X – 1

MOV AR7, loc16 0101 1111 LLLL LLLL X – 1

Operands AR6/7 – AR6 or AR7, auxiliary registers

loc16 – Addressing mode (see Chapter 5)

Description Load AR6 or AR7 with the contents of the 16-bit location and leave the upper 16 bits of
XAR6 and XAR7 unchanged:
AR6/7 = [loc16]; AR6/7H = unchanged;

Flags and Modes None

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com MOV AX, loc16 — Load AX

257SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

MOV AX, loc16 Load AX

Syntax Options MOV AX, loc16

Opcode 1001 001A LLLL LLLL

Objmode X

RPT –

CYC 1

Operands AX – Accumulator high (AH) or accumulator low (AL) register

loc16 – Addressing mode (see Chapter 5)

Description Load accumulator high register (AH) or accumulator low register (AL) register with the
16-bit contents of the location pointed to by the “loc16” addressing mode, leaving the
other half of the accumulator register unchanged:
AX = [loc16];

Flags and Modes

Flags and Modes Description

N The load to AX is tested for a negative condition. If bit 15 of AX is 1, then this flag is
set; otherwise it is cleared.

Z The load to AX is tested for a zero condition. The bit is set if the operation results in AX
= 0, otherwise it is cleared.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example
MOV AH, *+XAR0[0] ; Load AH with the 16-bit contents

; of location pointed to by XAR0.
; AL is unchanged.

SB NotZero,NEQ ; Branch if contents of AH were non
; zero.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

MOV DP, #10bit — Load Data-Page Pointer www.ti.com

258 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

MOV DP, #10bit Load Data-Page Pointer

Syntax Options MOV DP, #10bit

Opcode 1111 10CC CCCC CCCC

Objmode X

RPT –

CYC 1

Operands DP – Data page register

#10bit – 10-bit immediate constant value

Description Load the data page register with a 10-bit constant leaving the upper 6 bits unchanged:
DP(9:0) = 10bit;
DP(15:10) = unchanged;

Flags and Modes None

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example MOV DP, #VarA ; Load DP with the data page that
; contains VarA. Assumes VarA is in
; the lower 0x0000 FFC0 of memory.
; DP(15:10) is left unchanged.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com MOV IER,loc16 — Load the Interrupt-Enable Register

259SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

MOV IER,loc16 Load the Interrupt-Enable Register

Syntax Options MOV IER,loc16

Opcode 0010 0011 LLLL LLLL

Objmode X

RPT –

CYC 5

Operands IER – Interrupt-enable register

loc16 – Addressing mode (see Chapter 5)

Description Enable and disable selected interrupts by loading the content of the location pointed to
by the “loc16” addressing mode into the IER register. Any changes take effect before the
next instruction is processed.
IER = [loc16];

Flags and Modes None

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Push the contents of IER on the stack and load IER with the
; contents of VarA:
MOV *SP++,IER ; Save IER on stack
MOV IER,@VarA ; Load IER with contents of VarA

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

MOV loc16, #16bit — Save 16-bit Constant www.ti.com

260 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

MOV loc16, #16bit Save 16-bit Constant

Syntax Options MOV loc16, #16bit

Opcode 0010 1000 LLLL LLLL
CCCC CCCC CCCC CCCC

Objmode X

RPT Y

CYC N+1

Operands loc16 – Addressing mode (see Chapter 5)

#16bit – 16-bit constant immediate value

Description Load the location pointed to by the “loc16” addressing mode with the 16-bit constant
immediate value:
[loc16] = 16bit;

Note: For #16bit = #0, see the MOV loc16, #0 instruction on page 6-166.

Smart Encoding:

If loc16 = AL or AH and #16bit is an 8-bit number, then the assembler will encode this
instruction as MOVB AX, #8bit to improve efficiency. To override this, use the MOVW
AX, #16bit alias instruction.

Flags and Modes

Flags and Modes Description

N If (loc16 = @AX), then the load to AX is tested for a negative condition. The negative
flag bit is set if bit 15 of AX is 1, otherwise it is cleared.

Z If (loc16 = @AX), then the load to AX is tested for a zero condition. The bit is set if the
result of the operation on the AX register generates a 0 value, otherwise it is cleared.

Repeat If this operation follows a RPT instruction, then it will be executed N+1 times. The state
of the N and Z flags will reflect the final result.

Example ; Initialize the contents of Array1 with 0xFFFF:
; int16 Array1[N];
; for(i=0; i < N; i++)
; Array1[i] = 0xFFFF;

MOVL XAR2,#Array1 ; XAR2 = pointer to Array1
RPT #(N−1) ; Repeat next instruction N times

||MOV *XAR2++,#0xFFFF ; Array1[i] = 0xFFFF,
; i++

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com MOV loc16, *(0:16bit) — Move Value

261SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

MOV loc16, *(0:16bit) Move Value

Syntax Options MOV loc16, *(0:16bit)

Opcode 1111 0101 LLLL LLLL
CCCC CCCC CCCC CCCC

Objmode X

RPT Y

CYC N+2

Operands loc16 – Addressing mode (see Chapter 5)

*(0:16bit) – Immediate direct memory address, access low 64K range of data space only
(0x00000000 to 0x0000FFFF)

Description Move the content of the location specified by the constant direct memory address
“0:16bit” into the location pointed to by the “loc16” addressing mode:
[loc16] = [0x0000:16bit];

Flags and Modes

Flags and Modes Description

N If (loc16 = @AX), then the load to AX is tested for a negative condition. The negative
flag bit is set if bit 15 of AX is 1, otherwise it is cleared.

Z If (loc16 = @AX), then the load to AX is tested for a zero condition. The bit is set if the
result of the operation on the AX register generates a 0 value, otherwise it is cleared.

Repeat This instruction is repeatable. If the operation follows a RPT instruction, then it will be
executed N+1 times. When repeated, the “(0:16bit)” data-memory address is post-
incremented by 1 during each repetition. Only the lower 16 bits of the address are
affected.
; Copy the contents of Array1 to Array2:
; int16 Array1[N]; // Located in low 64K of data space
; int16 Array2 N];
; for(i=0; i < N; i++)
; Array2[i] = Array1[i];

Example
MOVL XAR2,#Array2 ; XAR2 = pointer to Array2
RPT #(N−1) ; Repeat next instruction N times
||MOV *XAR2++,*(0:Array1) ; Array2[i] = Array1[i],

; i++

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

MOV loc16, #0 — Clear 16-bit Location www.ti.com

262 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

MOV loc16, #0 Clear 16-bit Location

Syntax Options MOV loc16, #0

Opcode 0010 1011 LLLL LLLL

Objmode X

RPT Y

CYC N+1

Operands loc16 – Addressing mode (see Chapter 5)

#0 – Immediate constant value of zero

Description Load the location pointed to by the “loc16” addressing mode with the value 0x0000:
[loc16] = 0x0000;

Flags and Modes

Flags and Modes Description

N If (loc16 = @AX), then the load to AX is tested for a negative condition. The negative
flag bit is set if bit 15 of AX is 1, otherwise it is cleared.

Z If (loc16 = @AX), then the load to AX is tested for a zero condition. The bit is set if the
result of the operation on the AX register generates a 0 value, otherwise it is cleared.

Repeat This instruction is repeatable. If the operation is follows a RPT instruction, then it will be
executed N+1 times.

Example ; Initialize the contents of Array1 with zero:
; int16 Array1[N];
; for(i=0; i < N; i++)
; Array1[i] = 0;

MOVL XAR2,#Array1 ; XAR2 = pointer to Array1
RPT #(N−1) ; Repeat next instruction N times

||MOV *XAR2++,#0 ; Array1[i] = 0,
; i++

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com MOV loc16,ACC << 1..8 — Save Low Word of Shifted Accumulator

263SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

MOV loc16,ACC << 1..8 Save Low Word of Shifted Accumulator

Syntax Options

Syntax Options Opcode Objmode RPT CYC
MOV loc16, ACC << 1 1011 0001 LLLL LLLL 1 Y N+1

MOV loc16, ACC << 2..8 0101 0110 0010 1101
0000 0SHF LLLL LLLL

1 Y N+1

1011 1SHF LLLL LLLL 0 – 1

Operands loc16 – Addressing mode (see Chapter 5)

ACC – Accumulator register

#1..8 – Shift value

Description Load the content of the location pointed to by the “loc16” addressing mode with the low
word of the ACC register after left−shifting by the specified value. The ACC register is
not modified:
[loc16] = ACC >> (16 − shift value); [loc16] = low (ACC <<1...8)

Flags and Modes

Flags and Modes Description

N If (loc16 = @AX), then after the load AX is checked for a negative condition. The N flag
is set if bit 15 of the AX is 1; else N is cleared.

Z If (loc16 = @AX) then after the load AX is checked for a zero condition. The Z flag is
set if AX is zero; else Z is cleared.

Repeat If the operation is repeatable, then the instruction will be executed N+1 times. The state
of the Z and N flags will reflect the final result. If the operation is not repeatable, the
instruction will execute only once.

Example ; Multiply two Q15 numbers (VarA and VarB) and store result in
; VarC as a Q15 number:
MOV T,@VarA ; T = VarA (Q15)
MPY ACC,T,@VarB ; ACC = VarA * VarB (Q30)
MOVH @VarC,ACC << 1 ; VarC = ACC >> 16−1) (Q15)

; VarC as a Q31 number:
MOV T,@VarA ; T = VarA (T = Q14)
MPY ACC,T,@VarB ; ACC = VarA * VarB (ACC = Q28)
MOV @VarC+0,ACC << 3 ; VarC low = ACC << 3
MOVH @VarC+1,ACC << 3 ; VarC high = ACC >> (16−1) (VarC = Q31)

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

MOV loc16, ARn — Store 16-bit Auxiliary Register www.ti.com

264 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

MOV loc16, ARn Store 16-bit Auxiliary Register

Syntax Options MOV loc16, ARn

Opcode 0111 1nnn LLLL LLLL

Objmode X

RPT –

CYC 1

Operands loc16 – Addressing mode (see Chapter 5)

ARn – AR0 to AR7, lower 16 bits of auxiliary registers

Description Load the contents of the 16-bit location with ARn:
[loc16] = ARn;

If(loc16 = @ARn), then only the lower 16 bits of the selected auxiliary register is
modified. The upper 16 bits is unchanged.

Flags and Modes

Flags and Modes Description

N
If (loc16 = @AX), then the load to AX is tested for a negative condition. Bit-15 of the
AX register is the sign bit, 0 for positive, 1 for negative. The negative flag bit is set if the
operation on the AX register generates a negative value, otherwise it is cleared.

Z If (loc16 = @AX), then the load to AX is tested for a zero condition. The bit is set if the
result of the operation on the AX register generates a 0 value, otherwise it is cleared.

Repeat This instruction is not repeatable. If the operation is follows a RPT instruction, it resets
the repeat counter (RPTC) and only executes once.

Example MOV @AL, AR3 ; Load AL with the 16-bit contents of
; AR3. If bit 15 of AL is 1, set the
; N flag, else clear it.
; If AL is 0, set the Z flag.

MOV @AR4,AR3 ; Load AR4 with the value in AR3.
; Upper 16 bits of XAR4 are
; unchanged.

MOV *SP++,AR3 ; Push the contents of AR3 onto the
; stack. Post increment SP.

MOV *XAR4++,AR4 ; Store contents of AR4 into location
; specified by XAR4. Post-increment
; the contents of XAR4.

MOV *−−XAR5,AR5 ; Pre-decrement the contents of XAR5.
; Store the contents of AR5 into the
; location specified by XAR5.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com MOV loc16, AX — Store AX

265SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

MOV loc16, AX Store AX

Syntax Options MOV loc16, AX

Opcode 1001 011A LLLL LLLL

Objmode X

RPT Y

CYC N+1

Operands loc16 – Addressing mode (see Chapter 5)

AX – Accumulator high (AH) or accumulator low (AL) register

Description Load the addressed location pointed to by the “loc16” addressing mode with the 16-bit
content of the specified AX register (AH or AL):
[loc16] = AX;

Flags and Modes

Flags and Modes Description

N If (loc16 = @AX), then the load to AX is tested for a negative condition. The negative
flag bit is set if bit 15 of AX is 1, otherwise it is cleared.

Z If (loc16 = @AX), then the load to AX is tested for a zero condition. The bit is set if the
result of the operation on the AX register generates a 0 value, otherwise it is cleared.

Repeat If this operation follows a RPT instruction, then it will be executed N+1 times. The state
of the N and Z flags will reflect the final result.

Example ; Initialize all Array1 elements with the value 0xFFFF:
MOV AH,#0xFFFF ; Load AH with the value 0xFFFF
MOVL XAR2,#Array1 ; Load XAR2 with address of Array1
RPT #9 ; Repeat next instruction 10 times.

|| MOV *XAR2++, AH ; Store contents of AH into location
; pointed by XAR2 and post-increment
; XAR2.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

MOV loc16, AX, COND — Store AX Register Conditionally www.ti.com

266 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

MOV loc16, AX, COND Store AX Register Conditionally

Syntax Options MOV loc16, AX, COND

Opcode 0101 0110 0010 101A
0000 COND LLLL LLLL

Objmode 1

RPT –

CYC 1

Operands loc16 – Addressing mode (see Chapter 5)

AX – Accumulator high (AH) or accumulator low (AL) register

COND – Conditional codes:

COND Syntax Description Flags Tested
0000 NEQ Not Equal To Z = 0
0001 EQ Equal To Z = 1
0010 GT Greater Than Z = 0 AND N = 0
0011 GEQ Greater Than or Equal To N = 0
0100 LT Less Than N = 1
0101 LEQ Less Than or Equal To Z = 1 OR N = 1
0110 HI Higher C = 1 AND Z = 0
0111 HIS, C Higher or Same, Carry Set C = 1
1000 LO, NC Lower, Carry Clear C = 0
1001 LOS Lower or Same C = 0 OR Z = 1
1010 NOV No Overflow V = 0
1011 OV Overflow V = 1
1100 NTC Test Bit Not Set TC = 0
1101 TC Test Bit Set TC = 1
1110 NBIO BIO Input Equal To Zero BIO = 0
1111 UNC Unconditional –

Description If the specified condition being tested is true, then the location pointed to by the “loc16”
addressing mode will be loaded with the contents of the specified AX register (AH or
AL):
if(COND = true) [loc16] = AX;

Note: Addressing modes are not conditionally executed. Hence, if an addressing mode
performs a pre or post modification, the modification will occur, regardless of whether the
condition is true or not.

Flags and Modes

Flags and Modes Description

N If (COND = true AND loc16 = @AX), AX is tested for a negative condition after the
move and if bit 15 of AX is 1, the negative flag bit is set.

Z If (COND = true AND loc16 = @AX), after the move, AX is tested for a zero condition
and the zero flag bit is set if AX = 0, otherwise, it is cleared.

V If the V flag is tested by the condition, then V is cleared.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com MOV loc16, AX, COND — Store AX Register Conditionally

267SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Swap the contents of VarA and VarB if VarB is higher then VarA:
MOV AL,@VarA ; AL = VarA, XAR2 points to VarB
MOV AH,@VarB ; AH = VarB, XAR2 points to VarA
CMP AH,@AL ; Compare AH and AL
MOV @VarA,AH,HI ; Store AH in VarA if higher
MOV @VarB,AL,HI ; Store AL in VarB if higher

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

MOV loc16,IER — Store Interrupt-Enable Register www.ti.com

268 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

MOV loc16,IER Store Interrupt-Enable Register

Syntax Options MOV loc16,IER

Opcode 0010 0000 LLLL LLLL

Objmode X

RPT –

CYC 1

Operands loc16 – Addressing mode (see Chapter 5)

IER – Interrupt enable register

Description Save the content of the IER register in the location pointed to by the “loc16” addressing
mode:
[loc16] = IER;

Flags and Modes

Flags and Modes Description
N If (loc16 = @AX) and bit 15 of AX is 1, then N is set; otherwise N is cleared.
Z If (loc16 = @AX) and the value of AX is zero, then Z is set; otherwise Z is cleared.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Push the contents of IER on the stack and load IER with the
; contents of VarA:

MOV *SP++,IER ; Save IER on stack
MOV IER,@VarA ; Load IER with contents of VarA

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com MOV loc16,OVC — Store the Overflow Counter

269SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

MOV loc16,OVC Store the Overflow Counter

Syntax Options MOV loc16,OVC

Opcode 0101 0110 0010 1001
0000 0000 LLLL LLLL

Objmode 1

RPT –

CYC 1

Operands loc16 – Addressing mode (see Chapter 5)

OVC – Overflow counter

Description Store the 6 bits of the overflow counter (OVC) into the upper 6 bits of the location
pointed to by the “loc16” addressing mode and zero the lower 10 bits of the addressed
location:
[loc16(15:10)] = OVC; [loc16(9:0)] = 0;

Flags and Modes

Flags and Modes Description
N If (loc16 = @AX) and bit 15 of AX is 1, then set N; otherwise clear N.
Z If (loc16 = @AX) and AX is zero, then set Z; otherwise clear Z.

Repeat Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it
resets the repeat counter (RPTC) and executes only once.

Example ; Save and restore contents of ACC and OVC bits:
MOV *SP++,OVC ; Save OVC on stack
MOV *SP++,AL ; Save AL on stack
MOV *SP++,AH ; Save AH on stack
.
.
.
.
MOV AH,*−−SP ; Restore AH from stack
MOV AL,*−−SP ; Restore AL from stack
MOV OVC,*−−SP ; Restore OVC from stack

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

MOV loc16,P — Store Lower Half of Shifted P Register www.ti.com

270 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

MOV loc16,P Store Lower Half of Shifted P Register

Syntax Options MOV loc16,P

Opcode 0011 1111 LLLL LLLL

Objmode X

RPT Y

CYC N+1

Operands loc16 – Addressing mode (see Chapter 5)

P – Product register

Description The contents of the P register are shifted by the amount specified in the product shift
mode (PM), and the lower half of the shifted value is stored into the 16-bit location
pointed to by the “loc16” addressing mode. The P register is not modified by the
operation:
[loc16] = P << PM;

Flags and Modes

Flags and Modes Description

N If (loc16 = @AX) and bit 15 of the AX register is 1, then the N bit is set; otherwise, N is
cleared.

Z If (loc16 = @AX) and the value of AX after the load is zero, then the Z bit is set;
otherwise Z is cleared.

PM

The value in the PM bits sets the shift mode for the output operation from the product
register. If the product shift value is positive (logical left shift operation), then the low
bits are zero filled. If the product shift value is negative (arithmetic right shift operation),
the upper bits are sign extended.

Repeat This instruction is repeatable. If the operation follows a RPT instruction, then it will be
executed N+1 times. The state of the Z, and N flags will reflect the final result.

Example ; Calculate Y32 = M16*X16 >> 6
MOV T,@M16 ; T = M
MPY P,T,@X16 ; P = T * X
SPM −6 ; Set product shift to >> 6
MOV @Y32+0,P ; Y32 = P >> 6
MOVH @Y32+1,P

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com MOV loc16, T — Store the T Register

271SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

MOV loc16, T Store the T Register

Syntax Options MOV loc16, T

Opcode 0010 0001 LLLL LLLL

Objmode X

RPT –

CYC 1

Operands loc16 – Addressing mode (see Chapter 5)

T – Upper 16 bits of the multiplicand register (XT)

Description Store the 16-bit T register contents into the location pointed to by the “loc16” addressing
mode:
[loc16] = T;

Flags and Modes

Flags and Modes Description

N If (loc16 = @AX) and bit 15 of the AX register is 1, then the N bit is set; otherwise, N is
cleared.

Z If (loc16 = @AX) and the value of AX after the load is zero, then the Z bit is set;
otherwise Z is cleared.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Calculate using 16-bit multiply:
; Y = (X0*C0) >> 2) + (X1*C1 >> 2) + (X2*C2 >> 2)
; X2 = X1
; X1 = X0
SPM −2 ; Set product shift to >> 2
MOV T,@X2 ; T = X2
MPY P,T,@C2 ; P = T*C2
MOVP T,@X1 ; T = X1, ACC = X2*C2 >> 2
MPY P,T,@C1 ; P = T*C1
MOV @X2,T ; X2 = X1
MOVA T,@X0 ; T = X0, ACC = X1*C1 >> 2 + X2*C2 >> 2
MPY P,T,@C0 ; P = T*C0
MOV @X1,T ; X1 = X0
ADDL ACC, P << PM ; ACC = X0*C0 >> 2 + X1*C1 >> 2 + X2*C2 >> 2
MOVL @Y,ACC ; Store result into Y

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

MOV OVC, loc16 — Load the Overflow Counter www.ti.com

272 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

MOV OVC, loc16 Load the Overflow Counter

Syntax Options MOV OVC, loc16

Opcode 0101 0110 0000 0010
0000 0000 LLLL LLLL

Objmode 1

RPT –

CYC 1

Operands OVC – 6-bit overflow counter

Description Load the overflow counter (OVC) with the upper 6 bits of the location pointed to by the
“loc16” addressing mode:
OVC = [loc16(15:10)];

Flags and Modes

Flags and Modes Description
OVC The 6-bit overflow counter is modified.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Save and restore contents of ACC and OVC bits:
MOV *SP++,OVC ; Save OVC on stack
MOV *SP++,AL ; Save AL on stack
MOV *SP++,AH ; Save AH on stack
.
.
.
.

MOV AH,*−−SP ; Restore AH from stack
MOV AL,*−−SP ; Restore AL from stack
MOV OVC,*−−SP ; Restore OVC from stack

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com MOV PH, loc16 — Load the High Half of the P Register

273SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

MOV PH, loc16 Load the High Half of the P Register

Syntax Options MOV PH, loc16

Opcode 0010 1111 LLLL LLLL

Objmode X

RPT –

CYC 1

Operands PH – Upper 16 bits of the product register (P)

loc16 – Addressing mode (see Chapter 5)

Description Load the high 16 bits of the P register (PH) with the 16-bit location pointed to by the
“loc16” addressing mode; leave the lower 16 bits (PL) unchanged:
PH = [loc16];
PL = unchanged;

Flags and Modes None

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Swap the contents of AH and AL:
MOV PH,@AL ; Load PH with AL
MOV PL,@AH ; Load PL with AH
MOV ACC,@P ; Load ACC with P (AH and AL swapped)

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

MOV PL, loc16 — Load the Low Half of the P Register www.ti.com

274 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

MOV PL, loc16 Load the Low Half of the P Register

Syntax Options MOV PL, loc16

Opcode 0010 0111 LLLL LLLL

Objmode X

RPT –

CYC 1

Operands PL – Lower 16 bits of the product register (P)

loc16 – Addressing mode (see Chapter 5)

Description Load the high 16 bits of the P register (PL) with the 16-bit location pointed to by the
“loc16” addressing mode; leave the lower 16 bits (PH) unchanged:
PL = [loc16];
PH = unchanged;

Flags and Modes None

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Swap the contents of AH and AL:
MOV PH,@AL ; Load PH with AL
MOV PL,@AH ; Load PL with AH
MOV ACC,@P ; Load ACC with P (AH and AL swapped)

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com MOV PM, AX — Load Product Shift Mode

275SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

MOV PM, AX Load Product Shift Mode

Syntax Options MOV PM, AX

Opcode 0101 0110 0011 100A

Objmode 1

RPT –

CYC 1

Operands AX – Accumulator high (AH) or accumulator low (AL) registers.

Description Load the product shift mode (PM) bits with the 3 least significant bits of register AX.
PM = AX(2:0);

Flags and Modes

Flags and Modes Description
PM The product shift mode bits are loaded with the 3 least significant bits of AX.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Calculate: Y32 = (M16*X16 >> Shift) + B32, Shift = 0 to 6
CLRC AMODE ; Make sure AMODE = 0
MOV AL,@Shift ; Load AL with contents of "Shift" ADDB AL,#1

; Convert "Shift" to PM encoding
MOV PM,AX ; Load PM bits with encoded "Shift" value
MOV T,@X16 ; T = X16
MPY P,XT,@M16 ; P = X16*M16
MOVL ACC,@B32 ; ACC = B32
ADDL ACC,P << PM ; ACC = ACC + (P >> Shift)
MOVL @Y32,ACC ; Store result into Y32

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

MOV T, loc16 — Load the Upper Half of the XT Register www.ti.com

276 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

MOV T, loc16 Load the Upper Half of the XT Register

Syntax Options MOV T, loc16

Opcode 0010 1101 LLLL LLLL

Objmode X

RPT –

CYC 1

Operands T – Upper 16 bits of the multiplicand register (XT)

loc16 – Addressing mode (see Chapter 5)

Description Load the T register with the 16-bit contents of the location pointed to by the “loc16”
addressing mode:
T = [loc16];

Flags and Modes None

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Calculate using 16-bit multiply:
; Y = (X0*C0) >> 2) + (X1*C1 >> 2) + (X2*C2 >> 2)
; X2 = X1
; X1 = X0
SPM −2 ; Set product shift to >> 2
MOV T,@X2 ; T = X2
MPY P,T,@C2 ; P = T*C2
MOVP T,@X1 ; T = X1, ACC = X2*C2 >> 2
MPY P,T,@C1 ; P = T*C1
MOV @X2,T ; X2 = X1
MOVA T,@X0 ; T = X0, ACC = X1*C1 >> 2 + X2*C2 >> 2
MPY P,T,@C0 ; P = T*C0
MOV @X1,T ; X1 = X0
ADDL ACC, P << PM ; ACC = X0*C0 >> 2 + X1*C1 >> 2 + X2*C2 >> 2
MOVL @Y,ACC ; Store result into Y

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com MOV TL, #0 — Clear the Lower Half of the XT Register

277SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

MOV TL, #0 Clear the Lower Half of the XT Register

Syntax Options MOV TL, #0

Opcode 0101 0110 0101 0110

Objmode 1

RPT –

CYC 1

Operands T – Upper 16 bits of the multiplicand register (XT)

#0 – Immediate constant value of zero

Description Load the lower half of the multiplicand register (TL) with zero, leaving the upper half (T)
unchanged:
TL = 0x0000;
T = unchanged;

Flags and Modes None

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Calculate and keep low 32-bit result: Y32 = M32*X16 >> 32
MOV TL,#0 ; TL = 0
MOV T,@X16 ; T = X16
IMPYL P,XT,@M32 ; P = XT * M32 (high 32-bit of result)
MOVL @Y32,P ; Store result into Y32

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

MOV XARn, PC — Save the Current Program Counter www.ti.com

278 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

MOV XARn, PC Save the Current Program Counter

Syntax Options MOV XARn, PC

Opcode 0011 1110 0101 1nnn

Objmode 1

RPT –

CYC 1

Operands XARn – XAR0 to XAR7, 32-bit auxiliary registers

loc32 – Addressing mode (see Chapter 5)

PC – 22-bit program counter

Description Load XARn with the contents of the PC:
XARn = 0:PC;

Flags and Modes None

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example
TableA: ; Location of TableA is relative to
.long CONST1 ; the current program

.long CONST2

.long CONST3
. FuncA:

MOV XAR5,PC
SUBB XAR5,#($−TableA) ; XAR5 = current PC location
MOVL ACC,*+XAR5[2] ; XAR5 = TableA start location
MOVL @VarA,ACC ; Load ACC with CONST2

; Store CONST2 in VarA

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com MOVA T,loc16 — Load T Register and Add Previous Product

279SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

MOVA T,loc16 Load T Register and Add Previous Product

Syntax Options MOVA T,loc16

Opcode 0001 0000 LLLL LLLL

Objmode X

RPT Y

CYC N+1

Operands T – Upper 16 bits of the multiplicand register (XT)

loc16 – Addressing mode (see Chapter 5)

Description Load the T register with the 16-bit content of the location pointed to by the “loc16”
addressing mode. Also, the content of the P register, shifted by the amount specified by
the product shift mode (PM) bits, is added to the content of the ACC register:
T = [loc16];
ACC = ACC + P << PM;

Flags and Modes

Flags and Modes Description

N After the operation, if bit 31 of the ACC register is 1, the N bit is set; otherwise, N is
cleared.

Z After the operation, if the value of ACC is zero, the Z bit is set; otherwise Z is cleared.
C If the addition generates a carry, then C is set; otherwise, C is cleared.
V If an overflow occurs, V is set; otherwise V is not affected.

OVC
If overflow mode is disabled; and if the operation generates a positive overflow, the
counter is incremented. If overflow mode is disabled; and if the operation generates a
negative overflow, the counter is decremented.

OVM If overflow mode bit is set; the ACC value will saturate maximum positive
(0x7FFFFFFF) or maximum negative (0x80000000) if the operation overflows.

PM

The value in the PM bits sets the shift mode for the output operation from the product
register. If the product shift value is positive (logical left shift operation), then the low
bits are zero filled. If the product shift value is negative (arithmetic right shift operation),
the upper bits are sign extended.

Repeat This instruction is repeatable. If the operation follows a RPT instruction, it will be
executed N+1 times. The state of the Z, N, C and OVC flags reflect the final result. The
V flag will be set if an intermediate overflow occurs.

Example ; Calculate using 16-bit multiply:
; Y = (X0*C0) >> 2) + (X1*C1 >> 2) + (X2*C2 >> 2)
; X2 = X1
; X1 = X0
SPM −2 ; Set product shift to >> 2
MOV T,@X2 ; T = X2
MPY P,T,@C2 ; P = T*C2
MOVP T,@X1 ; T = X1, ACC = X2*C2 >> 2
MPY P,T,@C1 ; P = T*C1
MOV @X2,T ; X2 = X1
MOVA T,@X0 ; T = X0, ACC = X1*C1 >> 2 + X2*C2 >> 2
MPY P,T,@C0 ; P = T*C0
MOV @X1,T ; X1 = X0
ADDL ACC,P << PM ; ACC = X0*C0 >> 2 + X1*C1 >> 2 + X2*C2 >> 2
MOVL @Y,ACC ; Store result into Y

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

MOVAD T, loc16 — Load T Register www.ti.com

280 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

MOVAD T, loc16 Load T Register

Syntax Options MOVAD T, loc16

Opcode 1010 0111 LLLL LLLL

Objmode 1

RPT N

CYC 1

Operands T – Upper 16 bits of the multiplicand register (XT)

loc16 – Addressing mode (see Chapter 5)

Note: For this operation, register-addressing modes cannot be used. The modes are:
@ARn, @AH, @AL, @PH, @PL, @SP, @T. An illegal instruction trap will be generated.

Description Load the T register with the 16-bit content of the location pointed to by the “loc16”
addressing mode and then load the next highest 16-bit location pointed to by “loc16” with
the content of T. In addition, add the content of the P register, shifted by the amount
specified by the product shift mode (PM) bits, to the content of the ACC register:
T = [loc16];
[loc16 + 1] = T;
ACC = ACC + P << PM;

Flags and Modes

Flags and Modes Description

N After the operation, if bit 31 of the ACC register is 1, then the N bit is set; otherwise, N
is cleared.

Z After the operation, if the value of ACC is zero, then the Z bit is set; otherwise Z is
cleared.

C If the addition generates a carry, the C bit is set; otherwise, C is cleared.
V If an overflow occurs, V is set; otherwise V is not affected.

OVC
If overflow mode is disabled; and if the operation generates a positive overflow, then
the counter is incremented. If overflow mode is disabled; and if the operation generates
a negative overflow, then the counter is decremented.

OVM If overflow mode bit is set; then the ACC value will saturate maximum positive
(0x7FFFFFFF) or maximum negative (0x80000000) if the operation overflows.

PM

The value in the PM bits sets the shift mode for the output operation from the product
register. If the product shift value is positive (logical left shift operation), then the low
bits are zero filled. If the product shift value is negative (arithmetic right shift operation),
the upper bits are sign extended.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Calculate using 16-bit multiply:
; Y = (X0*C0) >> 2) + (X1*C1 >> 2) + (X2*C2 >> 2)
; X2 = X1
; X1 = X0
SPM −2 ; Set product shift to >> 2
MOVP T,@X2 ; T = X2
MPYS P,T,@C2 ; P = T*C2, ACC = 0
MOVAD T,@X1 ; T = X1, ACC = X2*C2>>2, X2 = X1
MPY P,T,@C1 ; P = T*C1
MOVAD T,@X0 ; T = X0, ACC = X1*C1>>2 + X2*C2>>2, X1 = X0
MPY P,T,@C0 ; P = T*C0
ADDL ACC, P << PM ; ACC = X0*C0>>2 + X1*C1>>2 + X2*C2>>2
MOVL @Y,ACC ; Store result into Y

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com MOVB ACC,#8bit — Load Accumulator With 8-bit Value

281SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

MOVB ACC,#8bit Load Accumulator With 8-bit Value

Syntax Options MOVB ACC,#8bit

Opcode 0000 0010 CCCC CCCC

Objmode 1

RPT –

CYC 1

Operands ACC – Accumulator register

#8bit – 8-bit immediate unsigned constant value

Description Load the ACC register with the specified 8-bit, zero-extended immediate constant:
ACC = 0:8bit;

Flags and Modes

Flags and Modes Description
N After the load, the N flag is set if bit 31 of the ACC is 1, else N is cleared.
Z After the load, the Z flag is set if the ACC value is zero, else Z is cleared.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Increment contents of 32-bit location VarA:
MOVB ACC,#1 ; Load ACC with the value 0x0000 0001
ADDL ACC,@VarA ; Add to ACC the contents of VarA
MOVL @VarA,ACC ; Store result back into VarA

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

MOVB AR6/7, #8bit — Load Auxiliary Register With an 8-bit Constant www.ti.com

282 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

MOVB AR6/7, #8bit Load Auxiliary Register With an 8-bit Constant

Syntax Options

Syntax Options Opcode Objmode RPT CYC
MOVB AR6, #8bit 1101 0110 CCCC CCCC X – 1

MOVB AR7, #8bit 1101 0111 CCCC CCCC X – 1

Operands XARn – XAR6 OR XAR7, 32-bit auxiliary registers

#8bit – 8-bit immediate constant value

Description Load AR6 or AR7 with an 8-bit unsigned constant and upper 16 bits of XAR6 and XAR7
are unchanged:
AR6/7 = 0:8bit; AR6/7H = unchanged;

Flags and Modes None

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com MOVB AX, #8bit — Load AX With 8-bit Constant

283SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

MOVB AX, #8bit Load AX With 8-bit Constant

Syntax Options MOVB AX, #8bit

Opcode 1001 101A CCCC CCCC

Objmode X

RPT –

CYC 1

Operands AX – Accumulator high (AH) or accumulator low (AL) register

#8bit – 8-bit immediate constant value

Description Load accumulator high register (AH) or accumulator low register (AL) with an unsigned
8-bit constant zero extended, leaving the other half of the accumulator register
unchanged:
AX = 0:8bit;

Flags and Modes

Flags and Modes Description
N Flag always set to zero.

Z The load to AX is tested for a zero condition. The bit is set if the operation results in AX
= 0, otherwise it is cleared.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example MOVB AL, #0xF0 ; Load AL with the value 0x00F0.
CMP AL,*+XAR0[0] ; Compare contents pointed to by XAR0

; with AL.
SB Dest,EQ ; Branch if values are equal.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

MOVB AX.LSB, loc16 — Load Byte Value www.ti.com

284 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

MOVB AX.LSB, loc16 Load Byte Value

Syntax Options MOVB AX.LSB, loc16

Opcode 1100 011A LLLL LLLL

Objmode X

RPT –

CYC 1

Operands AX.LSB – Least significant byte of accumulator high (AH.LSB) or accumulator low
(AL.LSB) register

loc16 – Addressing mode (see Chapter 5)

Description Load the least significant byte of the specified AX register (AH.LSB or AL.LSB) with 8
bits from the location pointed to by the “loc16” addressing mode. The most significant
byte of AX is cleared. The form of the “loc16” operand determines which of its 8 bits are
used to load AX.LSB:

if(loc16 = *+XARn[offset])
{
if(offset is an even number)

AX.LSB = [loc16.LSB];
if(offset is an odd value)

AX.LSB = [loc16.MSB];
}

else
AX.LSB = [loc16.LSB];

AX.MSB = 0x00;

Note: offset = 3-bit immediate or AR0 or AR1 indexed addressing modes only.

For the following address modes, the returned result is undefined:

*AR6%++ (AMODE = 0)
*0++ (AMODE = x)
*0− − (AMODE = x)

*BR0++ (AMODE = x)
*BR0−− (AMODE = x)

*0++, ARPn (AMODE = 1)
*0− −, ARPn (AMODE = 1)

*BR0++, ARPn (AMODE = 1)
*BR0−−, ARPn (AMODE = 1)

Flags and Modes

Flags and Modes Description

Z After the move, AX is tested for a zero condition. The zero flag bit is set if AX = 0;
otherwise it is cleared

N After the move, AX is tested for a negative condition. The bit is set if bit 15 of AX is 1;
otherwise it is cleared.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com MOVB AX.LSB, loc16 — Load Byte Value

285SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

Example ; Swap the byte order in the 32-bit "Var32" location.
; Before operation: Var32 = B3 | B2 | B1 | B0
; After operation: Var32 = B0 | B1 | B2 | B3
MOVL XAR2,#Var32 ; Load XAR2 with address of "Var32"

MOVB ; ACC(B0) = Var32(B3), ACC(B1) = 0
AL.LSB,*+XAR2[3]
MOVB ; ACC(B2) = Var32(B1), ACC(B3) = 0
AH.LSB,*+XAR2[1]
MOVB ; ACC(B1) = Var32(B2), ACC(B1) = unch
AL.MSB,*+XAR2[2]
MOVB ; ACC(B3) = Var32(B0), ACC(B1) = unch
AH.MSB,*+XAR2[0]
MOVL @Var32,ACC ; Store swapped result in "Var32"

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

MOVB AX.MSB, loc16 — Load Byte Value www.ti.com

286 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

MOVB AX.MSB, loc16 Load Byte Value

Syntax Options MOVB AX.MSB, loc16

Opcode 0011 100A LLLL LLLL

Objmode X

RPT –

CYC 1

Operands AX.MSB – Most significant byte of accumulator high (AH.MSB) or accumulator low
(AL.MSB) register

loc16 – Addressing mode (see Chapter 5)

Description Load the most significant byte of the specified AX register (AH.MSB or AH.LSB) with 8
bits from the location pointed to by the “loc16” addressing mode. The least significant
byte of AX is left unchanged. The form of the “loc16” operand determines which of its 8
bits are used to load AX.MSB.
if(loc16 = *+XARn[offset])

{
if(offset is an even value)

AX.MSB = [loc16.LSB];
if(offset is an odd value)

AX.MSB = [loc16.MSB];
}

else
AX.MSB = [loc16.LSB];

AX.LSB = unchanged;

Note: Offset = 3-bit immediate or AR0 or AR1 indexed addressing modes only.

For the following address modes, the returned result is undefined:

*AR6%++ (AMODE = 0)
*0++ (AMODE = x)
*0− − (AMODE = x)

*BR0++ (AMODE = x)
*BR0−− (AMODE = x)

*0++, ARPn (AMODE = 1)
*0− −, ARPn (AMODE = 1)

*BR0++, ARPn (AMODE = 1)
*BR0−−, ARPn (AMODE = 1)

Flags and Modes

Flags and Modes Description

N After the move AX is tested for a negative condition. The negative flag bit is set if bit 15
of AX is 1; otherwise it is cleared.

Z After the move, AX is tested for a zero condition. The zero flag bit is set if AX = 0;
otherwise it is cleared.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com MOVB AX.MSB, loc16 — Load Byte Value

287SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

Example ; Swap the byte order in the 32-bit "Var32" location.
; Before operation: Var32 = B3 | B2 | B1 | B0
; After operation: Var32 = B0 | B1 | B2 | B3
MOVL XAR2,#Var32 ; Load XAR2 with address of "Var32"

MOVB ; ACC(B0) = Var32(B3), ACC(B1) = 0
AL.LSB,*+XAR2[3]
MOVB ; ACC(B2) = Var32(B1), ACC(B3) = 0
AH.LSB,*+XAR2[1]
MOVB ; ACC(B1) = Var32(B2), ACC(B1) = unch
AL.MSB,*+XAR2[2]
MOVB ; ACC(B3) = Var32(B0), ACC(B1) = unch
AH.MSB,*+XAR2[0]
MOVL @Var32,ACC ; Store swapped result in "Var32"

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

MOVB loc16,#8bit,COND — Conditionally Save 8-bit Constant www.ti.com

288 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

MOVB loc16,#8bit,COND Conditionally Save 8-bit Constant

Syntax Options MOVB loc16,#8bit,COND

Opcode 0101 0110 1011 COND
CCCC CCCC LLLL LLLL

Objmode 1

RPT –

CYC 1

Operands loc16 – Addressing mode (see Chapter 5)

#8bit – 8-bit immediate constant value

COND – Conditional codes:

COND Syntax Description Flags Tested
0000 NEQ Not Equal To Z = 0
0001 EQ Equal To Z = 1
0010 GT Greater Than Z = 0 AND N = 0
0011 GEQ Greater Than or Equal To N = 0
0100 LT Less Than N = 1
0101 LEQ Less Than or Equal To Z = 1 OR N = 1
0110 HI Higher C = 1 AND Z = 0
0111 HIS, C Higher or Same, Carry Set C = 1
1000 LO, NC Lower, Carry Clear C = 0
1001 LOS Lower or Same C = 0 OR Z = 1
1010 NOV No Overflow V = 0
1011 OV Overflow V = 1
1100 NTC Test Bit Not Set TC = 0
1101 TC Test Bit Set TC = 1
1110 NBIO BIO Input Equal To Zero BIO = 0
1111 UNC Unconditional –

Description If the specified condition being tested is true, then the 8-bit zero extended constant is
stored in the location pointed to by the “loc16” addressing mode:
if(COND = true) [loc16] = 0:8bit;

Note: Addressing modes are not conditionally executed; therefore, if an addressing
mode performs a pre or post-modification, it will execute regardless of whether the
condition is true or not.

Flags and Modes

Flags and Modes Description

N If (COND = true AND loc16 = @AX), then after the move AX is tested for a negative
condition. The negative flag bit is set if bit 15 of AX is 1, otherwise it is cleared.

Z If (COND = true AND loc16 = @AX), then after the move, AX is tested for a zero
condition. The zero flag bit is set if AX = 0, otherwise it is cleared.

V If the V flag is tested by the condition, then V is cleared.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com MOVB loc16,#8bit,COND — Conditionally Save 8-bit Constant

289SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Calculate:
; if(VarA > 20)
; VarA = 0;

CMP @VarA,#20 ; Set flags on (VarA − 20)
MOVB @VarA,#0,GT ; Zero VarA if greater then

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

MOVB loc16, AX.LSB — Store LSB of AX Register www.ti.com

290 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

MOVB loc16, AX.LSB Store LSB of AX Register

Syntax Options MOVB loc16, AX.LSB

Opcode 0011 110A LLLL LLLL

Objmode X

RPT –

CYC 1

Operands loc16 – Addressing mode (see Chapter 5)

AX.LSB – Least significant byte of accumulator high (AH.LSB) or accumulator low
(AL.LSB) register

Description Load 8 bits of the location pointed to by the “loc16” addressing mode with the least
significant byte of the specified AX register (AH.LSB or AL.LSB). The form of the “loc16”
operand determines which of its 8 bits are loaded and which of its 8 bits are left
unchanged:
if(loc16 = *+XARn[offset])

{
if(offset is an even value)

[loc16.LSB] = AX.LSB;
[loc16.MSB] = unchanged;

if(offset is an odd value)
[loc16.LSB] = unchanged;
[loc16.MSB] = AX.LSB;

}
else

[loc16.LSB] = AX.LSB;
[loc16.MSB] = unchanged;

Note: offset = 3-bit immediate or AR0 or AR1 indexed addressing modes only.

This is a read-modify-write operation.

For the following address modes, the returned result is undefined:

*AR6%++ (AMODE = 0)
*0++ (AMODE = x)
*0− − (AMODE = x)

*BR0++ (AMODE = x)
*BR0−− (AMODE = x)

*0++, ARPn (AMODE = 1)
*0− −, ARPn (AMODE = 1)

*BR0++, ARPn (AMODE = 1)
*BR0−−, ARPn (AMODE = 1)

Flags and Modes

Flags and Modes Description

N If (loc16 = @AX), then after the move AX is tested for a negative condition. The
negative flag bit is set if bit 15 of AX is 1, otherwise it is cleared.

Z If (loc16 = @AX), then after the move, AX is tested for a zero condition. The zero flag
bit is set if AX = 0, otherwise it is cleared.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com MOVB loc16, AX.LSB — Store LSB of AX Register

291SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Store the 32-bit contents of the ACC into the
; 32-bit contents of "Var32" location in reverse byte order:
; Before operation: ACC = B3 | B2 | B1 | B0
; After operation: Var32 = B0 | B1 | B2 | B3
MOVL XAR2,#Var32 ; Load XAR2 with address of "Var32"

MOVB ; Var32(B0) = ACC(B3)
*+XAR2[0],AH.MSB
MOVB ; Var32(B1) = ACC(B2)
*+XAR2[1],AH.LSB
MOVB ; Var32(B2) = ACC(B1)
*+XAR2[2],AL.MSB
MOVB ; Var32(B3) = ACC(B0)
*+XAR2[3],AL.LSB

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

MOVB loc16, AX.MSB — Store MSB of AX Register www.ti.com

292 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

MOVB loc16, AX.MSB Store MSB of AX Register

Syntax Options MOVB loc16, AX.MSB

Opcode 1100 100A LLLL LLLL

Objmode X

RPT –

CYC 1

Operands loc16 – Addressing mode (see Chapter 5)

AX.MSB – Most significant byte of accumulator high (AH.MSB) or accumulator low
(AL.MSB) register

Description Load 8 bits of the location pointed to by the “loc16” addressing mode with the most
significant byte of the specified AX register (AH.MSB or AL.MSB). The form of the
“loc16” operand determines which of its 8 bits are loaded and which of its 8 bits are left
unchanged:
if(loc16 = *+XARn[offset])

{
if(offset is an even number)

[loc16.LSB] = AX.MSB;
[loc16.MSB] = unchanged;

if(offset is an odd number)
[loc16.LSB] = unchanged;
[loc16.MSB] = AX.MSB;

}
else

[loc16.LSB] = AX.MSB;
[loc16.MSB] = unchanged;

Note: offset = 3-bit immediate or AR0 or AR1 indexed addressing modes only.

This is a read-modify-write operation.

For the following address modes, the returned result is undefined:

*AR6%++ (AMODE = 0)
*0++ (AMODE = x)
*0− − (AMODE = x)

*BR0++ (AMODE = x)
*BR0−− (AMODE = x)

*0++, ARPn (AMODE = 1)
*0− −, ARPn (AMODE = 1)

*BR0++, ARPn (AMODE = 1)
*BR0−−, ARPn (AMODE = 1)

Flags and Modes

Flags and Modes Description

N If (loc16 = @AX), then after the move AX is tested for a negative condition. The
negative flag bit is set if bit 15 of AX is 1, otherwise it is cleared.

Z If (loc16 = @AX), then after the move, AX is tested for a zero condition. The zero flag
bit is set if AX = 0, otherwise it is cleared.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com MOVB loc16, AX.MSB — Store MSB of AX Register

293SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Store the 32-bit contents of the ACC into the
; 32-bit contents of "Var32" location in reverse byte order:
; Before operation: ACC = B3 | B2 | B1 | B0
; After operation: Var32 = B0 | B1 | B2 | B3
MOVL XAR2,#Var32 ; Load XAR2 with address of "Var32"

MOVB ; Var32(B0) = ACC(B3)
*+XAR2[0],AH.MSB
MOVB ; Var32(B1) = ACC(B2)
*+XAR2[1],AH.LSB
MOVB ; Var32(B2) = ACC(B1)
*+XAR2[2],AL.MSB
MOVB ; Var32(B3) = ACC(B0)
*+XAR2[3],AL.LSB

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

MOVB XARn, #8bit — Load Auxiliary Register With 8-bit Value www.ti.com

294 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

MOVB XARn, #8bit Load Auxiliary Register With 8-bit Value

Syntax Options

Syntax Options Opcode Objmode RPT CYC
MOVB XAR...5, #8bit 1101 0nnn CCCC CCCC X – 1

MOVB XAR6, #8bit 1011 1110 CCCC CCCC 1 – 1

MOVB XAR7, #8bit 1011 0110 CCCC CCCC 1 – 1

Operands XARn – XAR0 to XAR7, 32-bit auxiliary registers

#8bit – 8-bit immediate constant value

Description Load XARn with the 8-bit unsigned immediate value:
XARn = 0:8bit;

Flags and Modes None

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example MOVB XAR0, #F2h ; Load XAR0 with 0x0000 00F2

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com MOVDL XT,loc32 — Store XT and Load New XT

295SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

MOVDL XT,loc32 Store XT and Load New XT

Syntax Options MOVDL XT,loc32

Opcode 1010 0110 LLLL LLLL

Objmode 1

RPT Y

CYC N+1

Operands XT – Multiplicand register

loc32 – Addressing mode (see Chapter 5)

Note: For this operation, register-addressing modes cannot be used. The modes are:
@XARn, @ACC, @P, @XT. An illegal instruction trap will be generated.

Description Load the XT register with the 32-bit content of the location pointed to by the “loc32”
addressing mode and then load the next highest 32-bit location pointed to by “loc32” with
the content of XT:
XT = [loc32];
[loc32 + 2] = XT;

Flags and Modes None

Repeat This instruction is repeatable. If this instruction follows the RPT instruction, then it will be
executed N+1 times.

Example ; Calculate using 32-bit multiply, retaining high result:
; Y = (X0*C0) >> 2) + (X1*C1 >> 2) + (X2*C2 >> 2)
; X2 = X1
; X1 = X0
SPM −2 ; Set product shift to >> 2
ZAPA ; Zero ACC, P, OVC
MOVL XT,@X2 ; XT = X2
QMPYL P,XT,@C2 ; P = XT*C2
MOVDL XT,@X1 ; XT = X1, X2 = X1
QMPYAL P,XT,@C1 ; P = XT*C1, ACC = X2*C2>>2
MOVDL XT,@X0 ; XT = X0, X1 = X0
QMPYAL P,XT,@C0 ; P = XT*C0, ACC = X1*C1>>2 + X2*C2>>2
ADDL ACC,P << PM ; ACC = X0*C0>>2 + X1*C1>>2 + X2*C2>>2
MOVL @Y,ACC ; Store result into Y

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

MOVH loc16,ACC << 1..8 — Description www.ti.com

296 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

MOVH loc16,ACC << 1..8 Description

Syntax Options

Syntax Options Opcode Objmode RPT CYC
MOVH loc16, ACC << 1 1011 0011 LLLL LLLL 1 Y N+1

MOVH loc16, ACC << 2..8 0101 0110 0010 1111
0000 0SHF LLLL LLLL

1 Y N+1

1011 0SHF LLLL LLLL 0 – 1

Operands loc16 – Addressing mode (see Chapter 5)

ACC – Accumulator register

#1..8 – Shift value

Description Load the content of the location pointed to by the “loc16” addressing mode with the high
word of the ACC register after left−shifting by the specified value. The ACC register is
not modified:
[loc16] = ACC >> (16 − shift value);

Flags and Modes

Flags and Modes Description

N If (loc16 = @AX), then after the load AX is checked for a negative condition. The N flag
is set if bit 15 of the AX is 1; else N is cleared.

Z If (loc16 = @AX) then after the load AX is checked for a zero condition. The Z flag is
set if AX is zero; else Z is cleared.

Repeat If the operation is repeatable, then the instruction will be executed N+1 times. The state
of the Z and N flags will reflect the final result. If the operation is not repeatable, the
instruction will execute only once.

Example ; Multiply two Q15 numbers (VarA and VarB) and store result in
; VarC as a Q15 number:
MOV T,@VarA ; T = VarA (Q15)
MPY ACC,T,@VarB ; ACC = VarA * VarB (Q30)
MOVH @VarC,ACC << 1 ; VarC = ACC >> 16−1) (Q15)

; VarC as a Q31 number:
MOV T,@VarA ; T = VarA (T = Q14)
MPY ACC,T,@VarB ; ACC = VarA * VarB (ACC = Q28)
MOV @VarC+0,ACC << ; VarC low = ACC >> 3
MOVH @VarC+1,ACC << ; VarC high = ACC >> (16−1) (VarC = Q31)

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com MOVH loc16, P — Save High Word of the P Register

297SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

MOVH loc16, P Save High Word of the P Register

Syntax Options MOVH loc16, P

Opcode 0101 0111 LLLL LLLL

Objmode X

RPT Y

CYC N+1

Operands loc16 – Addressing mode (see Chapter 5)

P – Product register

Description The contents of the P register are shifted by the amount specified in the product shift
mode (PM), and the upper half of the shifted value is stored into the 16-bit location
pointed to by the “loc16” addressing mode. The P register is not modified by the
operation:
[loc16] = (P << PM) >> 16;

Flags and Modes

Flags and Modes Description

N If (loc16 = @AX) and bit 15 of the AX register is 1, then the N bit is set; otherwise, N is
cleared.

Z If (loc16 = @AX) and the value of AX after the load is zero, then the Z bit is set;
otherwise Z is cleared.

PM

The value in the PM bits sets the shift mode for the output operation from the product
register. If the product shift value is positive (logical left shift operation), then the low
bits are zero filled. If the product shift value is negative (arithmetic right shift operation),
the upper bits are sign extended.

Repeat This instruction is repeatable. If the operation follows a RPT instruction, then it will be
executed N+1 times. The state of the Z, and N flags will reflect the final result.

Example ; Calculate Y32 = M16*X16 >> 6
MOV T,@M16 ; T = M
MPY P,T,@X16 ; P = T * X
SPM −6 ; Set product shift to >> 6
MOV @Y32+0,P ; Y32 = P >> 6
MOVH @Y32+1,P

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

MOVL ACC,loc32 — Load Accumulator With 32 Bits www.ti.com

298 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

MOVL ACC,loc32 Load Accumulator With 32 Bits

Syntax Options MOVL ACC,loc32

Opcode 0000 0110 LLLL LLLL

Objmode X

RPT –

CYC 1

Operands ACC – Accumulator register

loc32 – Addressing mode (see Chapter 5)

Description Load the ACC register with the content of the location pointed to by the “loc32”
addressing mode.
ACC = [loc32];

Flags and Modes

Flags and Modes Description
N After the load, the N flag is set if bit 31 of the ACC is 1, else N is cleared.
Z After the load, the Z flag is set if the ACC is zero, else Z is cleared.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example Calculate the 32-bit value: VarC = VarA + VarB;
MOVL ACC,@VarA ; Load ACC with contents of VarA
ADDL ACC,@VarB ; Add to ACC the contents of VarB
MOVL @VarC,ACC ; Store result into VarC

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com MOVL ACC,P << PM — Load the Accumulator With Shifted P

299SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

MOVL ACC,P << PM Load the Accumulator With Shifted P

Syntax Options MOVL ACC,P << PM

Opcode 0001 0110 1010 1100

Objmode X

RPT –

CYC 1

Note: This instruction is an alias for the ”MOVP T,loc16” operation with “loc16 = @T”
addressing mode.

Operands ACC – Accumulator register

P – Product register

<< PM – Product shift mode

Description Load the ACC register with the content of the P register shifted as specified by the
product shift mode (PM):
ACC = P << PM;

Flags and Modes

Flags and Modes Description
N After the load, the N flag is set if bit 31 of the ACC is 1, else N is cleared.
Z After the load, the Z flag is set if the ACC is zero, else Z is cleared.

PM

The value in the PM bits sets the shift mode for the output operation from the product
register. If the product shift value is positive (logical left shift operation), then the low
bits are zero filled. If the product shift value is negative (arithmetic right shift operation),
the upper bits are sign extended.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Calculate: Y = Y + (M*X >> 4)
; Y is a 32-bit value, M and X are 16-bit values
SPM −4 ; Set product shift to >> 4
MOV T,@M ; T = M
MPY P,T,@X ; P = M * X
MOVL ACC,P << PM ; ACC = M*X >> 4
ADDL @Y,ACC ; Y = Y + ACC

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

MOVL loc32, ACC — Store 32-bit Accumulator www.ti.com

300 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

MOVL loc32, ACC Store 32-bit Accumulator

Syntax Options MOVL loc32, ACC

Opcode 0001 1110 LLLL LLLL

Objmode X

RPT –

CYC 1

Operands ACC – Accumulator register

loc32 – Addressing mode (see Chapter 5)

Description Store the contents of the ACC register into the location pointed to by the “loc32”
addressing mode:
[loc32] = ACC;

Flags and Modes

Flags and Modes Description

N If (loc32 = @ACC) then after the load, the N flag is set if bit 31 of the ACC is 1, else N
is cleared.

Z If (loc32 = @ACC) then after the load, the Z flag is set if ACC is zero, else Z is cleared.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example Calculate the 32-bit value: VarC = VarA + VarB;
MOVL ACC,@VarA ; Load ACC with contents of VarA
ADDL ACC,@VarB ; Add to ACC the contents of VarB
MOVL @VarC,ACC ; Store result into VarC

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com MOVL loc32,ACC,COND — Conditionally Store the Accumulator

301SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

MOVL loc32,ACC,COND Conditionally Store the Accumulator

Syntax Options MOVL loc32,ACC,COND

Opcode 0101 0110 0100 1000
0000 COND LLLL LLLL

Objmode X

RPT –

CYC 1

Operands loc32 – Addressing mode (see Chapter 5)

ACC – Accumulator register

COND – Conditional codes:

COND Syntax Description Flags Tested
0000 NEQ Not Equal To Z = 0
0001 EQ Equal To Z = 1
0010 GT Greater Than Z = 0 AND N = 0
0011 GEQ Greater Than or Equal To N = 0
0100 LT Less Than N = 1
0101 LEQ Less Than or Equal To Z = 1 OR N = 1
0110 HI Higher C = 1 AND Z = 0
0111 HIS, C Higher or Same, Carry Set C = 1
1000 LO, NC Lower, Carry Clear C = 0
1001 LOS Lower or Same C = 0 OR Z = 1
1010 NOV No Overflow V = 0
1011 OV Overflow V = 1
1100 NTC Test Bit Not Set TC = 0
1101 TC Test Bit Set TC = 1
1110 NBIO BIO Input Equal To Zero BIO = 0
1111 UNC Unconditional –

Description If the specified condition being tested is true, then the location pointed to by the “loc32”
addressing mode will be loaded with the contents of the ACC register:
if(COND = true) [loc32] = ACC;

Note: Addressing modes are not conditionally executed. Hence, if an addressing mode
performs a pre or post modification, the modification will occur regardless of whether the
condition is true or not.

Flags and Modes

Flags and Modes Description

N If (COND = true AND loc32 = @ACC), then after the move if bit 31 of ACC is 1, N is
set; otherwise N cleared.

Z If (COND = true AND loc32 = @ACC), then after the move if (ACC = 0), then the Z bit
is set; otherwise it is cleared.

V If the V flag is tested by the condition, then V is cleared.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

MOVL loc32,ACC,COND — Conditionally Store the Accumulator www.ti.com

302 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Swap the contents of 32-bit VarA and VarB if VarB is higher:
MOVL ACC,@VarB ; ACC = VarB
MOVL P,@VarA ; P = VarA
CMPL ACC,@P ; Set flags on (VarB − VarA)
MOVL @VarA,ACC,HI ; VarA = ACC if higher
MOVL @P,ACC,HI ; P = ACC if higher
MOVL @VarA,P ; VarA = P

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com MOVL loc32,P — Store the P Register

303SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

MOVL loc32,P Store the P Register

Syntax Options MOVL loc32,P

Opcode 1010 1001 LLLL LLLL

Objmode 1

RPT –

CYC 1

Operands loc32 – Addressing mode (see Chapter 5)

P – Product register

Description Store the P register contents into the location pointed to by the “loc32” addressing mode:
[loc32] = P;

Flags and Modes

Flags and Modes Description

N If (loc32 = @ACC) and bit 31 of the ACC register is 1, then the N bit is set; otherwise,
N is cleared.

Z If (loc32 = @ACC) and the value of ACC after the load is zero, then the Z bit is set;
otherwise Z is cleared.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Add 64-bit VarA, VarB and VarC, and store result in VarD:
MOVL P,@VarA+0 ; Load P with low 32 bits of VarA
MOVL ACC,@VarA+2 ; Load ACC with high 32 bits of VarA
ADDUL P,@VarB+0 ; Add to P unsigned low 32 bits of VarB
ADDCL ACC,@VarB+2 ; Add to ACC with carry high 32 bits of VarB
ADDUL P,@VarC+0 ; Add to P unsigned low 32 bits of VarC
ADDCL ACC,@VarC+2 ; Add to ACC with carry high 32 bits of VarC
MOVL @VarD+0,P ; Store low 32-bit result into VarD
MOVL @VarD+2,ACC ; Store high 32-bit result into VarD

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

MOVL loc32, XARn — Store 32-bit Auxiliary Register www.ti.com

304 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

MOVL loc32, XARn Store 32-bit Auxiliary Register

Syntax Options

Syntax Options Opcode Objmode RPT CYC
MOVL loc32, XAR0 0011 1010 LLLL LLLL 1 – 1

MOVL loc32, XAR1 1011 0010 LLLL LLLL 1 – 1

MOVL loc32, XAR2 1010 1010 LLLL LLLL 1 – 1

MOVL loc32, XAR3 1010 0010 LLLL LLLL 1 – 1

MOVL loc32, XAR4 1010 1000 LLLL LLLL 1 – 1

MOVL loc32, XAR5 1010 0000 LLLL LLLL 1 – 1

MOVL loc32, XAR6 1100 0010 LLLL LLLL X – 1

MOVL loc32, XAR7 1100 0011 LLLL LLLL X – 1

Operands loc32 – Addressing mode (see Chapter 5)

XARn – XAR0 to XAR7, 32-bit auxiliary registers

Description Load the contents of the 32-bit addressed location with the contents of XARn:
[loc32] = XARn;

Flags and Modes

Flags and Modes Description

N
If (loc32 = @ACC), then the load to ACC is tested for a negative condition. Bit-31 of the
ACC register is the sign bit, 0 for positive, 1 for negative. The negative flag bit is set if
the operation on the ACC register generates a negative value, otherwise it is cleared.

Z
If (loc32 = @ACC), then the load to ACC is tested for a zero condition. The bit is set if
the result of the operation on the ACC register generates a 0 value, otherwise it is
cleared.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example
MOVL @ACC, XAR0 ; Move the 32-bit contents of XAR0 into ACC.

; If bit 31 of the ACC is 1 set N. If
; ACC = 0, set Z.

MOVL *XAR1, XAR7 ; Move the 32-bit contents of XAR7 into the
; location pointed to by XAR1.

MOVL *XAR6++,XAR6 ; Move the 32-bit contents of XAR6 into the
; location pointed to by XAR6. Post-increment
; the contents of XAR6.

MOVL *−−XAR5,XAR5 ; Predecrement the contents of XAR5. Move the
; 32-bit contents of XAR5 into the location
; pointed to by XAR5.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com MOVL loc32,XT — Store the XT Register

305SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

MOVL loc32,XT Store the XT Register

Syntax Options MOVL loc32,XT

Opcode 1010 1011 LLLL LLLL

Objmode 1

RPT –

CYC 1

Operands loc32 – Addressing mode (see Chapter 5)

XT – Multiplicand register

Description Store the XT register into 32-bit location pointed to by the “loc32” addressing mode:
[loc32] = XT;

Flags and Modes

Flags and Modes Description

N If (loc32 = @ACC) and bit 31 of the ACC register is 1, then the N bit is set; otherwise,
N is cleared.

Z If (loc32 = @ACC) and the value of ACC after the load is zero, then the Z bit is set;
otherwise Z is cleared.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Calculate using 32-bit multiply, retaining high result:
; Y = (X0*C0) >> 2) + (X1*C1 >> 2) + (X2*C2 >>2)
; X2 = X1
; X1 = X0
SPM −2 ; Set product shift to >> 22
ZAPA ; Zero ACC, P, OVC
MOVL XT,@X2 ; XT = X2
QMPYL P,XT,@C2 ; P = XT*C2
MOVL XT,@X1 ; XT = X1, ACC = X2*C2 >> 2
QMPYAL P,XT,@C1 ; P = XT*C1
MOVL @X2,XT ; X2 = X1
MOVL XT,@X0 ; XT = X0, ACC = X1*C1 >> 2 + X2*C2 >> 2
QMPYAL P,XT,@C0 ; P = XT*C0
MOVL @X1,XT ; X1 = X0
ADDL ACC, P << PM ; ACC = X0*C0 >> 2 + X1*C1 >> 2 + X2*C2 >> 2
MOVL @Y,ACC ; Store result into Y

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

MOVL P,ACC — Load P From the Accumulator www.ti.com

306 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

MOVL P,ACC Load P From the Accumulator

Syntax Options MOVL P,ACC

Opcode 1111 1111 0101 1010

Objmode X

RPT –

CYC 1

Operands P – Product register

ACC – Accumulator register

Description Load the P register with the content of the ACC register:
P = ACC;

Flags and Modes None

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example Calculate the 32-bit value: VarC = abs(VarA) + abs(VarB)
MOVL ACC,@VarA ; Load ACC with contents of VarA
ABS ACC ; Take absolute value of VarA
MOVL P,ACC ; Temp save ACC in P register
MOVL ACC,@VarB ; Load ACC with contents of VarB
ABS ACC ; Take absolute value of VarB
ADDL ACC,@P ; Add contents of P to ACC
MOVL @VarC,ACC ; Store result into VarC

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com MOVL P,loc32 — Load the P Register

307SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

MOVL P,loc32 Load the P Register

Syntax Options MOVL P,loc32

Opcode 1010 0011 LLLL LLLL

Objmode 1

RPT –

CYC 1

Operands P – Product register

loc32 – Addressing mode (see Chapter 5)

Description Load the P register with the 32-bit location pointed to by the “loc32” addressing mode:
P = [loc32];

Flags and Modes None

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Add 64-bit VarA, VarB and VarC, and store result in VarD:
MOVL P,@VarA+0 ; Load P with low 32 bits of VarA M
OVL ACC,@VarA+2 ; Load ACC with high 32 bits of VarA
ADDUL P,@VarB+0 ; Add to P unsigned low 32 bits of VarB
ADDCL ACC,@VarB+2 ; Add to ACC with carry high 32 bits of VarB
ADDUL P,@VarC+0 ; Add to P unsigned low 32 bits of VarC
ADDCL ACC,@VarC+2 ; Add to ACC with carry high 32 bits of VarC
MOVL @VarD+0,P ; Store low 32-bit result into VarD
MOVL @VarD+2,ACC ; Store high 32-bit result into VarD

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

MOVL XARn, loc32 — Load 32-bit Auxiliary Register www.ti.com

308 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

MOVL XARn, loc32 Load 32-bit Auxiliary Register

Syntax Options

Syntax Options Opcode Objmode RPT CYC
MOVL XAR0, loc32 1000 1110 LLLL LLLL 1 – 1

MOVL XAR1, loc32 1000 1011 LLLL LLLL 1 – 1

MOVL XAR2, loc32 1000 0110 LLLL LLLL 1 – 1

MOVL XAR3, loc32 1000 0010 LLLL LLLL 1 – 1

MOVL XAR4, loc32 1000 1010 LLLL LLLL 1 – 1

MOVL XAR5, loc32 1000 0011 LLLL LLLL 1 – 1

MOVL XAR6, loc32 1100 0100 LLLL LLLL X – 1

MOVL XAR7, loc32 1100 0101 LLLL LLLL X – 1

Operands XARn – XAR0 to XAR7, 32-bit auxiliary registers

loc32 – Addressing mode

Description Load XARn with the contents of the 32-bit addressed location:
XARn = [loc32];

Flags and Modes None

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example
MOVL XAR0,@ACC ; Move the 32-bit contents of ACC into

; XAR0
MOVL XAR2,*XAR0++ ; Move the 32-bit value pointed to by

; XAR0 into XAR2. Post increment XAR0
; by 2

MOVL XAR3,*XAR3++ ; Move the 32-bit value pointed to by
; XAR3 into XAR3. Address modification
; of XAR3 is ignored.

MOVL XAR4,*−−XAR4 ; Predecrement the contents of XAR4.
; Move the 32-bit value pointed to by
; XAR4 into XAR4.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com MOVL XARn, #22bit — Load 32-bit Auxiliary Register With Constant Value

309SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

MOVL XARn, #22bit Load 32-bit Auxiliary Register With Constant Value

Syntax Options

Syntax Options Opcode OBJ- MODE RPT CYC
MOVL XAR0, #22bit 1000 1101 00CC CCCC

CCCC CCCC CCCC CCCC
1 – 1

MOVL XAR1, #22bit 1000 1101 01CC CCCC
CCCC CCCC CCCC CCCC

1 – 1

MOVL XAR2, #22bit 1000 1101 10CC CCCC
CCCC CCCC CCCC CCCC

1 – 1

MOVL XAR3, #22bit 1000 1101 11CC CCCC
CCCC CCCC CCCC CCCC

1 – 1

MOVL XAR4, #22bit 1000 1111 00CC CCCC
CCCC CCCC CCCC CCCC

1 – 1

MOVL XAR5, #22bit 1000 1111 01CC CCCC
CCCC CCCC CCCC CCCC

1 – 1

MOVL XAR6, #22bit 0111 0110 10CC CCCC
CCCC CCCC CCCC CCCC

X – 1

MOVL XAR7, #22bit 0111 0110 11CC CCCC
CCCC CCCC CCCC CCCC

X – 1

Operands XARn – XAR0 to XAR7, 32-bit auxiliary registers

#22bit – 22-bit immediate constant value

Description Load XARn with a 22-bit unsigned constant:
XARn = 0:22bit;

Flags and Modes None

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example
MOVL XAR4,#VarA ; Initialize XAR4 pointer with the

; 22-bit address of VarA

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

MOVL XT,loc32 — Load the XT Register www.ti.com

310 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

MOVL XT,loc32 Load the XT Register

Syntax Options MOVL XT,loc32

Opcode 1000 0111 LLLL LLLL

Objmode 1

RPT –

CYC 1

Operands T – Upper 16 bits of the multiplicand register (XT)

loc32 – Addressing mode (see Chapter 5)

Description Load the XT register with the 32-bit content of the location pointed to by the “loc32”
addressing mode:
XT = [loc32];

Flags and Modes None

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Calculate using 32-bit multiply, retaining high result:
; Y = (X0*C0) >> 2) + (X1*C1 >> 2) + (X2*C2 >> 2)
; X2 = X1
; X1 = X0
SPM −2 ; Set product shift to >> 2
ZAPA ; Zero ACC, P, OVC
MOVL XT,@X2 ; XT = X2
QMPYL P,XT,@C2 ; P = XT*C2
MOVL XT,@X1 ; XT = X1, ACC = X2*C2 >> 2
QMPYAL P,XT,@C1 ; P = XT*C1
MOVL @X2,XT ; X2 = X1
MOVL XT,@X0 ; XT = X0, ACC = X1*C1 >> 2 + X2*C2 >> 2
QMPYAL P,XT,@C0 ; P = XT*C0
MOVL @X1,XT ; X1 = X0
ADDL ACC,P << PM ; ACC = X0*C0 >> 2 + X1*C1 >> 2 + X2*C2 >> 2
MOVL @Y,ACC ; Store result into Y

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com MOVP T,loc16 — Load the T Register and Store P in the Accumulator

311SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

MOVP T,loc16 Load the T Register and Store P in the Accumulator

Syntax Options MOVP T,loc16

Opcode 0001 0110 LLLL LLLL

Objmode X

RPT –

CYC 1

Operands T – Upper 16 bits of the multiplicand register (XT)

loc16 – Addressing mode (see Chapter 5)

Description Load the T register with the 16-bit content of the location pointed to by the “loc16”
addressing mode. Also, the content of the P register, shifted by the amount specified by
the product shift mode (PM) bits, is loaded into the ACC register:
T = [loc16];
ACC = P << PM;

Flags and Modes

Flags and Modes Description

N After the operation if bit 31 of the ACC register is 1, then the N bit is set; otherwise, N
is cleared.

Z After the operation, if the value of ACC is zero, then the Z bit is set; otherwise Z is
cleared.

PM

The value in the PM bits sets the shift mode for the output operation from the product
register. If the product shift value is positive (logical left shift operation), then the low
bits are zero filled. If the product shift value is negative (arithmetic right shift operation),
the upper bits are sign extended.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Calculate using 16-bit multiply:
; Y = (X0*C0) >> 2) + (X1*C1 >> 2) + (X2*C2 >> 2)
; X2 = X1
; X1 = X0
SPM −2 ; Set product shift to >> 2
MOV T,@X2 ; T = X2
MPY P,T,@C2 ; P = T*C2
MOVP T,@X1 ; T = X1, ACC = X2*C2 >> 2
MPY P,T,@C1 ; P = T*C1
MOV @X2,T ; X2 = X1
MOVA T,@X0 ; T = X0, ACC = X1*C1 >> 2 + X2*C2 >> 2
MPY P,T,@C0 ; P = T*C0
MOV @X1,T ; X1 = X0
ADDL ACC, P << PM ; ACC = X0*C0 >> 2 + X1*C1 >> 2 + X2*C2 >> 2
MOVL @Y,ACC ; Store result into Y

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

MOVS T,loc16 — Load T and Subtract P From the Accumulator www.ti.com

312 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

MOVS T,loc16 Load T and Subtract P From the Accumulator

Syntax Options MOVS T,loc16

Opcode 0001 0001 LLLL LLLL

Objmode X

RPT Y

CYC N+1

Operands T – Upper 16 bits of the multiplicand register (XT)

loc16 – Addressing mode (see Chapter 5)

Description Load the T register with the 16-bit content of the location pointed to by the “loc16”
addressing mode. Also, the content of the P register, shifted by the amount specified by
the product shift mode (PM) bits, is subtracted from the content of the ACC register:
T = [loc16];
ACC = ACC − P << PM;

Flags and Modes

Flags and Modes Description

N After the operation, if bit 31 of the ACC register is 1, then the N bit is set; otherwise, N
is cleared.

Z After the operation, if the value of ACC is zero, then the Z bit is set; otherwise Z is
cleared.

C If the subtraction generates a borrow, the C bit is cleared; otherwise, C is set.
V If an overflow occurs, V is set; otherwise V is not affected.

OVC
If overflow mode is disabled; and if the operation generates a positive overflow, then
the counter is incremented. If overflow mode is disabled; and if the operation generates
a negative overflow, then the counter is decremented.

OVM If overflow mode bit is set; then the ACC value will saturate maximum positive
(0x7FFFFFFF) or maximum negative (0x80000000) if the operation overflows.

PM

The value in the PM bits sets the shift mode for the output operation from the product
register. If the product shift value is positive (logical left shift operation), then the low
bits are zero filled. If the product shift value is negative (arithmetic right shift operation),
the upper bits are sign extended.

Repeat This instruction is repeatable. If the operation follows a RPT instruction, then it will be
executed N+1 times. The state of the Z, N, C and OVC flags will reflect the final result.
The V flag will be set if an intermediate overflow occurs.

Example ; Calculate using 16-bit multiply:
; Y = (X0*C0) >> 2) + (X1*C1 >> 2) + (X2*C2 >> 2)
; X2 = X1
; X1 = X0
SPM −2 ; Set product shift to >> 2
MOVP T,@X2 ; T = X2
MPYS P,T,@C2 ; P = T*C2, ACC = 0
MOVS T,@X1 ; T = X1, ACC = −X2*C2 >> 2
MPY P,T,@C1 ; P = T*C1
MOV @X2,T ; X2 = X1
MOVA T,@X0 ; T = X0, ACC = −X1*C1 >> 2 − X2*C2 >> 2
MPY P,T,@C0 ; P = T*C0
MOV @X1,T ; X1 = X0
SUBL ACC,P << PM ; ACC = −X0*C0 >> 2 − X1*C1 >> 2 − X2*C2 >> 2
MOVL @Y,ACC ; Store result into Y

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com MOVU ACC,loc16 — Load Accumulator With Unsigned Word

313SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

MOVU ACC,loc16 Load Accumulator With Unsigned Word

Syntax Options MOVU ACC,loc16

Opcode 0000 1110 LLLL LLLL

Objmode X

RPT –

CYC 1

Operands ACC – Accumulator register

loc16 – Addressing mode (see Chapter 5)

Description Load the low half of the accumulator (AL) with the 16-bit contents of the addressed
location pointed to by the “loc16” addressing mode and fill the high half of the
accumulator (AH) with 0s:
AL = [loc16];
AH = 0x0000;

Flags and Modes

Flags and Modes Description
N Clear flag.
Z After the load, the Z flag is set if the ACC value is zero, else Z is cleared.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Add three 32-bit unsigned variables by 16-bit parts:
MOVU ACC,@VarAlow ; AH = 0, AL = VarAlow
ADD ACC,@VarAhigh ; AH = VarAhigh, AL = VarAlow
<< 16
ADDU ACC,@VarBlow ; ACC = ACC + 0:VarBlow
ADD ACC,@VarBhigh ; ACC = ACC + VarBhigh << 16
<< 16
ADDCU ACC,@VarClow ; ACC = ACC + VarClow + Carry
ADD ACC,@VarChigh ; ACC = ACC + VarChigh << 16
<< 16

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

MOVU loc16,OVC — Store the Unsigned Overflow Counter www.ti.com

314 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

MOVU loc16,OVC Store the Unsigned Overflow Counter

Syntax Options MOVU loc16,OVC

Opcode 0101 0110 0010 1000
0000 0000 LLLL LLLL

Objmode 1

RPT –

CYC 1

Operands loc16 – Addressing mode (see Chapter 5)

OVC – Overflow counter

Description Store the 6 bits of the overflow counter (OVC) into the lower 6 bits of the location pointed
to by the “loc16” addressing mode and zero the upper 10 bits of the addressed location:
[loc16(15:6)] = 0;
[loc16(5:0)] = OVC;

Flags and Modes

Flags and Modes Description
N If (loc16 = @AX) and bit 15 of AX is 1, then set N; otherwise clear N.
Z If (loc16 = @AX) and AX is zero, then set Z; otherwise clear Z.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Save and restore contents of ACC and OVC bits:
MOVU *SP++,OVC ; Save OVC on stack
MOV *SP++,AL ; Save AL on stack
MOV *SP++,AH ; Save AH on stack
.
.
.
.
MOV AH,*−−SP ; Restore AH from stack
MOV AL,*−−SP ; Restore AL from stack
MOVU OVC,*−−SP ; Restore OVC from stack

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com MOVU OVC,loc16 — Load Overflow Counter With Unsigned Value

315SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

MOVU OVC,loc16 Load Overflow Counter With Unsigned Value

Syntax Options MOVU OVC,loc16

Opcode 0101 0110 0110 0010
0000 0000 LLLL LLLL

Objmode 1

RPT –

CYC 1

Operands OVC – 6-bit overflow counter

Description Load the overflow counter (OVC) with the lower 6 bits of the location pointed to by the
“loc16” addressing mode:
OVC = [loc16(5:0)]

Flags and Modes

Flags and Modes Description
OVC The 6-bit overflow counter is modified.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Save and restore contents of ACC and OVC bits:
MOVU *SP++,OVC ; Save OVC on stack
MOV *SP++,AL ; Save AL on stack
MOV *SP++,AH ; Save AH on stack
.
.
.
.
MOV AH,*−−SP ; Restore AH from stack
MOV AL,*−−SP ; Restore AL from stack M
OVU OVC,*−−SP ; Restore OVC from stack

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

MOVW DP, #16bit — Load the Entire Data Page www.ti.com

316 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

MOVW DP, #16bit Load the Entire Data Page

Syntax Options MOVW DP, #16bit

Opcode 0111 0110 0001 1111
CCCC CCCC CCCC CCCC

Objmode X

RPT –

CYC 1

Operands DP – Data page register

#16bit – 16-bit immediate constant value

Description Load the data page register with a 16-bit constant:
DP(15:0) = 16bit;

Flags and Modes None

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example MOVW DP, #VarA ; Load DP with the data page that
; contains VarA. Assumes VarA is in the
; lower 0x003F FFC0 of memory

MOVW DP, #0F012h ; Load DP with data page number 0xF012

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com MOVX TL,loc16 — Load Lower Half of XT With Sign Extension

317SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

MOVX TL,loc16 Load Lower Half of XT With Sign Extension

Syntax Options MOVX TL,loc16

Opcode 0101 0110 0010 0001
xxxx xxxx LLLL LLLL

Objmode 1

RPT –

CYC 1

Operands TL – Lower 16 bits of the multiplicand register (XT)

loc16 – Addressing mode (see Chapter 5)

Description Load the lower 16 bits of the multiplicand register (TL) with the 16-bit contents of the
location pointed to by the “loc16” addressing mode and then sign extend that value into
the upper upper 16 bits of XT:
TL = [loc16];
T = sign extension of TL;

Flags and Modes None

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Calculate and keep low 32-bit result: Y32 = M32*X16
MOVX TL,@X16 ; XT = S:X16
IMPYL P,XT,@M32 ; P = XT * M32 (low 32 bits of result)
MOVL @Y32,P ; Store result into Y32

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

MOVZ ARn, loc16 — Load Lower Half of XARn and Clear Upper Half www.ti.com

318 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

MOVZ ARn, loc16 Load Lower Half of XARn and Clear Upper Half

Syntax Options

Syntax Options Opcode OBJ- MODE RPT CYC
MOVZ AR0...5, loc16 0101 1nnn LLLL LLLL X – 1

MOVZ AR6, loc16 1000 1000 LLLL LLLL 1 – 1

MOVZ AR7, loc16 1000 0000 LLLL LLLL 1 – 1

Operands ARn – AR0 to AR7, lower 16 bits of auxiliary registers

loc16 – Addressing modes (See chapter 5)

Description Load ARn with the contents of the 16-bit location and clear ARnH:
ARn = [loc16];
ARnH = 0;

Flags and Modes None

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example
MOVL XAR7, #ArrayA ; Initialize XAR2 pointer
MOVZ AR0, *+XAR2[0] ; Load 16-bit value pointed to by XAR2

; into AR0. XAR0(31:16) = 0.
MOVZ AR7, *−SP[1] ; Load the first 16-bit value off of the

; stack into AR7. XAR7(31:16) = 0.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com MOVZ DP, #10bit — Load Data Page and Clear High Bits

319SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

MOVZ DP, #10bit Load Data Page and Clear High Bits

Syntax Options MOVZ DP, #10bit

Opcode 1011 10CC CCCC CCCC

Objmode 1

RPT –

CYC 1

Operands DP – Data page register

#10bit – 10-bit immediate constant value

Description Load the data page register with a 10-bit constant and clear the upper 6 bits:
DP(9:0) = 10bit;
DP(15:10) = 0;

Flags and Modes None

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example
MOVZ DP, #VarA ; Load DP with the data page that contains

; VarA. Assumes VarA is in the lower
; 0x0000 FFC0 of memory

MOVZ DP, #3FFh ; Load DP with page number 0x03FF.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

MPY ACC,loc16, #16bit — 16 X 16-bit Multiply www.ti.com

320 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

MPY ACC,loc16, #16bit 16 X 16-bit Multiply

Syntax Options MPY ACC,loc16, #16bit

Opcode 0011 0100 LLLL LLLL
CCCC CCCC CCCC CCCC

Objmode X

RPT –

CYC 1

Operands ACC – Accumulator register

loc16 – Addressing mode (see Chapter 5)

16-bit immediate constant value

Description Load the T register with the 16-bit content of the location pointed to by the “loc16”
addressing mode; then, multiply the signed 16-bit content of the T register by the
specified signed 16-bit constant value:
T = [loc16];
ACC = signed T * signed 16bit;

Flags and Modes

Flags and Modes Description
Z After the operation, the Z flag is set if the ACC is zero, else Z is cleared.
N After the operation, the N flag is set if bit 31 of the ACC is 1, else N is cleared.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Calculate signed using 16-bit multiply:
; Y32 = Y32 + X16 * 2000
MPY ACC,@X16,#2000 ; T = X16, ACC = X16 * 2000
ADDL @Y32,ACC ; Y32 = Y32 + ACC

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com MPY ACC, T, loc16 — 16 X 16-bit Multiply

321SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

MPY ACC, T, loc16 16 X 16-bit Multiply

Syntax Options MPY ACC, T, loc16

Opcode 0001 0010 LLLL LLLL

Objmode X

RPT –

CYC 1

Operands ACC – Accumulator register

T – Multiplicand register

loc16 – Addressing mode (see Chapter 5)

Description Multiply the signed 16-bit content of the T register by the signed 16-bit contents of the
location pointed to by the “loc16” addressing mode and store the result in the ACC
register:
ACC = signed T * signed [loc16];

Flags and Modes

Flags and Modes Description
Z After the operation, the Z flag is set if the ACC is zero, else Z is cleared.
N After the operation, the N flag is set if bit 31 of the ACC is 1, else N is cleared.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Calculate signed using 16-bit multiply:
; Y32 = Y32 + X16*M16
MOV T,@X16 ; T = X16
MPY ACC,T,@M16 ; ACC = T * M16
ADDL @Y32,ACC ; Y32 = Y32 + ACC

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

MPY P,loc16,#16bit — 16 X 16-Bit Multiply www.ti.com

322 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

MPY P,loc16,#16bit 16 X 16-Bit Multiply

Syntax Options MPY P,loc16,#16bit

Opcode 1000 1100 LLLL LLLL
CCCC CCCC CCCC CCCC

Objmode 1

RPT –

CYC 1

Operands P – Product register

loc16 – Addressing mode (see Chapter 5)

#16bit – 16-bit immediate constant value

Description Multiply the signed 16-bit contents of the location pointed to by the “loc16” addressing
mode by the 16-bit immediate value and store the 32-bit result in the P register:
P = signed [loc16] * signed 16bit;

Flags and Modes None

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; ; Calculate using 16-bit multiply:
; Y = (X0*C0) >> 2) + (X1*C1 >> 2) + (X2*C2 >> 2),
; C0, C1 and C2 are constants
SPM −2 ; Set product shift to >> 2
MOVB ACC,#0 ; Zero ACC
MPY P,@X2,#C2 ; P = X2*C2
MPYA P,@X1,#C1 ; ACC = X2*C2>>2, P = X1*C1
MPYA P,@X0,#C0 ; ACC = X1*C1>>2 + X2*C2>>2, P = X0*C0
ADDL ACC,P << PM ; ACC = X0*C0>>2 + X1*C1>>2 + X2*C2>>2
MOVL @Y,ACC ; Store result into Y

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com MPY P,T,loc16 — 16 X 16 Multiply

323SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

MPY P,T,loc16 16 X 16 Multiply

Syntax Options MPY P,T,loc16

Opcode 0011 0011 LLLL LLLL

Objmode X

RPT –

CYC 1

Operands P – Product register

T – Multiplicand register

loc16 – Addressing mode (see Chapter 5)

Description Multiply the signed 16-bit content of the T register by the signed 16-bit contents of the
location pointed to by the “loc16” addressing mode and store the 32-bit result in the P
register:
P = signed T * signed [loc16];

Flags and Modes None

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Calculate using 16-bit multiply:
; Y = (X0*C0) >> 2) + (X1*C1 >> 2) + (X2*C2 >> 2)
; X2 = X1
; X1 = X0
SPM −2 ; Set product shift to >> 2
MOVP T,@X2 ; T = X2
MPYS P,T,@C2 ; P = T*C2, ACC = 0
MOVAD T,@X1 ; T = X1, ACC = X2*C2>>2, X2 = X1
MPY P,T,@C1 ; P = T*C1
MOVAD T,@X0 ; T = X0, ACC = X1*C1>>2 + X2*C2>>2, X1 = X0
MPY P,T,@C0 ; P = T*C0
ADDL ACC, P << PM ; ACC = X0*C0>>2 + X1*C1>>2 + X2*C2>>2
MOVL @Y,ACC ; Store result into Y

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

MPYA P,loc16,#16bit — 16 X 16-Bit Multiply and Add Previous Product www.ti.com

324 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

MPYA P,loc16,#16bit 16 X 16-Bit Multiply and Add Previous Product

Syntax Options MPYA P,loc16,#16bit

Opcode 0001 0101 LLLL LLLL
CCCC CCCC CCCC CCCC

Objmode X

RPT –

CYC 1

Operands P – Product register

loc16 – Addressing mode (see Chapter 5)

#16bit – 16-bit immediate constant value

Description Add the previous product (stored in the P register), shifted as specified by the product
shift mode (PM) bits, to the ACC register. Load the T register with the content of the
location pointed to by the “loc16” addressing mode. Multiply the signed 16-bit content of
the T register by the signed 16-bit constant value and store the 32-bit result in the P
register:
ACC = ACC + P << PM;
T = [loc16];
P = signed T * signed 16bit;

Flags and Modes

Flags and Modes Description
Z After the operation, the Z flag is set if the ACC is zero, else Z is cleared.
N After the addition, the N flag is set if bit 31 of the ACC is 1, else N is cleared.
C If the addition generates a carry, C is set; otherwise C is cleared.
V If an overflow occurs, V is set; otherwise V is not affected.

OVC
If overflow mode is disabled; and if the operation generates a positive overflow, then
the counter is incremented. If overflow mode is disabled; and if the operation generates
a negative overflow, then the counter is decremented.

OVM If overflow mode bit is set; then the ACC value will saturate maximum positive
(0x7FFFFFFF) or maximum negative (0x80000000) if the operation overflowed.

PM

The value in the PM bits sets the shift mode for the output operation from the product
register. If the product shift value is positive (logical left shift operation), then the low
bits are zero filled. If the product shift value is negative (arithmetic right shift operation),
the upper bits are sign extended.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Calculate using 16-bit multiply:
; Y = (X0*C0) >> 2) + (X1*C1 >> 2) + (X2*C2 >> 2),
; C0, C1 and C2 are constants
SPM −2 ; Set product shift to >> 2
MOVB ACC,#0 ; Zero ACC
MPY P,@X2,#C2 ; P = X2*C2
MPYA P,@X1,#C1 ; ACC = X2*C2>>2, P = X1*C1
MPYA P,@X0,#C0 ; ACC = X1*C1>>2 + X2*C2>>2, P = X0*C0
ADDL ACC, P << PM ; ACC = X0*C0>>2 + X1*C1>>2 + X2*C2>>2
MOVL @Y,ACC ; Store result into Y

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com MPYA P,T,loc16 — 16 X 16-bit Multiply and Add Previous Product

325SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

MPYA P,T,loc16 16 X 16-bit Multiply and Add Previous Product

Syntax Options MPYA P,T,loc16

Opcode 0001 0111 LLLL LLLL

Objmode X

RPT Y

CYC N+1

Operands P – Product register

T – Multiplicand register

loc16 – Addressing mode (see Chapter 5)

Description Add the previous product (stored in the P register), shifted as specified by the product
shift mode (PM), to the ACC register. Multiply the signed 16-bit content of T by the
signed 16-bit content of the location pointed to by the “loc16” addressing mode and store
the 32-bit result in the P register:
ACC = ACC + P << PM;
P = signed T * signed [loc16];

Flags and Modes

Flags and Modes Description
Z After the operation, the Z flag is set if the ACC is zero, else Z is cleared.
N After the addition, the N flag is set if bit 31 of the ACC is 1, else N is cleared.
C If the addition generates a carry, C is set; otherwise C is cleared.
V If an overflow occurs, V is set; otherwise V is not affected.

OVC
If overflow mode is disabled; and if the operation generates a positive overflow, then
the counter is incremented. If overflow mode is disabled; and if the operation generates
a negative overflow, then the counter is decremented.

OVM If overflow mode bit is set; then the ACC value will saturate maximum positive
(0x7FFFFFFF) or maximum negative (0x80000000) if the operation overflowed.

PM

The value in the PM bits sets the shift mode for the output operation from the product
register. If the product shift value is positive (logical left shift operation), then the low
bits are zero filled. If the product shift value is negative (arithmetic right shift operation),
the upper bits are sign extended.

Repeat This instruction is repeatable. If the operation follows a RPT instruction, then it will be
executed N+1 times. The state of the Z, N, C and OVC flags will reflect the final result.
The V flag will be set if an intermediate overflow occurs.

Example ; Calculate using 16-bit multiply:
; Y = (X0*C0) >> 2) + (X1*C1 >> 2) + (X2*C2 >> 2)
SPM −2 ; Set product shift to >> 2
MOVP T,@X2 ; ACC = P, T = X2
MPYS P,T,@C2 ; ACC = ACC − P = 0, P = T*C2
MOV T,@X1 ; T = X1
MPYA P,T,@C1 ; ACC = X2*C2>>2, P = T*C1
MOV T,@X0 ; T = X0
MPYA P,T,@C0 ; ACC = X1*C1>>2 + X2*C2>>2, P = T*C0
ADDL ACC,P << PM ; ACC = X0*C0>>2 + X1*C1>>2 + X2*C2>>2
MOVL @Y,ACC ; Store result into Y

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

MPYB ACC,T,#8bit — Multiply by 8-bit Constant www.ti.com

326 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

MPYB ACC,T,#8bit Multiply by 8-bit Constant

Syntax Options MPYB ACC,T,#8bit

Opcode 0011 0101 CCCC CCCC

Objmode X

RPT –

CYC 1

Operands ACC – Accumulator register

T – Multiplicand register

#8bit – 8-bit immediate constant value

Description Multiply the signed 16-bit content of the T register by the unsigned 8-bit constant value
zero extended and store the result in the ACC register:
ACC = signed T * 0:8bit

Flags and Modes

Flags and Modes Description
Z After the operation, the Z flag is set if the ACC is zero, else Z is cleared.
N After the operation, the N flag is set if bit 31 of the ACC is 1, else N is cleared.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Calculate signed using 16-bit multiply:
; Y32 = Y32 + (X16 * 5)
MOV T,@X16 ; T = X16
MPYB ACC,T,#5 ; ACC = T * 5
ADDL @Y32,ACC ; Y32 = Y32 + ACC

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com MPYB P,T,#8bit — Multiply Signed Value by Unsigned 8-bit Constant

327SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

MPYB P,T,#8bit Multiply Signed Value by Unsigned 8-bit Constant

Syntax Options MPYB P,T,#8bit

Opcode 0011 0001 CCCC CCCC

Objmode X

RPT –

CYC 1

Operands P – Product register

T – Multiplicand register

#8bit – 8-bit immediate constant value

Description Multiply the signed 16-bit content of the T register by the unsigned 8-bit immediate
constant value zero extended and store the 32-bit result in the P register:
P = signed T * 0:8bit;

Flags and Modes None

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Calculate: Y32 = X16 * 5;
MOV T,@X16 ; T = X16
MPYB P,T,#5 ; P = T * #5
MOVL @Y,P ; Store result into Y32

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

MPYS P,T,loc16 — 16 X 16-bit Multiply and Subtract www.ti.com

328 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

MPYS P,T,loc16 16 X 16-bit Multiply and Subtract

Syntax Options MPYS P,T,loc16

Opcode 0001 0011 LLLL LLLL

Objmode X

RPT Y

CYC N+1

Operands P – Product register

T – Multiplicand register

loc16 – Addressing mode (see Chapter 5)

Description Subtract the previous product (stored in the P register), shifted as specified by the
product shift mode (PM), from the ACC register. In addition, multiply the signed 16-bit
content of the T register by the signed 16-bit constant value and store the result in the P
register:
ACC = ACC − P << PM;
P = signed T * signed [loc16];

Flags and Modes

Flags and Modes Description
Z After the operation, the Z flag is set if the ACC is zero, else Z is cleared.
N After the subtraction, the N flag is set if bit 31 of the ACC is 1, else N is cleared.
C If the subtraction generates a carry, C is set; otherwise C is cleared.
V If an overflow occurs, V is set; otherwise V is not affected.

OVC
If overflow mode is disabled; and if the operation generates a positive overflow, then
the counter is incremented. If overflow mode is disabled; and if the operation generates
a negative overflow, then the counter is decremented.

OVM If overflow mode bit is set; then the ACC value will saturate maximum positive
(0x7FFFFFFF) or maximum negative (0x80000000) if the operation overflowed.

PM

The value in the PM bits sets the shift mode for the output operation from the product
register. If the product shift value is positive (logical left shift operation), then the low
bits are zero filled. If the product shift value is negative (arithmetic right shift operation),
the upper bits are sign extended.

Repeat This instruction is repeatable. If the operation follows a RPT instruction, then it will be
executed N+1 times. The state of the Z, N, C and OVC flags will reflect the final result.
The V flag will be set if an intermediate overflow occurs.

Example ; Calculate using 16-bit multiply:
; Y = (X0*C0) >> 2) + (X1*C1 >> 2) + (X2*C2 >> 2)
SPM −2 ; Set product shift to >> 2
MOVP T,@X2 ; ACC = P, T = X2
MPYS P,T,@C2 ; ACC = ACC − P = 0, P = T*C2
MOV T,@X1 ; T = X1
MPYA P,T,@C1 ; ACC = X2*C2>>2, P = T*C1
MOV T,@X0 ; T = X0
MPYA P,T,@C0 ; ACC = X1*C1>>2 + X2*C2>>2, P = T*C0
ADDL ACC, P << PM ; ACC = X0*C0>>2 + X1*C1>>2 + X2*C2>>2
MOVL @Y,ACC ; Store result into Y

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com MPYU P,T,loc16 — Unsigned 16 X 16 Multiply

329SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

MPYU P,T,loc16 Unsigned 16 X 16 Multiply

Syntax Options MPYU P,T,loc16

Opcode 0011 0111 LLLL LLLL

Objmode X

RPT –

CYC 1

Operands P – Product register

T – Multiplicand register

loc16 – Addressing mode (see Chapter 5)

Description Multiply the signed 16-bit content of the T register by the signed 16-bit contents of the
location pointed to by the “loc16” addressing mode and store the 32-bit result in the P
register:
P = unsigned T * unsigned [loc16];

Flags and Modes None

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Calculate unsigned value: Y32 = X16 * M16;
MOV T,@X16 ; T = X16
MPYU P,T,@M16 ; P = T * M16
MOVL @Y,P ; Store result into Y32

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

MPYU ACC,T,loc16 — 16 X 16-bit Unsigned Multiply www.ti.com

330 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

MPYU ACC,T,loc16 16 X 16-bit Unsigned Multiply

Syntax Options MPYU ACC,T,loc16

Opcode 0011 0110 LLLL LLLL

Objmode X

RPT –

CYC 1

Operands ACC – Accumulator register

T – Multiplicand register

loc16 – Addressing mode (see Chapter 5)

Description Multiply the unsigned 16-bit content of the T register by the unsigned 16-bit content of
the location pointed to by the “loc16” addressing mode and store the 32-bit results in the
ACC register:
ACC = unsigned T * unsigned [loc16];

Flags and Modes

Flags and Modes Description
Z After the operation, the Z flag is set if the ACC is zero, else Z is cleared.
N After the operation, the N flag is set if bit 31 of the ACC is 1, else N is cleared.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Calculate unsigned using 16-bit multiply:
; Y32 = Y32 + X16*M16
MOV T,@X16 ; T = X16
MPYU ACC,T,@M16 ; ACC = T * M16
ADDL @Y32,ACC ; Y32 = Y32 + ACC

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com MPYXU ACC, T, loc16 — Multiply Signed Value by Unsigned Value

331SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

MPYXU ACC, T, loc16 Multiply Signed Value by Unsigned Value

Syntax Options MPYXU ACC, T, loc16

Opcode 0011 0000 LLLL LLLL

Objmode X

RPT –

CYC 1

Operands ACC – Accumulator register

T – Multiplicand register

loc16 – Addressing mode (see Chapter 5)

Description Multiply the signed 16-bit content of the T register by the unsigned 16-bit content of the
location pointed to by the “loc16” addressing mode and store the result in the ACC
register:
ACC = signed T * unsigned [loc16];

Flags and Modes

Flags and Modes Description
Z After the operation, the Z flag is set if the ACC is zero, else Z is cleared.
N After the operation, the N flag is set if bit 31 of the ACC is 1, else N is cleared.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Calculate signed using 16-bit multiply:
; Y32 = Y32 + (signed) X16 * (unsigned) M16
MOV T,@X16 ; T = X16
MPYXU ACC,T,@M16 ; ACC = T * M16
ADDL @Y32,ACC ; Y32 = Y32 + ACC

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

MPYXU P,T,loc16 — Multiply Signed Value by Unsigned Value www.ti.com

332 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

MPYXU P,T,loc16 Multiply Signed Value by Unsigned Value

Syntax Options MPYXU P,T,loc16

Opcode 0011 0010 LLLL LLLL

Objmode X

RPT –

CYC 1

Operands P – Product register

T – Multiplicand register

loc16 – Addressing mode (see Chapter 5)

Description Multiply the signed 16-bit content of the T register by the signed 16-bit contents of the
location pointed to by the “loc16” addressing mode and store the 32-bit result in the P
register:
P = signed T * unsigned [loc16];

Flags and Modes None

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Calculate "Y32 = X32 * M32" by parts using 16-bit multiply:
MOV T,@X32+0 ; T = unsigned low X32
MPYU ACC,T,@M32+0 ; ACC = T * unsigned low M32
MOV @Y32+0,AL ; Store low result into Y32
MOVU ACC,@AH ; Logical shift right ACC by 16
MOV T,@X32+1 ; T = signed high X32
MPYXU P,T,@M32+0 ; ACC = T * low unsigned M32
MOVA T,@M32+1 ; T = signed high M32, ACC += P
MPYXU P,T,@X32+0 ; ACC = T * low unsigned X32
ADDL ACC,P @P ; Add P to ACC
MOV @Y32+1,AL ; Store high result into Y32

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com NASP — Unalign Stack Pointer

333SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

NASP Unalign Stack Pointer

Syntax Options NASP

Opcode 0111 0110 0001 0111

Objmode X

RPT –

CYC 1

Operands None

Description If the SPA bit is 1, the NASP instruction decrements the stack pointer (SP) by 1 and then
clears the SPA status bit. This undoes a stack pointer alignment performed earlier by the
ASP instruction. If the SPA bit is 0, then the NASP instruction performs no operation.
if(SPA = 1)

{
SP = SP − 1;
SPA = 0;
}

Flags and Modes

Flags and Modes Description
SPA If (SPA = 1), then SPA is cleared.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Alignment of stack pointer in interrupt service routine:
; Vector table:

INTx: .long INTx- ; INTx interrupt vector
Service

.

.
INTxService:

ASP ; Align stack pointer
.
.
.
NASP ; Re−align stack pointer
IRET ; Return from interrupt.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

NEG ACC — Negate Accumulator www.ti.com

334 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

NEG ACC Negate Accumulator

Syntax Options NEG ACC

Opcode 1111 1111 0101 0100

Objmode X

RPT –

CYC 1

Operands ACC – Accumulator register

Description Negate the contents of the ACC register:
if(ACC = 0x8000 0000)

{
V = 1;
if(OVM = 1)

ACC = 0x7FFF FFFF;
else

ACC = 0x8000 0000;
}

else
ACC = −ACC;

if(ACC = 0x0000 0000)
C = 1;

else
C = 0;

Flags and Modes

Flags and Modes Description
N After the operation, the N flag is set if bit 31 of the ACC is 1, else N is cleared.
Z After the operation, the Z flag is set if the ACC is zero, else Z is cleared.
C If (ACC = 0), set C; otherwise, clear C.

V If (ACC = 0x8000 0000) at the start of the operation, this is considered an overflow
value and V is set. Otherwise, V is not affected.

OVM

If (ACC = 0x8000 0000) at the start of the operation, this is considered an overflow
value, and the ACC value after the operation depends on the state of OVM: If OVM is
cleared, ACC will be filled with 0x8000 0000. If OVM is set ACC will be saturated to
0x7FFF FFFF.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Negate contents of VarA, make sure value is saturated:
MOVL ACC,@VarA ; Load ACC with contents of VarA
SETC OVM ; Turn overflow mode on
NEG ACC ; Negate ACC and saturate
MOVL @VarA,ACC ; Store result into VarA

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com NEG AX — Negate AX Register

335SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

NEG AX Negate AX Register

Syntax Options NEG AX

Opcode 1111 1111 0101 110A

Objmode X

RPT –

CYC 1

Operands AX – Accumulator high (AH) or accumulator low (AL) register

Description Replace the contents of the specified AX register with the negative of AX:
if(AX = 0x8000)

{
AX = 0x8000;
V flag = 1;
}

else
AX = −AX;

if(AX = 0x0000)
C flag = 1;

else
C flag = 0;

Flags and Modes

Flags and Modes Description

N After the operation, if bit 15 of AX is 1, then the negative flag bit is set; otherwise, it is
cleared.

Z After the operation, if AX is 0, then the Z bit is set, otherwise it is cleared.
C If AX is 0, C is set; otherwise, it is cleared.

V If AX is 0x8000 at the start of the operation, then this is considered an overflow and V
is set. Otherwise V is not affected.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Take the absolute value of VarA:
MOV AL,@VarA ; Load AL with contents of VarA
NEG AL ; If Al = 8000h, then V = 1

SB NoOver- flow,NOV ; Branch and save −AL if no overflow
MOV ; Save 7FFF if overflow

@VarA,0x7FFFh
NoOverflow:

MOV @VarA,AL ; Save NEG AL if no overflow

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

NEG64 ACC:P — Negate Accumulator Register and Product Register www.ti.com

336 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

NEG64 ACC:P Negate Accumulator Register and Product Register

Syntax Options NEG64 ACC:P

Opcode 0101 0110 0101 1000

Objmode 1

RPT –

CYC 1

Operands ACC:P – Accumulator register (ACC) and product register (P)

Description Negate the 64-bit content of the combined ACC:P registers:
if(ACC:P = 0x8000 0000 0000 0000)

{
V = 1;
if(OVM = 1)

ACC:P = 0x7FFF FFFF FFFF FFFF;
else

ACC:P = 0x8000 0000 0000 0000;
}

else
ACC:P = −ACC:P;

if(ACC:P = 0x0000 0000 0000 0000)
C = 1;

else
C = 0;

Flags and Modes

Flags and Modes Description

N After the shift, if bit 31 of the ACC register is 1 then ACC:P is negative and the N bit is
set; otherwise N is cleared.

Z After the operation, the Z flag is set if the combined 64-bit value of the ACC:P is zero;
otherwise, Z is cleared.

C If (ACC:P= = 0) then the C bit is set; otherwise C is cleared.
V if(ACC:P = 0x8000 0000 0000 0000) then the V flag is set; otherwise, V is not modified.

OVM

If at the start of the operation, ACC:P = 0x8000 0000 0000 0000, then this is
considered an overflow value and the ACC:P value after the operation depends on
OVM. If (OVM = 1) ACC:P is filled with its greatest positive number (0x7FFF FFFF
FFFF FFFF). If (OVM = 0) then ACC:P is not modified.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Negate the contents of the 64-bit Var64 and saturate:
MOVL ACC,@Var64+2 ; Load ACC with high 32-bits of Var64
MOVL P,@Var64+0 ; Load P with low 32-bits of Var64
SETC OVM ; Enable overflow mode (saturate)
NEG64 ACC:P ; Negate ACC:P with saturation
MOVL @Var64+2,ACC ; Store high 32-bit result into Var64
MOVL @Var64+0,P ; Store low 32-bit result into Var64

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com NEGTC ACC — If TC is Equivalent to 1, Negate ACC

337SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

NEGTC ACC If TC is Equivalent to 1, Negate ACC

Syntax Options NEGTC ACC

Opcode 0101 0110 0011 0010

Objmode 1

RPT –

CYC 1

Operands ACC – Accumulator register

Description Based on the state of the test control (TC) bit, conditionally replace the content of the
ACC register with its negative:
if(TC = 1)

{
if(ACC = 0x8000 0000)

{
V = 1;
if(OVM = 1)

ACC = 0x7FFF FFFF;
else

ACC = 0x8000 0000
}

else
ACC = −ACC;

if(ACC = 0x0000 0000)
C = 1;

else
C = 0;

}

Flags and Modes

Flags and Modes Description
N After the operation, the N flag is set if bit 31 of the ACC is 1, else N is cleared.
Z After the operation, the Z flag is set if the ACC is zero, else Z is cleared.

C If (TC = 1 AND ACC = 0) set C; if (TC = 1 AND ACC != 0) clear C; otherwise C is not
modified.

V If (TC = 1 AND ACC = 0x8000 0000) at the start of the operation, this is considered an
overflow value and V is set. Otherwise, V is not affected.

TC The state of the TC bit is used as a test condition for the operation.

OVM

If at the start of the operation, ACC = 0x8000 0000, then this is considered an overflow
value and the ACC value after the operation depends on OVM. If OVM is cleared and
TC = 1, ACC will be filled with 0x8000 0000. If OVM is set and TC = 1, ACC will be
saturated to 0x7FFF FFFF.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

NEGTC ACC — If TC is Equivalent to 1, Negate ACC www.ti.com

338 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

Example ; Calculate signed: Quot16 = Num16/Den16, Rem16 = Num16%Den16
CLRC TC ; Clear TC flag, used as sign flag
MOV ACC,@Den16 << 16 ; AH = Den16, AL = 0
ABSTC ACC ; Take abs value, TC = sign ^ TC
MOV T,@AH ; Temp save Den16 in T register
MOV ACC,@Num16 << 16 ; AH = Num16, AL = 0
ABSTC ACC ; Take abs value, TC = sign ^ TC
MOVU ACC,@AH ; AH = 0, AL = Num16
RPT #15 ; Repeat operation 16 times
||SUBCU @T ; Conditional subtract with Den16
MOV @Rem16,AH ; Store remainder in Rem16
MOV ACC,@AL << 16 ; AH = Quot16, AL = 0
NEGTC ACC ; Negate if TC = 1
MOV @Quot16,AH ; Store quotient in Quot16

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com NOP {*ind}{ARPn} — No Operation With Optional Indirect Address Modification

339SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

NOP {*ind}{ARPn} No Operation With Optional Indirect Address Modification

Syntax Options NOP {*ind}{ARPn}

Opcode 0111 0111 LLLL LLLL

Objmode X

RPT Y

CYC N+1

Operands {*ind} – Indirect address mode (see chapter 5)

ARPn – Auxiliary register pointer (ARP0 to ARP7)

Description Modify the indirect address operand as specified and change the auxiliary register
pointer (ARP) to the given auxiliary register. If no operands are given, then do nothing.

Flags and Modes None

Repeat This instruction is repeatable. If this instruction follows the RPT instruction, it will execute
N+1 times.

Example ; Copy the contents of Array1 to Array2:
; int32 Array1[N];
; int32 Array2[N];
; for(i=0; i < N; i++)
; Array2[i] = Array1[i];
; This example only works for code located in upper 64K
; of program space:

MOVL XAR2,#Array1 ; XAR2 = pointer to Array1
MOVL XAR3,#Array2 ; XAR3 = pointer to Array2
MOV @AR0,#(N−1) ; Repeat loop N times
NOP *,ARP2 ; Point to XAR2 (ARP = 2)
SETC AMODE ; Full C2xLP address mode compatible

Loop:
MOVL ACC,* ; ACC = Array1[i]
NOP *++,ARP3 ; Increment XAR2 and point to XAR3
RPT #19 ; Do nothing for 20 cycles

||NOP
MOVL *++,ACC,ARP0 ; Array2[i] = ACC, point to XAR0
XBANZ Loop,*−−,ARP2 ; Loop if AR[ARP] != 0, AR[ARP]−−,

; point to XAR2

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

NORM ACC, *ind — Normalize ACC and Modify Selected Auxiliary Register www.ti.com

340 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

NORM ACC, *ind Normalize ACC and Modify Selected Auxiliary Register

Syntax Options

Syntax Options Opcode Objmode RPT CYC
NORM ACC, * 0101 0110 0010 0100 1 Y N+4

NORM ACC, *++ 0101 0110 0101 1010 1 Y N+4

NORM ACC, *- - 0101 0110 0010 0000 1 Y N+4

NORM ACC, *0++ 0101 0110 0111 0111 1 Y N+4

NORM ACC, *0- - 0101 0110 0011 0000 1 Y N+4

Operands ACC – Accumulator register

*ind – *, *++, *− −, *0++, *0− − indirect addressing modes (see Chapter 5)

Description Normalize the signed content of the ACC register and modify, as specified by the indirect
addressing mode, the auxiliary register (XAR0 to XAR7) pointed to by the auxiliary
register pointer (ARP).

Note: The NORM instruction normalizes a signed number in the ACC register by finding
the magnitude of the number. An XOR operation is performed on ACC bits 31 and 30. If
the bits are the same, then the content of the ACC register is logically shifted left by 1 to
eliminate the extra sign bit and the selected pointer is modified. If the bits are different,
the ACC is not shifted and the selected pointer is not modified. The selected pointer
does not access any memory location.

Flags and Modes

Flags and Modes Description
Z After the operation, the Z flag is set if the ACC value is zero, else Z is cleared.
N After the operation, the N flag is set if bit 31 of the ACC is 1, else N is cleared.

TC
If the operation set TC, no normalization was needed (ACC did not need to be
modified). If the operation cleared TC, bits 31 and 30 were the same and, as a result,
the ACC register was logically shifted left by 1.

ARP Auxiliary register pointer selects which pointer to modify as part of the operation (XAR0
to XAR7).

Repeat This instruction is repeatable. If the operation follows a RPT instruction, then the NORM
instruction will be executed N+1 times. The state of the Z, N, and TC flags will reflect the
final result. Note: If you only want the NORM instruction to execute until normalization is
done, you can create a loop that checks the value of the TC bit. When TC = 1,
normalization is complete.

Example ; Normalize the contents of VarA,
; XAR2 will contain shift value at the end of the operation:

MOVL ACC,@VarA ; ACC = VarA
MOVB XAR2,#0 ; Initialize XAR2 to zero
NOP *,ARP2 ; Set ARP pointer to point to XAR2
SBF Skip,EQ ; Skip if ACC value is zero
RPT #31 ; Repeat next operation 32 times

||NORM ACC,*++ ; Normalize contents of ACC
Skip:

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com NORM ACC,XARn++/− − — Normalize ACC and Modify Selected Auxiliary Register

341SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

NORM ACC,XARn++/− − Normalize ACC and Modify Selected Auxiliary Register

Syntax Options

Syntax Options Opcode Objmode RPT CYC
NORM ACC,XARn++ 1111 1111 0111 1nnn X Y N+4

NORM ACC,XARn- - 1111 1111 0111 0nnn X Y N+4

Operands ACC – Accumulator register

XARn – XAR0 to XAR7, auxiliary registers post incremented or decremented

Description Normalize the signed content of the ACC register and modify the specified auxiliary
register (XAR0 to XAR7):
if(ACC != 0x0000 0000)

{
if((ACC(31) XOR ACC(30)) = 0)

{
ACC = ACC << , TC = 0;
if(XARn++ addressing mode) XARn += 1;
if(XARn−− addressing mode) XARn −= 1;
}

else
TC = 1;

}
else

TC = 1;

Note: The NORM instruction normalizes a signed number in the ACC register by finding
the magnitude of the number. An XOR operation is performed on ACC bits 31 and 30. If
the bits are the same, then the content of the ACC register is logically shifted left by 1 to
eliminate the extra sign bit and the selected pointer is modified. If the bits are different,
the ACC is not shifted and the selected pointer is not modified. The selected pointer
does not access any memory location.

Flags and Modes

Flags and Modes Description
Z After the operation, the Z flag is set if the ACC value is zero, else Z is cleared.
N After the operation, the N flag is set if bit 31 of the ACC is 1, else N is cleared.

TC
If the operation set TC, no normalization was needed (ACC did not need to be
modified). If the operation cleared TC, bits 31 and 30 were the same and, as a result,
the ACC register was logically shifted left by 1.

Repeat This instruction is repeatable. If the operation follows a RPT instruction, then the NORM
instruction will be executed N+1 times. The state of the Z, N, and TC flags will reflect the
final result. Note: If you only want the NORM instruction to execute until normalization is
done, you can create a loop that checks the value of the TC bit. When TC = 1,
normalization is complete.

Example ; Normalize the contents of VarA,
; XAR2 will contain shift value at the end of the operation:

MOVL ACC,@VarA ; ACC = VarA
MOVB XAR2,#0 ; Initialize XAR2 to zero
SBF Skip,EQ ; Skip if ACC value is zero
RPT #31 ; Repeat next operation 32 times

||NORM ACC,XAR2++ ; Normalize contents of ACC
Skip:

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

NOT ACC — Complement Accumulator www.ti.com

342 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

NOT ACC Complement Accumulator

Syntax Options NOT ACC

Opcode 1111 1111 0101 0101

Objmode X

RPT –

CYC 1

Operands ACC – Accumulator register

Description The content of the ACC register is replaced with its complement:
ACC = ACC XOR 0xFFFFFFFF;

Flags and Modes

Flags and Modes Description
N After the operation, the N flag is set if bit 31 of the ACC is 1, else N is cleared.
Z After the operation, the Z flag is set if the ACC is zero, else Z is cleared.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Complement the contents of VarA:
MOVL ACC,@VarA ; ACC = VarA
NOT ACC ; Complement ACC contents
MOVL @VarA,ACC ; Store result into VarA

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com NOT AX — Complement AX Register

343SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

NOT AX Complement AX Register

Syntax Options NOT AX

Opcode 1111 1111 0101 111A

Objmode X

RPT –

CYC 1

Operands AX – Accumulator high (AH) or accumulator low (AL) register

Description Replace the contents of the specified AX register (AH or AL) with its complement:
AX = AX XOR 0xFFFF;

Flags and Modes

Flags and Modes Description

N After the operation, if bit 15 of AX is 1 then the negative flag bit is set; otherwise it is
cleared.

Z After the operation, if AX is 0, then the Z bit is set, otherwise it is cleared.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Complement the contents of VarA:
MOV AL,@VarA ; Load AL with contents of VarA
NOT AL ; Complement contents of AL
MOV @VarA,AL ; Store result in VarA

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

OR ACC, loc16 — Bitwise OR www.ti.com

344 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

OR ACC, loc16 Bitwise OR

Syntax Options OR ACC, loc16

Opcode 1010 1111 LLLL LLLL

Objmode 1

RPT Y

CYC N+1

Operands ACC – Accumulator register

loc16 – Addressing mode (see Chapter 5)

Description Perform a bitwise OR operation on the ACC register with the zero-extended content of
the location pointed to by the “loc16” address mode. The result is stored in the ACC
register:
ACC = ACC OR 0:[loc16];

Flags and Modes

Flags and Modes Description

N The load to ACC is tested for a negative condition. If bit 31 of ACC is 1, then the
negative flag bit is set; otherwise it is cleared.

Z The load to ACC is tested for a zero condition. The zero flag bit is set if the operation
generates ACC = 0; otherwise it is cleared.

Repeat This operation is repeatable. If the operation follows a RPT instruction, then the OR
instruction will be executed N+1 times. The state of the Z and N flags will reflect the final
result.

Example ; Calculate the 32-bit value: VarA = VarA OR 0:VarB
MOVL ACC,@VarA ; Load ACC with contents of VarA
OR ACC,@VarB ; OR ACC with contents of 0:VarB
MOVL @VarA,ACC ; Store result in VarA

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com OR ACC,#16bit << #0..16 — Bitwise OR

345SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

OR ACC,#16bit << #0..16 Bitwise OR

Syntax Options

Syntax Options Opcode Objmode RPT CYC
OR ACC,#16bit << #0..15 0011 1110 0001 SHFT

CCCC CCCC CCCC CCCC
1 – 1

OR ACC,#16bit << #16 0101 0110 0100 1010
CCCC CCCC CCCC CCCC

1 – 1

Operands ACC – Accumulator register

#16bit – 16-bit immediate constant value

#0..16 – Shift value (default is "<<#0" if no value specified)

Description Perform a bitwise OR operation on the ACC register with the given 16-bit unsigned
constant value left shifted as specified. The value is zero extended and lower order bits
are zero filled before the OR operation. The result is stored in the ACC register:
ACC = ACC OR (0:16bit << shift value);

Flags and Modes

Flags and Modes Description

N The load to ACC is tested for a negative condition. If bit 31 of ACC is 1, then the
negative flag bit is set; otherwise it is cleared.

Z The load to ACC is tested for a zero condition. The zero flag bit is set if the operation
generates ACC = 0; otherwise it is cleared.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Calculate the 32-bit value: VarA = VarA OR 0x08000000
MOVL ACC,@VarA ; Load ACC with contents of VarA
OR ACC,#0x8000 << 12 ; OR ACC with 0x08000000
MOVL @VarA,ACC ; Store result in VarA

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

OR AX, loc16 — Bitwise OR www.ti.com

346 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

OR AX, loc16 Bitwise OR

Syntax Options OR AX, loc16

Opcode 1100 101A LLLL LLLL

Objmode X

RPT –

CYC 1

Operands AX – Accumulator high (AH) or accumulator low (AL) register

loc16 – Addressing mode (see Chapter 5)

Description Perform a bitwise OR operation on the specified AX register with the contents of the
location pointed to by the “loc16” addressing mode. The result is stored in AX:
AX = AX OR [loc16];

Flags and Modes

Flags and Modes Description

N The load to AX is tested for a negative condition. If bit 15 of AX is 1, then the negative
flag bit is set; otherwise it is cleared.

Z The load to AX is tested for a zero condition. The zero flag bit is set if the operation
generates AX = 0, otherwise it is cleared.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; OR the contents of VarA and VarB and store in VarC:
MOV AL,@VarA ; Load AL with contents of VarA
OR AL,@VarB ; OR AL with contents of VarB M
OV @VarC,AL ; Store result in VarC

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com OR IER,#16bit — Bitwise OR

347SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

OR IER,#16bit Bitwise OR

Syntax Options OR IER,#16bit

Opcode 0111 0110 0010 0011
CCCC CCCC CCCC CCCC

Objmode X

RPT –

CYC 2

Operands IER – Interrupt enable register

#16bit-Mask – 16-bit immediate constant value

Description Enable specific interrupts by performing a bitwise OR operation with the IER register and
the 16-bit immediate value. The result is stored in the IER register. Any changes take
effect before the next instruction is processed.
IER = IER OR #16bit;

Flags and Modes None

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Enable INT1 and INT6 only. Do not modify state of other
; interrupt’s enable:
OR IER,#0x0061 ; Enable INT1 and INT6

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

OR IFR,#16bit — Bitwise OR www.ti.com

348 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

OR IFR,#16bit Bitwise OR

Syntax Options OR IFR,#16bit

Opcode 0111 0110 0010 0111
CCCC CCCC CCCC CCCC

Objmode X

RPT –

CYC 2

Operands IFR – Interrupt flag register

#16bit – 16-bit immediate constant value

Description Enable specific interrupts by performing a bitwise OR operation with the IFR register and
the 16-bit immediate value. The result of the OR operation is stored in the IFR register.
IFR = IFR OR #16bit;

Note: Interrupt hardware has priority over CPU instruction operation in cases where the
interrupt flag is being simultaneously modified by the hardware and the instruction.

This instruction should not be used with interrupts 1−12 when the peripheral interrupt
expansion (PIE) block is enabled.

Flags and Modes None

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Trigger INT1 and INT6 only. Do not modify state of other
; interrupt’s flags:
OR IFR,#0x0061 ; Trigger INT1 and INT6

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com OR loc16,#16bit — Bitwise OR

349SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

OR loc16,#16bit Bitwise OR

Syntax Options OR loc16,#16bit

Opcode 0001 1010 LLLL LLLL
CCCC CCCC CCCC CCCC

Objmode X

RPT –

CYC 1

Operands loc16 – Addressing mode (see Chapter 5)

#16bit – 16-bit immediate constant value

Description Perform a bitwise OR operation on the content of the location pointed to by the “loc16”
addressing mode and the 16-bit immediate constant value. The result is stored in the
location pointed to by “loc16”:
[loc16] = [loc16] OR 16bit;

Smart Encoding:

If loc16 = AH or AL and #16bit is an 8-bit number, then the assembler will encode this
instruction as ORB AX, #8bit to improve efficiency. To override this encoding, use the
ORW AX, #16bit instruction alias.

Flags and Modes

Flags and Modes Description
N After the operation if bit 15 of [loc16] 1, set N; otherwise, clear N.
Z After the operation if [loc16] is zero, set Z; otherwise, clear Z.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Set Bits 4 and 7 of VarA:
; VarA = VarA OR #(1 << 4 | 1 << 7)
OR @VarA,#(1 << 4 | 1 <<7) ; Set bits 4 and 7 of VarA

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

OR loc16, AX — Bitwise OR www.ti.com

350 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

OR loc16, AX Bitwise OR

Syntax Options OR loc16, AX

Opcode 1001 100A LLLL LLLL

Objmode X

RPT –

CYC 1

Operands loc16 – Addressing mode (see Chapter 5)

AX – Accumulator high (AH) or accumulator low (AL) register

Description Perform a bitwise OR operation on the contents of location pointed to by the “loc16”
addressing mode with the specified AX register. The result is stored in the addressed
location specified by “loc16”:
[loc16] = [loc16] OR AX;

This instruction performs a read-modify-write operation.

Flags and Modes

Flags and Modes Description

N The load to [loc16] is tested for a negative condition. If bit 15 of [loc16] is 1, then the
negative flag bit is set; otherwise it is cleared.

Z The load to [loc16] is tested for a zero condition. The zero flag bit is set if the operation
generates [loc16] = 0, otherwise it is cleared.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; OR the contents of VarA with VarB and store in VarB:
MOV AL,@VarA ; Load AL with contents of VarA
OR @VarB,AL ; VarB = VarB OR AL

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com ORB AX,#8bit — Bitwise OR 8-bit Value

351SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

ORB AX,#8bit Bitwise OR 8-bit Value

Syntax Options ORB AX,#8bit

Opcode 0101 000A CCCC CCCC

Objmode X

RPT –

CYC 1

Operands AX – Accumulator high (AH) or accumulator low (AL) register

#8bit – 8-bit immediate constant value

Description Perform a bitwise OR operation on the specified AX register with the 8-bit unsigned
immediate constant zero extended. The result is stored in AX:
AX = AX OR 0x00:8bit;

Flags and Modes

Flags and Modes Description

N The load to AX is tested for a negative condition. If bit 15 of AX is 1, then the negative
flag bit is set; otherwise it is cleared.

Z The load to AX is tested for a zero condition. The zero flag bit is set if the operation
generates AX = 0, otherwise it is cleared.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Set bit 7 of VarA and store result in VarB:
MOV AL,@VarA ; Load AL with contents of VarA
ORB AL,#0x80 ; OR contents of AL with 0x0080
MOV @VarB,AL ; Store result in VarB

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

OUT *(PA),loc16 — Output Data to Port www.ti.com

352 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

OUT *(PA),loc16 Output Data to Port

Syntax Options OUT *(PA),loc16

Opcode 1011 1100 LLLL LLLL
CCCC CCCC CCCC CCCC

Objmode 1

RPT –

CYC 4

Operands *(PA) – Immediate I/O space memory address

loc16 – Addressing mode (see Chapter 5)

Description Store the 16-bit value from the location pointed to by the “loc16” addressing mode into
the I/O space location pointed to by the *(PA) operand):
IOspace[0x0000PA] = [loc16];

I/O Space is limited to 64K range (0x0000 to 0xFFFF). On the external interface
(XINTF), if available on a particular device, the I/O strobe signal (XISn) is toggled during
the operation. The I/O address appears on the lower 16 XINTF address lines (XA(15:0))
and the upper address lines are zeroed. The data appears on the lower 16 data lines
(XD(15:0).

Note: The UOUT operation is not pipeline protected. Hence, if an IN instruction
immediately follows a UOUT instruction, the IN will occur before the UOUT. To be
certain of the sequence of operation, use the OUT instruction, which is pipeline
protected.

Note: The UOUT operation is not pipeline protected. Therefore, if an IN instruction
immediately follows a UOUT instruction, the IN will occur before the UOUT. To be
certain of the sequence of operation, use the OUT instruction, which is pipeline
protected. I/O space may not be implemented on all C28x devices. See the data sheet
for your particular device for details.

Flags and Modes None

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; IORegA address = 0x0300;
; IOREgB address = 0x0301;
; IOREgC address = 0x0302;
; IORegA = 0x0000;
; IORegB = 0x0400;
; IORegC = VarA;
; if(IORegC = 0x2000)
; IORegC = 0x0000;
IORegA .set 0x0300 ; Define IORegA address
IORegB .set 0x0301 ; Define IORegB address
IORegC .set 0x0302 ; Define IORegC address

MOV @AL,#0 ; AL = 0
UOUT *(IORegA),@AL ; IOspace[IORegA] = AL
MOV @AL,#0x0400 ; AL = 0x0400
UOUT *(IORegB),@AL ; IOspace[IORegB] = AL
OUT *(IORegC),@VarA ; IOspace[IORegC] = VarA
IN @AL,*(IORegC) ; AL = IOspace[IORegC]
CMP @AL,#0x2000 ; Set flags on (AL − 0x2000)
SB $10,NEQ ; Branch if not equal
MOV @AL,#0 ; AL = 0
UOUT *(IORegC),@AL ; IOspace[IORegC] = AL

$10:

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com POP ACC — Pop Top of Stack to Accumulator

353SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

POP ACC Pop Top of Stack to Accumulator

Syntax Options POP ACC

Opcode 0000 0110 1011 1110

Objmode X

RPT –

CYC 1

Operands ACC – Accumulator

Description Predecrement SP by 2. Load ACC with the 32-bit value pointed to by SP:
SP −= 2;
ACC = [SP];

Flags and Modes

Flags and Modes Description

N
The load to ACC is tested for a negative condition. Bit-31 of the ACC register is the
sign bit, 0 for positive, 1 for negative. The negative flag bit is set if the operation on the
ACC register generates a negative value, otherwise it is cleared.

Z The load to ACC is tested for a zero condition. The bit is set if the result of the
operation on the ACC register generates a 0 value, otherwise it is cleared .

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

POP ARn:ARm — Pop Top of Stack to 16-bit Auxiliary Registers www.ti.com

354 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

POP ARn:ARm Pop Top of Stack to 16-bit Auxiliary Registers

Syntax Options

Syntax Options Opcode Objmode RPT CYC
POP AR1:AR0 0111 0110 0000 0111 X – 1

POP AR3:AR2 0111 0110 0000 0101 X – 1

POP AR5:AR4 0111 0110 0000 0110 X – 1

Operands ARn:ARm – AR1:AR0 or AR3:AR2 or AR5:AR4 auxiliary registers

Description AR1:AR0 or AR3:AR2 or AR5:AR4 Predecrement SP by 2. Load the contents of two 16-
bit auxiliary registers (ARn and ARm)with the value pointed to by SP and SP+1.
POP AR1:AR0

SP −= 2;
AR0 = [SP];
AR1 = [SP+1];
AR1H:AR0H = unchanged;

POP AR3:AR2
SP −= 2;
AR2 = [SP];
AR3 = [SP+1];
AR3H:AR2H = unchanged;

POP AR5:AR4
SP −= 2;
AR4 = [SP];
AR5 = [SP+1];
AR5H:AR4H = unchanged;

Flags and Modes None

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com POP AR1H:AR0H — Pop Top of Stack to Upper Half of Auxiliary Registers

355SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

POP AR1H:AR0H Pop Top of Stack to Upper Half of Auxiliary Registers

Syntax Options POP AR1H:AR0H

Opcode 0000 0000 0000 0011

Objmode X

RPT –

CYC 1

Operands AR1H:AR0H – Upper 16-bits of XAR1 and XAR0 auxiliary registers

Description Predecrement SP by 2. Load the contents of AR0H with the value pointed to by SP and
AR1H with the value pointed to by SP+1. The lower 16 bits of the auxiliary registers
(AR0 and AR1) are left unchanged.
SP −= 2; AR0H
= [SP]; AR1H =
[SP+1];
AR1:AR0 = unchanged;

Flags and Modes None

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example . ; Full context restore for an
. ; interrupt or trap function
.
POP XT ; 32-bit XT restore
POP XAR7 ; 32-bit XAR7 restore
POP XAR6 ; 32-bit XAR6 restore
POP XAR5 ; 32-bit XAR5 restore
POP XAR4 ; 32-bit XAR4 restore
POP XAR3 ; 32-bit XAR5 restore
POP XAR2 ; 32-bit XAR2 restore
POP AR1H:AR0H ; 16-bit AR1H and 16-bit AR0H restore
IRET

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

POP DBGIER — Pop Top of Stack to DBGIER www.ti.com

356 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

POP DBGIER Pop Top of Stack to DBGIER

Syntax Options POP DBGIER

Opcode 0111 0110 0001 0010

Objmode X

RPT –

CYC 5

Operands DBGIER – Debug interrupt-enable register

Description Predecrement SP by 1. Load the contents of DBGIER with the value pointed to by SP:
SP −= 1;
DBGIER = [SP];

Flags and Modes None

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com POP DP — Pop Top of Stack to the Data Page

357SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

POP DP Pop Top of Stack to the Data Page

Syntax Options POP DP

Opcode 0111 0110 0000 0011

Objmode X

RPT –

CYC 1

Operands DP – Data-page register

Description Predecrement SP by 1. Load the contents of DP with the value pointed to by SP:
SP −= 1;
DP = [SP];

Flags and Modes None

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

POP DP:ST1 — Pop Top of Stack to DP and ST1 www.ti.com

358 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

POP DP:ST1 Pop Top of Stack to DP and ST1

Syntax Options POP DP:ST1

Opcode 0111 0110 0000 0001

Objmode X

RPT –

CYC 5

Operands DP:ST1 – Data page register and status register 1

Description Predecrement SP by 2. Load ST1 with the value pointed to by SP and load DP with the
value pointed to by SP+1:
SP −= 2;
ST1 = [SP];
DP = [SP+1];

Flags and Modes None

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com POP IFR — Pop Top of Stack to IFR

359SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

POP IFR Pop Top of Stack to IFR

Syntax Options POP IFR

Opcode 0000 0000 0000 0010

Objmode X

RPT –

CYC 5

Operands IFR – Interrupt flag register

Description Predecrement SP by 1. Load the contents of IFR with the value pointed to by SP:
SP −= 1;
IFR = [SP];

Flags and Modes None

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

POP loc16 — Pop Top of Stack www.ti.com

360 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

POP loc16 Pop Top of Stack

Syntax Options POP loc16

Opcode 0010 1010 LLLL LLLL

Objmode X

RPT –

CYC 2

Operands loc16 – Addressing mode (See Chapter 5)

Description Predecrement SP by 1. Load the contents of loc16 with the 16-bit value pointed to by
SP.
SP -= 1;
[loc16] = [SP];

Flags and Modes

Flags and Modes Description

N
If (loc16 = @AX), then the load to AX is tested for a negative condition. Bit-15 of the
AX register is the sign bit, 0 for positive, 1 for negative. The negative flag bit is set if the
operation on the AX register generates a negative value, otherwise it is cleared.

Z If (loc16 = @AX), then the load to AX is tested for a zero condition. The bit is set if the
result of the operation on the AX register generates a 0 value, otherwise it is cleared.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example
POP @T ; Predecrement SP by 1. Load

; XT(31:15) with the
; contents of the location pointed to
; by SP. TL is unchanged.

POP @AL ; Predecrement SP by 1. Load AL with
; the contents of the location pointed
; to by SP. AH is unchanged.

POP @AR4 ; Predecrement SP by 1. Load AR4 with
; the contents of the location pointed
; to by SP. AR4H is unchanged.

POP *XAR4++ ; Predecrement SP by 1. Load the
; 16-bit location pointed to by XAR4
; with the contents of the location
; pointed to by SP. Post-increment
; XAR4 by 1

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com POP P — Pop top of Stack to P

361SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

POP P Pop top of Stack to P

Syntax Options POP P

Opcode 0111 0110 0001 0001

Objmode X

RPT –

CYC 1

Operands P – Product register

Description Predecrement SP by 2. Load P with the 32-bit value pointed to by SP:
SP −= 2;
P = [SP];

Flags and Modes None

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

POP RPC — Pop RPC Register From Stack www.ti.com

362 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

POP RPC Pop RPC Register From Stack

Syntax Options POP RPC

Opcode 0000 0000 0000 0111

Objmode X

RPT –

CYC 3

Operands RFC – Return program counter register

Description Predecrement SP by 2. Load the contents of RPC with the value pointed to by SP:
SP −= 2;
RPC = [SP];

Flags and Modes None

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com POP ST0 — Pop Top of Stack to ST0

363SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

POP ST0 Pop Top of Stack to ST0

Syntax Options POP ST0

Opcode 0111 0110 0001 0011

Objmode X

RPT –

CYC 1

Operands ST0 – Status register 0

Description Predecrement SP by 1. Load the contents of ST0 with the value pointed to by SP:
SP −= 1;
ST0 = [SP];

Flags and Modes

Flags and Modes Description
C
N
V
Z

TC
SXM
OVC
PM

The bit value of each flag and mode listed is replaced by the value popped off of the
stack

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

POP ST1 — Pop Top of Stack to ST1 www.ti.com

364 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

POP ST1 Pop Top of Stack to ST1

Syntax Options POP ST1

Opcode 0111 0110 0000 0000

Objmode X

RPT –

CYC 5

Operands ST1 – Status register 1

Description Predecrement SP by 1. Load the contents of ST0 with the value pointed to by SP:
SP −= 1;
ST1 = [SP];

Flags and Modes

Flags and Modes Description
DBGM
INTM
VMAP
SPA

PAGE0
AMODE

ARP
EALLOW
Objmode

XF

The bit values for each flag and mode listed is replaced by the value popped off of the
stack

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com POP T:ST0 — Pop Top of Stack to T and ST0

365SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

POP T:ST0 Pop Top of Stack to T and ST0

Syntax Options POP T:ST0

Opcode 0111 0110 0001 0101

Objmode X

RPT –

CYC 1

Operands T:ST0 – The upper 16-bits of the multiplicand register and status register 0

Description Predecrement SP by 2. Load ST0 with the value pointed to by SP and load T with the
value pointed to by SP+1. The low 16 bits of the XT Register (TL) are left unchanged:
SP −= 2;
T = [SP];
ST0 = [SP+1];
TL = unchanged;

Flags and Modes None

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

POP XARn — Pop Top of Stack to 32-bit Auxiliary Register www.ti.com

366 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

POP XARn Pop Top of Stack to 32-bit Auxiliary Register

Syntax Options

Syntax Options Opcode Objmode RPT CYC
XAR0 1000 1110 1011 1110 1 – 1

XAR1 1000 1011 1011 1110 1 – 1

XAR2 1000 0110 1011 1110 1 – 1

XAR3 1000 0010 1011 1110 1 – 1

XAR4 1000 1010 1011 1110 1 – 1

XAR5 1000 0011 1011 1110 1 – 1

XAR6 1100 0100 1011 1110 X – 1

XAR7 1100 0101 1011 1110 X – 1

Operands XARn – XAR0 to XAR7, 32-bit auxiliary registers

Description Predecrement SP by 2. Load XARn with the 32-bit value pointed to by SP:
SP −= 2;
XARn = [SP];

Flags and Modes None

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example . ; Full context restore for an
. ; interrupt or trap function
.
POP XT ; 32-bit XT restore
POP XAR7 ; 32-bit XAR7 restore
POP XAR6 ; 32-bit XAR6 restore
POP XAR5 ; 32-bit XAR5 restore
POP XAR4 ; 32-bit XAR4 restore
POP XAR3 ; 32-bit XAR3 restore
POP XAR2 ; 32-bit XAR2 restore
POP AR1H:AR0H ; 16-bit AR1H and 16-bit AR0H restore
IRET

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com POP XT — Pop Top of Stack to XT

367SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

POP XT Pop Top of Stack to XT

Syntax Options POP XT

Opcode 1000 0111 1011 1110

Objmode X

RPT –

CYC 1

Operands XT – Multiplicand register

Description Predecrement SP by 2. Load XT with the 32-bit value pointed to by SP:
SP −= 2;
XT = [SP];

Flags and Modes None

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

PREAD loc16,*XAR7 — Read From Program Memory www.ti.com

368 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

PREAD loc16,*XAR7 Read From Program Memory

Syntax Options PREAD loc16,*XAR7

Opcode 0010 0100 LLLL LLLL

Objmode X

RPT Y

CYC N+2

Operands loc16 – Addressing mode (see Chapter 5)

*XAR7 – Indirect program−memory addressing using auxiliary register XAR7, can
access full 4Mx16 program space range (0x000000 to 0x3FFFFF)

Description Load the data memory−location pointed to by the “loc16” addressing mode with the 16-
bit content of the program−memory location pointed to by ”*XAR7”:
[loc16] = Prog[*XAR7];

On the C28x devices, memory blocks are mapped to both program and data space
(unified memory), hence the ”*XAR7” addressing mode can be used to access data
space variables that fall within the program space address range.

With some addressing mode combinations, you can get conflicting references. In such
cases, the C28x will give the “loc16/loc32” field priority on changes to XAR7. For
example:
PREAD *−−XAR7,*XAR7 ; *−−XAR7 given priority
PREAD *XAR7++,*XAR7 ; *XAR7++ given priority

Flags and Modes

Flags and Modes Description
N If (loc16 = @AX) and bit 15 of AX is 1, then N is set; otherwise N is cleared.
Z If (loc16 = @AX) and the value of AX is zero, then Z is set; otherwise Z is cleared.

Repeat This instruction is repeatable. If the operation follows a RPT instruction, then it will be
executed N+1 times. When repeated, the ”*XAR7” program−memory address is copied
to an internal shadow register and the address is post−incremented by 1 during each
repetition.

Example ; Copy the contents of Array1 to Array2:
; int16 Array1[N]
; // Located in program space
; int16 Array [N]
; // Located in data space
; for(i=0; i N; i++)
; Array2[i] = Array1[i];

MOVL XAR7,#Array1 ; XAR7 = pointer to Array1
MOVL XAR2,#Array2 ; XAR2 = pointer to Array2
RPT #(N−1) ; Repeat next instruction N times

||PREAD *XAR2++,*XAR7 ; Array2[i] = Array1[i],
; i++

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com PUSH ACC — Push Accumulator Onto Stack

369SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

PUSH ACC Push Accumulator Onto Stack

Syntax Options PUSH ACC

Opcode 0001 1110 1011 1101

Objmode X

RPT –

CYC 2

Note: This instruction is an alieas for the MOV*SP++, ACC instruction.

Operands ACC – Accumulator register

Description Push the 32-bit contents of ACC onto the stack pointed to by SP. Post-increment SP by
2:
[SP] = ACC;
SP += 2;

Flags and Modes None

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example
MOVL XAR4, #VarA ; Initialize XAR4 pointer with the

; 22-bit address of VarA
MOVL ACC, *+XAR4[0] ; Load the 32-bit contents of VarA

; into ACC
PUSH ACC ; Push the 32-bit ACC into the

; location pointed to by SP.
; Post-increment SP by 2

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

PUSH ARn:ARm — Push 16-bit Auxiliary REgisters Onto Stack www.ti.com

370 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

PUSH ARn:ARm Push 16-bit Auxiliary REgisters Onto Stack

Syntax Options

Syntax Options Opcode Objmode RPT CYC
PUSH AR1:AR0 0111 0110 0000 1101 X – 1

PUSH AR3:AR2 0111 0110 0000 1111 X – 1

PUSH AR5:AR4 0111 0110 0000 1100 X – 1

Operands ARn:ARm – AR1:AR0 or AR3:AR2 or AR5:AR4 auxiliary registers

Description Push the contents of two 16-bit auxiliary registers (ARn and ARm) onto the stack pointed
to by SP. Post-increment SP by 2:
PUSH AR1:AR0

[SP] = AR0;
[SP+1] = AR1;
SP += 2;

PUSH AR3:AR2
[SP] = AR2;
[SP+1] = AR3;
SP += 2;

PUSH AR5:AR4
[SP] = AR4;
[SP+1] = AR5;
SP += 2;

Flags and Modes None

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com PUSH AR1H:AR0H — Push AR1H and Ar0H Registers on Stack

371SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

PUSH AR1H:AR0H Push AR1H and Ar0H Registers on Stack

Syntax Options PUSH AR1H:AR0H

Opcode 0000 0000 0000 0101

Objmode X

RPT –

CYC 1

Operands AR1H:AR0H – Upper 16-bits of XAR1 and XAR0 auxiliary registers

Description Push the contents of AR0H followed by the contents of AR1H onto the stack pointed to
by SP. Post-increment SP by 2:
[SP] = AR0H;
[SP+1] = AR1H;
SP += 2;

Flags and Modes None

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example
IntX: ; Full context save code for an

; interrupt or trap function

PUSH AR1H:AR0H ; 16-bit AR1H and 16-bit AR0H store
PUSH XAR2 ; 32-bit store of XAR2
PUSH XAR3 ; 32-bit store of XAR3
PUSH XAR4 ; 32-bit store of XAR4
PUSH XAR5 ; 32-bit store of XAR5
PUSH XAR6 ; 32-bit store of XAR6
PUSH XAR7 ; 32-bit store of XAR7
PUSH XT ; 32-bit store of XT

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

PUSH DBGIER — Push DBGIER Register Onto Stack www.ti.com

372 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

PUSH DBGIER Push DBGIER Register Onto Stack

Syntax Options PUSH DBGIER

Opcode 0111 0110 0000 1110

Objmode X

RPT –

CYC 1

Operands DBGIER – Debug interrupt enable register

Description Push the 16-bit contents of DBGIER onto the stack pointed to by SP. Post-increment SP
by 1:
[SP] = DBGIER;
SP += 1;

Flags and Modes None

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com PUSH DP — Push DP Register Onto Stack

373SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

PUSH DP Push DP Register Onto Stack

Syntax Options PUSH DP

Opcode 0111 0110 0000 1011

Objmode X

RPT –

CYC 1

Operands DP – Data-page register

Description Push the 16-bit contents of DP onto the stack pointed to by SP. Post-increment SP by 1:
[SP] = DP;
SP += 1;

Flags and Modes None

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

PUSH DP:ST1 — Push DP and ST1 Onto Stack www.ti.com

374 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

PUSH DP:ST1 Push DP and ST1 Onto Stack

Syntax Options PUSH DP:ST1

Opcode 0111 0110 0000 1001

Objmode X

RPT –

CYC 1

Operands DP:ST1 – Data-page register and status register 1

Description Push the 16bit contents of ST1 followed by the 16-bit contents of DP onto the stack
pointed to by SP. Post-increment SP by 2:
[SP] = ST1;
[SP+1] = DP;
SP += 2;

Flags and Modes None

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com PUSH IFR — Push IFR Onto Stack

375SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

PUSH IFR Push IFR Onto Stack

Syntax Options PUSH IFR

Opcode 0111 0110 0000 1010

Objmode X

RPT –

CYC 1

Operands IFR – Interrupt flag register

Description Push the 16-bit contents of IFR onto the stack pointed to by SP. Post-increment SP by 1:
[SP] = IFR;
SP += 1;

Flags and Modes None

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

PUSH loc16 — Push 16-bit Value on Stack www.ti.com

376 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

PUSH loc16 Push 16-bit Value on Stack

Syntax Options PUSH loc16

Opcode 0010 0010 LLLL LLLL

Objmode X

RPT –

CYC 2

Operands loc16 – Addressing mode (see Chapter 5)

Description Push a 16-bit value pointed to by the “loc16” operand on the stack pointed to by SP.
Post-increment SP by 1:
[SP] = [loc16];
SP += 1;

Flags and Modes None

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example PUSH @T ; Push the contents of XT(31:15) into
; the location pointed to by
; SP. Post-increment SP by 1

PUSH @AL ; Push the contents of AL onto into
; the location pointed to by
; SP. Post-increment SP by 1

PUSH @AR4 ; Push the lower 16-bits of XAR4 into
; the location pointed to by
; SP. Post-increment SP by 1

PUSH *XAR4++ ; Push the value pointed to by XAR4
; into the location pointed to
; by SP. Post-increment SP and XAR4
; by 1

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com PUSH P — Push P Onto Stack

377SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

PUSH P Push P Onto Stack

Syntax Options PUSH P

Opcode 0111 0110 0001 1101

Objmode X

RPT –

CYC 1

Operands P – Product register

Description Push the 32-bit contents of P onto the stack pointed to by SP Post-increment SP by 2:
[SP] = P;
SP += 2;

Flags and Modes None

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example
MOVL XAR5, #VarA ; Initialize XAR5 pointer with the

; 22-bit address of VarA
MOVL P, *+XAR5[0] ; Load the 32-bit contents of VarA

; into P
PUSH P ; Push the 32-bit P into the

; location pointed to by SP.
; Post-increment SP by 2

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

PUSH RPC — Push RPC Onto Stack www.ti.com

378 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

PUSH RPC Push RPC Onto Stack

Syntax Options PUSH RPC

Opcode 0000 0000 0000 0100

Objmode X

RPT –

CYC 1

Operands RPC – Return program counter register

Description Push the contents of the RPC register onto the stack pointed to by SP. Post-increment
SP by 2:
[SP] = RPC;
SP += 2;

Flags and Modes None

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com PUSH ST0 — Push ST0 Onto Stack

379SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

PUSH ST0 Push ST0 Onto Stack

Syntax Options PUSH ST0

Opcode 0111 0110 0001 1000

Objmode X

RPT –

CYC 1

Operands ST0 – Status register 0

Description Push the 16-bit contents of ST0 onto the stack pointed to by SP. Post-increment SP by
1:
[SP] = ST0;
SP += 1;

Flags and Modes None

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

PUSH ST1 — Push ST1 Onto Stack www.ti.com

380 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

PUSH ST1 Push ST1 Onto Stack

Syntax Options PUSH ST1

Opcode 0111 0110 0000 1000

Objmode X

RPT –

CYC 1

Operands ST1 – Status register 1

Description Push the 16-bit contents of ST1 onto the stack pointed to by SP. Post-increment SP by
1:
[SP] = ST1;
SP += 1;

Flags and Modes None

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com PUSH T:ST0 — Push T and ST0 Onto Stack

381SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

PUSH T:ST0 Push T and ST0 Onto Stack

Syntax Options PUSH T:ST0

Opcode 0111 0110 0001 1001

Objmode X

RPT –

CYC 1

Operands T:ST0 – The upper 16-bits of the multiplicand register and status register 0

Description Push the 16- bit contents of ST0 followed by the 16-bit contents of T onto the stack
pointed to by SP. Post-increment SP by 2:
[SP] = ST0;
[SP+1] = T;
SP += 2;

Flags and Modes None

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

PUSH XARn — Push 32-bit Auxiliary Register Onto Stack www.ti.com

382 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

PUSH XARn Push 32-bit Auxiliary Register Onto Stack

Syntax Options

Syntax Options Opcode Objmode RPT CYC
PUSH XAR0 0011 1010 1011 1101 1 – 1

PUSH XAR1 1011 0010 1011 1101 1 – 1

PUSH XAR2 1010 1010 1011 1101 1 – 1

PUSH XAR3 1010 0010 1011 1101 1 – 1

PUSH XAR4 1010 1000 1011 1101 1 – 1

PUSH XAR5 1010 0000 1011 1101 1 – 1

PUSH XAR6 1100 0010 1011 1101 X – 1

PUSH XAR7 1100 0011 1011 1101 X – 1

Operands XARn – XAR0 to XAR7, 32-bit auxiliary register

Description Push the 32-bit contents of XARn onto the stack pointed to by SP. Post-increment SP by
2:
[SP] = XARn;

SP += 2;

Flags and Modes None

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example IntX: ; Full context save code for an
; interrupt or trap function

PUSH AR1H:AR0H ; 16-bit AR1H and 16-bit AR0H store
PUSH XAR2 ; 32-bit store of XAR2
PUSH XAR3 ; 32-bit store of XAR3
PUSH XAR4 ; 32-bit store of XAR4
PUSH XAR5 ; 32-bit store of XAR5
PUSH XAR6 ; 32-bit store of XAR6
PUSH XAR7 ; 32-bit store of XAR7
PUSH XT ; 32-bit store of XT

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com PUSH XT — Push XT Onto Stack

383SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

PUSH XT Push XT Onto Stack

Syntax Options PUSH XT

Opcode 1010 1011 1011 1101

Objmode X

RPT –

CYC 1

Operands XT – Multiplicand register

Description Push the 32-bit contents of XT onto the stack pointed to by SP. Post-increment SP by 2:
[SP] = XT;
SP += 2;

Flags and Modes None

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example MOVL XAR1, #VarA ; Initialize XAR1 pointer with the
; 22-bit address of VarA

MOVL XT, *+XAR5[0] ; Load the 32-bit contents of VarA
; into XT

PUSH XT ; Push the 32-bit XT into the
; location pointed to by SP.
; Post-increment SP by 2

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

PWRITE *XAR7,loc16 — Write to Program Memory www.ti.com

384 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

PWRITE *XAR7,loc16 Write to Program Memory

Syntax Options PWRITE *XAR7,loc16

Opcode 0010 0110 LLLL LLLL

Objmode X

RPT Y

CYC N+5

Operands *XAR7 – Indirect program−memory addressing using auxiliary register XAR7, can
access full 4Mx16 program space range (0x000000 to 0x3FFFFF)

loc16 – Addressing mode (see Chapter 5)

Description Load the program−memory location pointed to by the ”*XAR7” with the content of the
location pointed to by the “loc16” addressing mode:
Prog[*XAR7] = [loc16];

On the C28x devices, memory blocks are mapped to both program and data space
(unified memory), hence the ”*XAR7” addressing mode can be used to access data
space variables that fall within the program space address range.

With some addressing mode combinations, you can get conflicting references. In such
cases, the C28x will give the “loc16/loc32” field priority on changes to XAR7. For
example:
PWRITE *XAR7,*−−XAR7 ; *−−XAR7 given priority
PWRITE *XAR7,*XAR7++ ; *XAR7++ given priority

Flags and Modes None

Repeat This instruction is repeatable. If the operation follows a RPT instruction, then it will be
executed N+1 times. When repeated, the ”*XAR7” program−memory address is copied
to an internal shadow register and the address is post−incremented by 1 during each
repetition.

Example ; Copy the contents of Array1 to Array2:
; int16 Array1[N]; // Located in data space
; int16 Array2[N]; // Located in program space
; for(i=0; i < N; i++)
; Array2[i] = Array1[i];

MOVL XAR2,#Array1 ; XAR2 = pointer to Array1
MOVL XAR7,#Array2 ; XAR7 = pointer to Array2
RPT #(N−1) ; Repeat next instruction N times

||PWRITE *XAR7,*XAR2++ ; Array2[i] = Array1[i],
; i++

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com QMACL P,loc32,*XAR7/++ — Signed 32 X 32-bit Multiply and Accumulate (Upper Half)

385SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

QMACL P,loc32,*XAR7/++ Signed 32 X 32-bit Multiply and Accumulate (Upper Half)

Syntax Options

Syntax Options Opcode Objmode RPT CYC
QMACL P,loc32,*XAR7 0101 0110 0100 1111

1100 0111 LLLL LLLL
1 Y N+2

QMACL
P,loc32,*XAR7++

0101 0110 0100 1111
1000 0111 LLLL LLLL

1 Y N+2

Operands P – Product register

loc32 – Addressing mode (see Chapter 5)

Note: The @ACC addressing mode cannot be used when the instruction is repeated. No
illegal instruction trap will be generated if used (assembler will flag an error).

*XAR7/++ – Indirect program−memory addressing using auxiliary register XAR7, can
access full 4Mx16 program space range (0x000000 to 0x3FFFFF)

Description 32-bit x 32-bit signed multiply and accumulate. First, add the previous product (stored in
the P register), shifted as specified by the product shift mode (PM), to the ACC register.
Then, multiply the signed 32-bit content of the location pointed to by the “loc32”
addressing mode by the signed 32-bit content of the program−memory location pointed
to by the XAR7 register and store the upper 32−bits of the 64-bit result in the P register.
If specified, post-increment the XAR7 register by 2:
ACC = ACC + P << PM;
P = (signed T * signed Prog[*XAR7 or *XAR7++]) >> 32;

On the C28x devices, memory blocks are mapped to both program and data space
(unified memory), hence the ”*XAR7/++” addressing mode can be used to access data
space variables that fall within the program space address range.

With some addressing mode combinations, you can get conflicting references. In such
cases, the C28x will give the “loc16/loc32” field priority on changes to XAR7. For
example:

QMACL P,*−−XAR7,*XAR7++ ; −−XAR7 given priority
QMACL P,*XAR7++,*XAR7 ; *XAR7++ given priority
QMACL P,*XAR7,*XAR7++ ; *XAR7++ given priority

Flags and Modes

Flags and Modes Description
Z After the addition, the Z flag is set if the ACC value is zero, else Z is cleared.
N After the addition, the N flag is set if bit 31 of the ACC is 1, else N is cleared.
C If the addition generates a carry, C is set; otherwise C is cleared.
V If an overflow occurs, V is set; otherwise V is not affected.

OVC
If overflow mode is disabled; and if the operation generates a positive overflow, then
the counter is incremented. If overflow mode is disabled; and if the operation generates
a negative overflow, then the counter is decremented.

OVM If overflow mode bit is set; then the ACC value will saturate maximum positive
(0x7FFFFFFF) or maximum negative (0x80000000) if the operation overflowed.

PM

The value in the PM bits sets the shift mode for the output operation from the product
register. If the product shift value is positive (logical left shift operation), then the low
bits are zero filled. If the product shift value is negative (arithmetic right shift operation),
the upper bits are sign extended.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

QMACL P,loc32,*XAR7/++ — Signed 32 X 32-bit Multiply and Accumulate (Upper Half) www.ti.com

386 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

Repeat This instruction is repeatable. If the operation follows a RPT instruction, then it will be
executed N+1 times. The state of the Z, N, C and OVC flags will reflect the final result in
the ACC. The V flag will be set if an intermediate overflow occurs in the ACC.

Example ; Calculate sum of product using 32-bit multiply and retain
; high result:
; int32 X[N]; // Data information
; int32 C[N]; // Coefficient information (located in low 4M)
; int32 sum = 0;
; for(i=0; i < N; i++)
; sum = sum + ((X[i] * C[i]) >> 32) >> 5;

MOVL XAR2,#X ; XAR2 = pointer to X
MOVL XAR7,#C ; XAR7 = pointer to C
SPM −5 ; Set product shift to ">> 5"
ZAPA ; Zero ACC, P, OVC
RPT #(N−1) ; Repeat next instruction N times

||QMACL P,*XAR2++,*XAR7++ ; ACC = ACC + P >> 5,
; P = (X[i] * C[i]) >> 32
; i++

ADDL ACC, P << PM ; Perform final accumulate
MOVL @sum,ACC ; Store final result into sum

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com QMPYAL P,XT,loc32 — Signed 32-bit Multiply (Upper Half) and Add Previous P

387SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

QMPYAL P,XT,loc32 Signed 32-bit Multiply (Upper Half) and Add Previous P

Syntax Options QMPYAL P,XT,loc32

Opcode 0101 0110 0100 0110
0000 0000 LLLL LLLL

Objmode 1

RPT –

CYC 1

Operands P – Product register

XT – Multiplicand register

loc32 – Addressing mode (see Chapter 5)

Description Signed 32-bit x 32-bit multiply and accumulate the previous product. Add the previous
signed product (stored in the P register), shifted as specified by the product shift mode
(PM), to the ACC register. In addition, multiply the signed 32-bit content of the XT
register by the signed 32-bit content of the location pointed to by the “loc32” addressing
mode and store the upper 32−bits of the 64-bit result in the P register:
ACC = ACC + P << PM;
P = (signed T * signed [loc32]) >> 32;

Flags and Modes

Flags and Modes Description
Z After the addition, the Z flag is set if the ACC value is zero, else Z is cleared.
N After the addition, the N flag is set if bit 31 of the ACC is 1, else N is cleared.
C If the addition generates a carry, C is set; otherwise C is cleared.
V If an overflow occurs, V is set; otherwise V is not affected.

OVC
If overflow mode is disabled; and if the operation generates a positive overflow, then
the counter is incremented. If overflow mode is disabled; and if the operation generates
a negative overflow, then the counter is decremented.

OVM If overflow mode bit is set; then the ACC value will saturate maximum positive
(0x7FFFFFFF) or maximum negative (0x80000000) if the operation overflowed.

PM

The value in the PM bits sets the shift mode for the output operation from the product
register. If the product shift value is positive (logical left shift operation), then the low
bits are zero filled. If the product shift value is negative (arithmetic right shift operation),
the upper bits are sign extended.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Calculate signed result:
; Y32 = (X0*C0 + X1*C1 + X2*C2) >> (32 + 2)
SPM −2 ; Set product shift mode to ">> 2"
ZAPA ; Zero ACC, P, OVC
MOVL XT,@X0 ; XT = X0
QMPYL P,XT,@C0 ; P = high 32−bits of (X0*C0)
MOVL XT,@X1 ; XT = X0
QMPYAL P,XT,@C1 ; ACC = ACC + P >> 2,

; P = high 32−bits of (X1*C1)
MOVL XT,@X2 ; XT = X0
QMPYAL P,XT,@C2 ; ACC = ACC + P >> 2,

; P = high 32−bits of (X2*C2)
ADDL ACC,P << PM ; ACC = ACC + P >> 2
MOVL @Y32,ACC ; Store result into Y32

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

QMPYL P,XT,loc32 — Signed 32 X 32-bit Multiply (Upper Half) www.ti.com

388 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

QMPYL P,XT,loc32 Signed 32 X 32-bit Multiply (Upper Half)

Syntax Options QMPYL P,XT,loc32

Opcode 0101 0110 0110 0111
0000 0000 LLLL LLLL

Objmode 1

RPT –

CYC 1

Operands P – Product register

XT – Multiplicand register

loc32 – Addressing mode (see Chapter 5)

Description Multiply the signed 32-bit content of the XT register by the signed 32-bit content of the
location pointed to by the “loc32” addressing mode and store the upper 32−bits of the
64-bit result (a Q30 number) in the P register:
P = (signed XT * signed [loc32]) >> 32;

Flags and Modes None

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Calculate signed result: Y64 = M32*X32 + B64
MOVL XT,@M32 ; XT = M32
IMPYL P,XT,@X32 ; P = low 32−bits of (M32*X32)
MOVL ACC,@B64+2 ; ACC = high 32−bits of B64
ADDUL P,@B64+0 ; P = P + low 32−bits of B64
MOVL @Y64+0,P ; Store low 32-bit result into Y64
QMPYL P,XT,@X32 ; P = high 32−bits of (M32*X32)
ADDCL ACC,@P ; ACC = ACC + P + carry
MOVL @Y64+2,ACC ; Store high 32-bit result into Y64

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com QMPYL ACC,XT,loc32 — Signed 32 X 32-bit Multiply (Upper Half)

389SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

QMPYL ACC,XT,loc32 Signed 32 X 32-bit Multiply (Upper Half)

Syntax Options QMPYL ACC,XT,loc32

Opcode 0101 0110 0110 0011
0000 0000 LLLL LLLL

Objmode 1

RPT –

CYC 2

Operands P – Product register

XT – Multiplicand register

ACC – Accumulator register

Description Multiply the signed 32-bit content of the XT register by the signed 32-bit content of the
location pointed to by the “loc32” addressing mode and store the upper 32-bits of the 64-
bit result (a Q30 number) in the ACC register:
ACC = (signed XT * signed [loc32]) >> 32;

Flags and Modes

Flags and Modes Description
Z After the operation, the Z flag is set if the ACC value is zero, else Z is cleared.
N After the operation, the N flag is set if bit 31 of the ACC is 1, else N is cleared.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Calculate signed result: Y64 = M32*X32
MOVL XT,@M32 ; XT = M32
IMPYL P,XT,@X32 ; P = low 32−bits of (M32*X32)
QMPYL ACC,XT,@X32 ; ACC = high 32−bits of (M32*X32)
MOVL @Y64+0,P ; Store result into Y64
MOVL @Y64+2,ACC

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

QMPYSL P,XT,loc32 — Signed 32-bit Multiply (Upper Half) and Subtract Previous P www.ti.com

390 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

QMPYSL P,XT,loc32 Signed 32-bit Multiply (Upper Half) and Subtract Previous P

Syntax Options QMPYSL P,XT,loc32

Opcode 0101 0110 0100 0101
0000 0000 LLLL LLLL

Objmode 1

RPT –

CYC 1

Operands P – Product register

XT – Multiplicand register

loc32 – Addressing mode (see Chapter 5)

Description Signed 32-bit x 32-bit multiply and subtract the previous product. Subtract the previous
signed product (stored in the P register), shifted as specified by the product shift mode
(PM), from the ACC register. In addition, multiply the signed 32-bit content of the XT
register by the signed 32-bit constant value and store the upper 32−bits of the 64-bit
result in the P register:
ACC = ACC − P << PM;
P = (signed T * signed [loc32]) >> 32;

Flags and Modes

Flags and Modes Description
Z After the subtraction, the Z flag is set if the ACC value is zero, else Z is cleared.
N After the subtraction, the N flag is set if bit 31 of the ACC is 1, else N is cleared.
C If the subtraction generates a borrow, C is cleared; otherwise C is set.
V If an overflow occurs, V is set; otherwise V is not affected.

OVC
If overflow mode is disabled; and if the operation generates a positive overflow, then
the counter is incremented. If overflow mode is disabled; and if the operation generates
a negative overflow, then the counter is decremented.

OVM If overflow mode bit is set; then the ACC value will saturate maximum positive
(0x7FFFFFFF) or maximum negative (0x80000000) if the operation overflowed.

PM

The value in the PM bits sets the shift mode for the output operation from the product
register. If the product shift value is positive (logical left shift operation), then the low
bits are zero filled. If the product shift value is negative (arithmetic right shift operation),
the upper bits are sign extended.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Calculate signed result:
; Y32 = −(X0*C0 + X1*C1 + X2*C2) >> (32 + 2)
SPM −2 ; Set product shift mode to ">> 2"
ZAPA ; Zero ACC, P, OVC
MOVL XT,@X0 ; XT = X0
QMPYL P,XT,@C0 ; P = high 32−bits of (X0*C0)
MOVL XT,@X1 ; XT = X0
QMPYSL P,XT,@C1 ; ACC = ACC − P >> 2,

; P = high 32−bits of (X1*C1)
MOVL XT,@X2 ; XT = X0
QMPYSL P,XT,@C2 ; ACC = ACC − P >> 2,

; P = high 32−bits of (X2*C2)
SUBL ACC,P << PM ; ACC = ACC − P >> 2
MOVL @Y32,ACC ; Store result into Y32

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com QMPYUL P,XT,loc32 — Unsigned 32 X 32-bit Multiply (Upper Half)

391SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

QMPYUL P,XT,loc32 Unsigned 32 X 32-bit Multiply (Upper Half)

Syntax Options QMPYUL P,XT,loc32

Opcode 0101 0110 0100 0111
0000 0000 LLLL LLLL

Objmode 1

RPT –

CYC 1

Operands P – Product register

XT – Multiplicand register

loc32 – Addressing mode (see Chapter 5)

Description Multiply the unsigned 32-bit content of the XT register by the unsigned 32-bit content of
the location pointed to by the “loc32” addressing mode and store the upper 32−bits of
the 64-bit result in the P register:
P = (unsigned XT * unsigned [loc32]) >> 32;

Flags and Modes None

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Calculate unsigned result: Y64 = M32*X32 + B64
MOVL XT,@M32 ; XT = M32
IMPYL P,XT,@X32 ; P = low 32−bits of (M32*X32)
MOVL ACC,@B64+2 ; ACC = high 32−bits of B64
ADDUL P,@B64+0 ; P = P + low 32−bits of B64
MOVL @Y64+0,P ; Store low 32-bit result into Y64
QMPYUL P,XT,@X32 ; P = high 32−bits of (M32*X32)
ADDCL ACC,@P ; ACC = ACC + P + carry
MOVL @Y64+2,ACC ; Store high 32-bit result into Y64

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

QMPYXUL P,XT,loc32 — Signed X Unsigned 32-bit Multiply (Upper Half) www.ti.com

392 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

QMPYXUL P,XT,loc32 Signed X Unsigned 32-bit Multiply (Upper Half)

Syntax Options QMPYXUL P,XT,loc32

Opcode 0101 0110 0100 0010
0000 0000 LLLL LLLL

Objmode 1

RPT –

CYC 1

Operands P – Product register

XT – Multiplicand register

loc32 – Addressing mode (see Chapter 5)

Description Multiply the signed 32-bit content of the XT register by the unsigned 32-bit content of the
location pointed to by the “loc32” addressing mode and store the upper 32−bits of the
64-bit result in the P register:
P = (signed XT * unsigned [loc32]) >> 32;

Flags and Modes None

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Calculate signed result: Y64 = (M64*X64) >> 64 + B64
; Y64 = Y1:Y0, M64 = M1:M0, X64 = X1:X0, B64 = B1:B0

MOVL XT,@X1 ; XT = X1
QMPYXUL P,XT,@M0 ; P = high 32−bits of (uns M0 * sign X1)
MOV @T,#32 ; T = 32
LSL64 ACC:P,T ; ACC:P = ACC:P << T
ASR64 ACC:P,T ; ACC:P = ACC:P >> T
MOVL @XAR4,P ; XAR5:XAR4 = ACC:P
MOVL @XAR5,ACC
MOVL XT,@M1 ; XT = M1
QMPYXUL P,XT,@X0 ; P = high 32−bits of (sign M1 * uns X0)
MOV @T,#32 ; T = 32
LSL64 ACC:P,T ; ACC:P = ACC:P << T
ASR64 ACC:P,T ; ACC:P = ACC:P >> T
MOVL @XAR6,P ; XAR7:XAR6 = ACC:P MOVL @XAR7,ACC
IMPYL P,XT,@X1 ; P = low 32−bits of (sign M1 * sign X1)
QMPYL ACC,XT,@X1 ; ACC = high 32−bits of (sign M1 * sign X1)
ADDUL P,@XAR4 ; ACC:P = ACC:P + XAR5:XAR4
ADDCL ACC,@XAR5
ADDUL P,@XAR6 ; ACC:P = ACC:P + XAR7:XAR6
ADDCL ACC,@XAR7
ADDUL P,@B0 ; ACC:P = ACC:P + B64
ADDCL ACC,@B1
MOVL @Y0,P ; Store result into Y64
MOVL @Y1,ACC

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

ACC

C Rotate Left

ACC

www.ti.com ROL ACC — Rotate Accumulator Left

393SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

ROL ACC Rotate Accumulator Left

Syntax Options ROL ACC

Opcode 1111 1111 0101 0011

Objmode X

RPT Y

CYC N+1

Operands ACC – Accumulator register

Description Rotate the content of the ACC register left by one bit, filling bit 0 with the content of the
carry flag and loading the carry flag with the bit shifted out:

Flags and Modes

Flags and Modes Description
N After the operation, the N flag is set if bit 31 of the ACC is 1, else N is cleared.
Z After the operation, the Z flag is set if the ACC is zero, else Z is cleared.

C The value in bit 31 of the ACC register is transferred to C. The value in C before the
rotation is transferred to bit 0 of the ACC.

Repeat This instruction is repeatable. If the operation follows a RPT instruction, then the ROL
instruction will be executed N+1 times. The state of the Z, N, and C flags will reflect the
final result.

Example ; Rotate contents of VarA left by 5:
MOVL ACC,@VarA ; ACC = VarA
RPT #4 ; Repeat next instruction 5 times

||ROL ACC ; Rotate ACC left
MOVL @VarA,ACC ; Store result into VarA

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

ACC

CRotate Right

ACC

ROR ACC — Rotate Accumulator Right www.ti.com

394 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

ROR ACC Rotate Accumulator Right

Syntax Options ROR ACC

Opcode 1111 1111 0101 0010

Objmode X

RPT Y

CYC N+1

Operands ACC – Accumulator register

Description Rotate the content of the ACC register right by one bit, filling bit 31 with the content of
the carry flag and loading the carry flag with the bit shifted out:

Flags and Modes

Flags and Modes Description
N After the operation, the N flag is set if bit 31 of the ACC is 1, else N is cleared.
Z After the operation, the Z flag is set if the ACC is zero, else Z is cleared.

C The value in bit 0 of the ACC register is transferred to C. The value in C before the
rotation is transferred to bit 31 of the ACC.

Repeat This instruction is repeatable. If the operation follows a RPT instruction, then the ROR
instruction will be executed N+1 times. The state of the Z, N, and C flags will reflect the
final result.

Example ; Rotate contents of VarA right by 5:
MOVL ACC,@VarA ; ACC = VarA
RPT #4 ; Repeat next instruction 5 times

||ROR ACC ; Rotate ACC right
MOVL @VarA,ACC ; Store result into VarA

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com RPT #8bit/loc16 — Repeat Next Instruction

395SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

RPT #8bit/loc16 Repeat Next Instruction

Syntax Options

Syntax Options Opcode Objmode RPT CYC
RPT #8bit 1111 0110 CCCC CCCC X – 1

RPT loc16 1111 0111 LLLL LLLL X – 4

Operands #8bit – 8-bit constant immediate value (0 to 255 range)

loc16 – Addressing mode (see Chapter 5)

Description Repeat the next instruction. An internal repeat counter (RPTC) is loaded with a value N
that is either the specified #8bit constant value or the content of the location pointed to
by the “loc16” addressing mode. After the instruction that follows the RPT is executed
once, it is repeated N times; that is, the instruction following the RPT executes N + 1
times. Because the RPTC cannot be saved during a context switch, repeat loops are
regarded as multicycle instructions and are not interruptible.

Note on syntax: Parallel bars (||) before the repeated instruction are used as a reminder
that the instruction is repeated and is not interruptable. When writing inline assembly,
use the syntax
asm(|| RPT #8bt/ loc16 || instruction");

Not all instructions are repeatable. If an instruction that is not repeatable follows the RPT
instruction, the RPTC counter is reset to 0 and the instruction only executes once. The
28x Assembly Language tools check for this condition and issue warnings.

Flags and Modes None

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Copy the number of elements specified in VarA from Array1
; to Array2:
; int16 Array1[N]; // Located in high 64K of program space
; int16 Array2[N]; // Located in data space
; for(i=0; i < VarA; i++)
; Array2[i] = Array1[i];

MOVL XAR2,#Array2 ; XAR2 = pointer to Array2
RPT @VarA ; Repeat next instruction

; [VarA] + 1 times
|| XPREAD ; Array2[i] = Array1[i],
XAR2++,(Array1) ; i++

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

SAT ACC — Saturate Accumulator www.ti.com

396 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

SAT ACC Saturate Accumulator

Syntax Options SAT ACC

Opcode 1111 1111 0101 0111

Objmode X

RPT –

CYC 1

Operands ACC – Accumulator register

Description Saturate the ACC register to reflect the net overflow represented in the 6-bit overflow
counter (OVC):
if(OVC > 0)

ACC = 0x7FFF FFFF;
V = 1;

if(OVC < 0)
ACC = 0x8000 0000;
V = 1;

if(OVC = 0)
ACC = unchanged;
OVC = 0;
V = 0;

Flags and Modes

Flags and Modes Description
N After the operation, the N flag is set if bit 31 of the ACC is 1, else N is cleared.
Z After the operation, the Z flag is set if the ACC is zero, else Z is cleared.
C C is cleared.
V If (OVC != 0) at the start of the operation, V is set; otherwise, V is cleared.

OVC

If (OVC > 0) then ACC is saturated to its maximum positive value.
If (OVC < 0) then ACC is saturated to its maximum negative value.
If (OVC = 0) then ACC is not modified.
After the operation, OVC is cleared.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Add VarA, VarB and VarC and saturate result and store in VarD:
ZAP OVC ; Clear overflow counter
MOVL ACC,@VarA ; Load ACC with contents of VarA
ADDL ACC,@VarB ; Add to ACC contents of VarB
ADDL ACC,@VarC ; Add to ACC contents of VarC
SAT ACC ; Saturate ACC based on OVC value
MOVL @VarD,ACC ; Store result into VarD

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com SAT64 ACC:P — Saturate 64-bit Value ACC:P

397SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

SAT64 ACC:P Saturate 64-bit Value ACC:P

Syntax Options SAT64 ACC:P

Opcode 0101 0110 0011 1110

Objmode 1

RPT –

CYC 1

Operands ACC:P – Accumulator register (ACC) and product register (P)

Description Saturate the 64-bit content of the combined ACC:P registers to reflect the net overflow
represented in the overflow counter (OVC):
if(OVC > 0)

ACC:P = 0x7FFF FFFF FFFF FFFF;
V=1;

if(OVC < 0)
ACC:P = 0x8000 0000 0000 0000;
V=1;

if(OVC = 0)
ACC:P = unchaged;
OVC = 0;

Flags and Modes

Flags and Modes Description

N After the shift, if bit 31 of the ACC register is 1 then ACC:P is negative and the N bit is
set; otherwise N is cleared.

Z After the operation, the Z flag is set if the combined 64-bit value of the ACC:P is zero;
otherwise, Z is cleared.

C The C bit is cleared.
V At the start of the operation, if (OVC = 0) then V is cleared; otherwise, V is set.

OVC

If (OVC = 0), then no saturation takes place: ACC:P is unchanged.
If(OVC > 0), then saturate ACC:P the maximum positive value: ACC:P = 0x7FFF FFFF
FFFF FFFF
If(OVC < 0), then saturate ACC:P to the maximum negative value: ACC = 0x8000
0000 or ACC:P = 0x8000 0000 0000 0000
At the end of the operation, OVC is cleared.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

SAT64 ACC:P — Saturate 64-bit Value ACC:P www.ti.com

398 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

Example ; Add 64-bit VarA, VarB and VarC, sat and store result in VarD:
ZAP OVC ; Clear overflow counter
MOVL P,@VarA+0 ; Load P with low 32-bits of VarA
ADDUL P,@VarB+0 ; Add to P unsigned low 32-bits of VarB
ADDUL P,@VarC+0 ; Add to P unsigned low 32-bits of VarC
MOVU @AL,OVC ; Store overlow (repeated carry) in the ACC

; and then add higher portion of the 64 bit
; variables

MOVB AH,#0 ; Store overlow (repeated carry) in the ACC
; and then add higher portion of the 64 bit
; variables

ZAP OVC ; Clear overflow counter
ADDL ACC,@VarA+2 ; Add to ACC with carry high 32-bits of VarA
ADDL ACC,@VarB+2 ; Add to ACC with carry high 32-bits of VarB
ADDL ACC,@VarC+2 ; Add to ACC with carry high 32-bits of VarC
SAT64 ACC:P ; Saturate ACC:P based on OVC value
MOVL @VarD+0,P ; Store low 32-bit result into VarD
MOVL @VarD+2,ACC ; Store high 32-bit result into VarD

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com SB 8bitOffset,COND — Need description here

399SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

SB 8bitOffset,COND Need description here

Syntax Options SB 8bitOffset,COND

Opcode 0110 COND CCCC CCCC

Objmode X

RPT –

CYC 7/4

Operands 8bitOffset – 8-bit signed immediate constant offset value (−128 to +127 range)

COND – Conditional codes:

COND Syntax Description Flags Tested
0000 NEQ Not Equal To Z = 0
0001 EQ Equal To Z = 1
0010 GT Greater Than Z = 0 AND N = 0
0011 GEQ Greater Than or Equal To N = 0
0100 LT Less Than N = 1
0101 LEQ Less Than or Equal To Z = 1 OR N = 1
0110 HI Higher C = 1 AND Z = 0
0111 HIS, C Higher or Same, Carry Set C = 1
1000 LO, NC Lower, Carry Clear C = 0
1001 LOS Lower or Same C = 0 OR Z = 1
1010 NOV No Overflow V = 0
1011 OV Overflow V = 1
1100 NTC Test Bit Not Set TC = 0
1101 TC Test Bit Set TC = 1
1110 NBIO BIO Input Equal To Zero BIO = 0
1111 UNC Unconditional –

Description Short conditional branch. If the specified condition is true, then branch by adding the
signed 8-bit constant value to the current PC value; otherwise continue execution without
branching:
If (COND = true) PC = PC + signed 8-bit offset;
If (COND = false) PC = PC + 1;

Note: If (COND = true) then the instruction takes 7 cycles.

If (COND = false) then the instruction takes 4 cycles.

If (COND = UNC) then the instruction takes 4 cycles.

Flags and Modes

Flags and Modes Description
V If the V flag is tested by the condition, then V is cleared.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

SBBU ACC,loc16 — Subtract Unsigned Value Plus Inverse Borrow www.ti.com

400 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

SBBU ACC,loc16 Subtract Unsigned Value Plus Inverse Borrow

Syntax Options SBBU ACC,loc16

Opcode 0001 1101 LLLL LLLL

Objmode X

RPT –

CYC 1

Operands ACC – Accumulator register

loc16 – Addressing mode (see Chapter 5)

Description Subtract the 16-bit contents of the location pointed to by the “loc16” addressing mode,
zero extended, and subtract the compliment of the carry flag bit from the ACC register:
ACC = ACC − 0:[loc16] − ~C;

Flags and Modes

Flags and Modes Description
Z After the subtraction, the Z flag is set if ACC is zero, else Z is cleared.
N After the subtraction, the N flag is set if bit 31 of the ACC is 1, else N is cleared.

C The state of the carry bit before execution is included in the subtraction. If the
subtraction generates a borrow, C is cleared; otherwise C is set.

V If an overflow occurs, V is set; otherwise V is not affected.

OVC

If(OVM = 0, disabled) then if the operation generates a positive overflow, then the
counter is incremented and if the operation generates a negative overflow, then the
counter is decremented. If(OVM = 1, enabled) then the counter is not affected by the
operation.

OVM If overflow mode bit is set; then the ACC value will saturate maximum positive
(0x7FFFFFFF) or maximum negative (0x80000000) if the operation overflowed.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Subtract three 32-bit unsigned variables by 16-bit parts:
MOVU ACC,@VarAlow ; AH = 0, AL = VarAlow
ADD ACC,@VarAhigh << 16 ; AH = VarAhigh, AL = VarAlow
SUBU ACC,@VarBlow ; ACC = ACC − 0:VarBlow
SUB ACC,@VarBhigh << 16 ; ACC = ACC − VarBhigh << 16
SBBU ACC,@VarClow ; ACC = ACC − VarClow − ~Carry
SUB ACC,@VarChigh << 16 ; ACC = ACC − VarChigh << 16

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com SBF 8bitOffset,EQ/NEQ/TC/NTC — Short Branch Fast

401SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

SBF 8bitOffset,EQ/NEQ/TC/NTC Short Branch Fast

Syntax Options

Syntax Options Opcode Objmode RPT CYC
SBF 8bitOffset,EQ 1110 1100 CCCC CCCC 1 – 4/4

SBF 8bitOffset,NEQ 1110 1101 CCCC CCCC 1 – 4/4

SBF 8bitOffset,TC 1110 1110 CCCC CCCC 1 – 4/4

SBF 8bitOffset,NTC 1110 1111 CCCC CCCC 1 – 4/4

Operands 8bitOffset – 8-bit signed immediate constant offset value (−128 to +127 range)

Syntax Description Flags Tested
NEQ Not Equal To Z = 0
EQ Equal To Z = 1

NTC Test Bit Not Set TC = 0
TC Test Bit Set TC = 1

Description Short fast conditional branch. If the specified condition is true, then branch by adding the
signed 8-bit constant value to the current PC value; otherwise continue execution without
branching:
If (tested condition = true) PC = PC + signed 8-bit off- set;
If (tested condition = false) PC = PC + 1;

Note: The short branch fast (SBF) instruction takes advantage of dual pre−fetch queue
on the C28x core that reduces the cycles for a taken branch from 7 to 4:
If (tested condition = true) then the instruction takes 4 cycles.
If (tested condition = false) then the instruction takes 4 cycles.

Flags and Modes None

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

SBRK #8bit — Subtract From Current Auxiliary Register www.ti.com

402 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

SBRK #8bit Subtract From Current Auxiliary Register

Syntax Options SBRK #8bit

Opcode 1111 1101 CCCC CCCC

Objmode X

RPT –

CYC 1

Operands #8bit – 8-bit constant immediate value

Description Subtract the 8-bit unsigned constant from the XARn register pointed to by ARP:
XAR(ARP) = XAR(ARP) − 0:8bit;

Flags and Modes

Flags and Modes Description

ARP The 3-bit ARP points to the current valid auxiliary register, XAR0 to XAR7. This pointer
determines which auxiliary register is modified by the operation.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example .word 0xEEEE
.word 0x0000

TableA:
.word 0x1111
.word 0x2222
.word 0x3333
.word 0x4444

FuncA:
MOVL XAR1,#TableA ; Initialize XAR1 pointer
MOVZ AR2,*XAR1 ; Load AR2 with the 16−bit value

; pointed to by XAR1 (0x1111)
; Set ARP = 1

SBRK #2 ; Decrement XAR1 by 2

MOVZ AR3,*XAR1 ; Load AR3 with the 16−bit value
; pointed to by XAR1 (0xEEEE)

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com SETC Mode — Set Multiple Status Bits

403SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

SETC Mode Set Multiple Status Bits

Syntax Options

Syntax Options Opcode Objmode RPT CYC
SETC Mode 0011 1011 CCCC CCCC X – 1,2

SETC SXM 0011 1011 0000 0001 X – 1

SETC OVM 0011 1011 0000 0010 X – 1

SETC TC 0011 1011 0000 0100 X – 1

SETC C 0011 1011 0000 1000 X – 1

SETC INTM 0011 1011 0001 0000 X – 2

SETC DBGM 0011 1011 0010 0000 X – 2

SETC PAGE0 0011 1011 0100 0000 X – 1

SETC VMAP 0011 1011 1000 0000 X – 1

Operands Mode – 8-bit immediate mask (0x00 to 0xFF)

Description Set the specified status bits. Any change affects the next instruction in the pipeline. The
”mode” operand is a mask value that relates to the status bits in this way:

"Mode" bit Status Register Flag Cycles
0 ST0 SXM 1
1 ST0 OVM 1
2 ST0 TC 1
3 ST0 C 1
4 ST1 INTM 2
5 ST1 DBGM 2
6 ST1 PAGE0 1
7 ST1 VMAP 1

Note: The assembler will accept any number of flag names in any order. For example:
SETC INTM,TC ; Set INTM and TC bits to 1
SETC TC,INTM,OVM,C ; Set TC, INTM, OVM, C bits to 1

Flags and Modes

Flags and Modes Description
SXM
OVM
TC
C

INTM
DBGM
PAGE0
VMAP

Any of the specified bits can be set by the instruction.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

SETC Mode — Set Multiple Status Bits www.ti.com

404 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

Example ; Modify flag settings:
SETC INTM,DBGM ; Set INTM and DBGM bits to 1
CLRC TC,C,SXM,OVM ; Clear TC, C, SXM, OVM bits to 0
CLRC #0xFF ; Clear all bits to 0
SETC #0xFF ; Set all bits to 1
SETC C,SXM,TC,OVM ; Set TC, C, SXM, OVM bits to 1
CLRC DBGM,INTM ; Clear INTM and DBGM bits to 0

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com SETC M0M1MAP — Set the M0M1MAP Status Bit

405SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

SETC M0M1MAP Set the M0M1MAP Status Bit

Syntax Options SETC M0M1MAP

Opcode 0101 0110 0001 1010

Objmode X

RPT –

CYC 5

Operands M0M1MAP – Status bit

Description Set the M0M1MAP status bit, configuring the mapping of the M0 and M1 memory blocks
for C28x/C2XLP operation. The memory blocks are mapped as follows:

M0M1MAP bit Data Space Program Space
0 M0: 0x000 to 0x3FF M0: 0x400 to 0x7FF

(C27x) M1: 0x400 to 0x7FF M1: 0x000 to 0x3FF
1 M0: 0x000 to 0x3FF

(C28x/C2XLP) M1: 0x400 to 0x7FF

Note: The pipeline is flushed when this instruction is executed.

Flags and Modes

Flags and Modes Description
M0M1MAP The M0M1MAP bit is set.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Set the device mode from reset to C28x:
Reset:

SETC Objmode ; Enable C28x Object Mode
CLRC AMODE ; Enable C28x Address Mode
.c28_amode ; Tell assembler we are in C28x address mode
SETC M0M1MAP ; Enable C28x Mapping Of M0 and M1 blocks

.

.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

SETC Objmode — Set the Objmode Status Bit www.ti.com

406 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

SETC Objmode Set the Objmode Status Bit

Syntax Options SETC Objmode

Opcode 0101 0110 0001 1111

Objmode X

RPT –

CYC 5

Operands Objmode – Status bit

Description Set the Objmode status bit, putting the device in C28x object mode (supports C2XLP
source).

Flags and Modes

Flags and Modes Description
Objmode Set the Objmode bit.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Set the device mode from reset to C28x:
Reset:

SETC Objmode ; Enable C28x Object Mode
CLRC AMODE ; Enable C28x Address Mode
.c28_amode ; Tell assembler we are in C28x address mode
SETC M0M1MAP ; Enable C28x Mapping Of M0 and M1 blocks

.

.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com SETC XF — Set XF Bit and Output Signal

407SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

SETC XF Set XF Bit and Output Signal

Syntax Options SETC XF

Opcode 0101 0110 0010 0110

Objmode X

RPT –

CYC 1

Operands XF – Status bit and output signal

Description Set the XF status bit and pull the corresponding output signal high.

Flags and Modes

Flags and Modes Description
XF The XF status bit is set.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Pulse XF signal high if branch not taken:
MOV AL,@VarA ; Load AL with contents of VarA
SB Dest,NEQ ; ACC = VarA
SETC XF ; Set XF bit and signal high
CLRC XF ; Clear XF bit and signal low

.

.
Dest:

.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

SFR ACC,#1..16 — Shift Accumulator Right www.ti.com

408 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

SFR ACC,#1..16 Shift Accumulator Right

Syntax Options SFR ACC,#1..16

Opcode 1111 1111 0100 SHFT

Objmode X

RPT Y

CYC N+1

Operands ACC – Accumulator register

#1..16 – Shift value

Description Right shift the content of the ACC register by the amount specified in the shift field. The
type of shift (arithmetic or logical) is determined by the state of the sign extension mode
(SXM) bit:

if(SXM = 1) // sign extension mode enabled
ACC = S:ACC >> shift value; // arithmetic shift right

else //sign extension mode disabled
ACC = 0:ACC >> shift value; // logical shift right

Flags and Modes

Flags and Modes Description
Z After the shift, the Z flag is set if the ACC value is zero, else Z is cleared.
N After the shift, the N flag is set if bit 31 of the ACC is 1, else N is cleared.
C The last bit shifted out is loaded into the C flag bit.

SXM If (SXM = 1), then the operation behaves like an arithmetic right shift.
If (SXM = 0), then the operation behaves like a logical right shift.

Repeat This instruction is repeatable. If the operation follows a RPT instruction, then the SFR
instruction will be executed N+1 times. The state of the Z, N and C flags will reflect the
final result.

Example ; Arithmetic shift right contents of VarA by 10:
MOVL ACC,@VarA ; ACC = VarA
SETC SXM ; Enable sign extension mode
SFR ACC,#10 ; Arithmetic shift right ACC by 10
MOVL @VarA,ACC ; Store result into VarA

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com SFR ACC,T — Shift Accumulator Right

409SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

SFR ACC,T Shift Accumulator Right

Syntax Options SFR ACC,T

Opcode 1111 1111 0101 0001

Objmode X

RPT –

CYC N+1

Operands ACC – Accumulator register

T – Upper 16-bits of the multiplicand (XT) register

Description Right shift the content of the ACC register by the amount specified in the four least
significant bits of the T register, T(3:0) = 0..15. Higher order bits are ignored. The type of
shift (arithmetic or logical) is determined by the state of the sign extension mode (SXM)
bit:

if(SXM = 1) // sign extension mode enabled
ACC = S:ACC >> T(3:0); // arithmetic shift right

else // sign extension mode disabled
ACC = 0:ACC >> T(3:0); // logical shift right

Flags and Modes

Flags and Modes Description

Z
After the shift, the Z flag is set if the ACC value is zero, else Z is cleared. Even if the T
register specifies a shift of 0, the content of the ACC register is still tested for the zero
condition and Z is affected.

N
After the shift, the N flag is set if bit 31 of the ACC is 1, else N is cleared. Even if the T
register specifies a shift of 0, the content of the ACC register is still tested for the
negative condition and N is affected.

C If (T(3:0) = 0) then C is cleared; otherwise, the last bit shifted out is loaded into the C
flag bit.

SXM If (SXM = 1), then the operation behaves like an arithmetic right shift.
If (SXM = 0), then the operation behaves like a logical right shift.

Repeat This instruction is repeatable. If the operation follows a RPT instruction, then the SFR
instruction will be executed N+1 times. The state of the Z, N and C flags will reflect the
final result.

Example ; Arithmetic shift right contents of VarA by VarB:
MOVL ACC,@VarA ; ACC = VarA
MOV T,@VarB ; T = VarB (shift value)
SETC SXM ; Enable sign extension mode
SFR ACC,T ; Arithmetic shift right ACC by T(3:0)
MOVL @VarA,ACC ; Store result into VarA

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

SPM shift — Set Product Mode Shift Bits www.ti.com

410 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

SPM shift Set Product Mode Shift Bits

Syntax Options

Syntax Options Opcode Objmode RPT CYC
SPM +1 1111 1111 0110 1000 X – 1

SPM 0 1111 1111 0110 1001 X – 1

SPM –1 1111 1111 0110 1010 X – 1

SPM –2 1111 1111 0110 1011 X – 1

SPM –3 1111 1111 0110 1100 X – 1

SPM –4 (Valid only when
AMODE = 0) SPM +4

(Valid only when AMODE
= = 1)

1111 1111 0110 1101 X – 1

SPM –5 1111 1111 0110 1110 X – 1

SPM –6 1111 1111 0110 1111 X – 1

Operands b – Product shift mode (+4, +1, 0, −1, −2, −3, −4, −5, −6)

Description Specify a product shift mode. A negative value indicates an arithmetic right shift; positive
numbers indicate a logical left shift. The following table shows the relationship between
the “shift” operand and the 3-bit value that gets loaded into the product shift mode (PM)
bits in ST0. The address mode bit (AMODE) selects between two types of shift decodes
as shown in the table below:

PM Bits AMODE = 1 AMODE = 0
000 SPM +1 SPM +1
001 SPM 0 SPM 0
010 SPM –1 SPM –1
011 SPM –2 SPM –2
100 SPM –3 SPM –3
101 SPM +4 SPM –4
110 SPM –5 SPM –5
111 SPM –6 SPM –6

Flags and Modes

Flags and Modes Description
PM PM is loaded with the 3-bit value specified by the selected ”shift” value.

Repeat This instruction is not repeatable. If the operation follows a RPT instruction, it resets the
repeat counter (RPTC) and executes once.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com SPM shift — Set Product Mode Shift Bits

411SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

Example ; Calculate: Y32 = M16*X16 >>4 + B32
CLRC AMODE ; Make sure AMODE = 0
SPM -4 ; Set product shift mode to ">> 4"
MOV T,@X16 ; T = X16
MPY P,XT,@M16 ; P = X16*M16
MOVL ACC,@B32 ; ACC = B32
ADDL ACC,P << PM ; ACC = ACC + (P >> 4)
MOVL @Y32,ACC ; Store result into Y32

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

SQRA loc16 — Square Value and Add P to ACC www.ti.com

412 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

SQRA loc16 Square Value and Add P to ACC

Syntax Options SQRA loc16

Opcode 0101 0110 0001 0101
0000 0000 LLLL LLLL

Objmode 1

RPT Y

CYC N+1

Operands loc16 – Addressing mode (see Chapter 5)

Description Add the previous product (stored in the P register), shifted by the amount specified by
the product shift mode (PM), to the ACC register. Then the content of the location
pointed to by the “loc16” addressing mode is loaded into the T register, squared, and
stored in the P register:
ACC = ACC + P << PM;
T = [loc16];
P = T * [loc16];

Flags and Modes

Flags and Modes Description
Z After the addition, the Z flag is set if the ACC value is zero, else Z is cleared.
N After the addition, the N flag is set if bit 31 of the ACC is 1, else N is cleared.
C If the addition generates a carry, C is set; otherwise C is cleared.
V If an overflow occurs, V is set; otherwise V is not affected.

OVC
If overflow mode is disabled; and if the operation generates a positive overflow, then
the counter is incremented. If overflow mode is disabled; and if the operation generates
a negative overflow, then the counter is decremented.

OVM If overflow mode bit is set; then the ACC value will saturate maximum positive
(0x7FFFFFFF) or maximum negative (0x80000000) if the operation overflowed.

PM

The value in the PM bits sets the shift mode for the output operation from the product
register. If the product shift value is positive (logical left shift operation), then the low
bits are zero filled. If the product shift value is negative (arithmetic right shift operation),
the upper bits are sign extended.

Repeat This instruction is repeatable. If the operation follows a RPT instruction, then it will be
executed N+1 times. The state of the Z, N, C and OVC flags will reflect the final result.
The V flag is set if an intermediate overflow occurs.

Example ; Calculate sum of squares using 16-bit multiply:
; int16 X[N] ; Data information
; sum = 0;
; for(i=0; i < N; i++)
; sum = sum + (X[i] * X[i]) >> 5;

MOVL XAR2,#X ; XAR2 = pointer to X
SPM -5 ; Set product shift to ">> 5"
ZAPA ; Zero ACC, P, OVC
RPT #N−1 ; Repeat next instruction N times

||SQRA *XAR2++ ; ACC = ACC + P >> 5,
; P = (*XAR2++)^2

ADDL ACC,P << PM ; Perform final accumulate
MOVL @sum,ACC ; Store final result into sum

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com SQRS loc16 — Square Value and Subtract P From ACC

413SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

SQRS loc16 Square Value and Subtract P From ACC

Syntax Options SQRS loc16

Opcode 0101 0110 0001 0001
xxxx xxxx LLLL LLLL

Objmode 1

RPT Y

CYC N+1

Operands loc16 – Addressing mode (see Chapter 5)

Description Subtract the previous product (stored in the P register), shifted by the amount specified
by the product shift mode (PM), from the ACC register. Then the content of the location
pointed to by the “loc16” addressing mode is loaded into the T register, squared, and
stored in the P register:
ACC = ACC − P << PM;
T = [loc16];
P = T * [loc16];

Flags and Modes

Flags and Modes Description
Z After the addition, the Z flag is set if the ACC value is zero, else Z is cleared.
N After the subtraction, the N flag is set if bit 31 of the ACC is 1, else N is cleared.
C If the subtraction generates a borrow, C is cleared; otherwise C is set.
V If an overflow occurs, V is set; otherwise V is not affected.

OVC
If overflow mode is disabled; and if the operation generates a positive overflow, then
the counter is incremented. If overflow mode is disabled; and if the operation generates
a negative overflow, then the counter is decremented.

OVM If overflow mode bit is set; then the ACC value will saturate maximum positive
(0x7FFFFFFF) or maximum negative (0x80000000) if the operation overflowed.

PM

The value in the PM bits sets the shift mode for the output operation from the product
register. If the product shift value is positive (logical left shift operation), then the low
bits are zero filled. If the product shift value is negative (arithmetic right shift operation),
the upper bits are sign extended.

Repeat This instruction is repeatable. If the operation follows a RPT instruction, then it will be
executed N+1 times. The state of the Z, N, C and OVC flags will reflect the final result.
The V flag will be set if an intermediate overflow occurs.

Example ; Calculate sum of negative squares using 16-bit multiply:
; int16 X[N] ; Data information
; sum = 0;
; for(i=0; i < N; i++)
; sum = sum − (X[i] * X[i]) >> 5;

MOVL XAR2,#X ; XAR2 = pointer to X
SPM -5 ; Set product shift to ">> 5"
ZAPA ; Zero ACC, P, OVC
RPT #N−1 ; Repeat next instruction N times

||SQRS *XAR2++ ; ACC = ACC − P >> 5,
; P = (*XAR2++)^2

SUBL ACC,P << PM ; Perform final subtraction
MOVL @sum,ACC ; Store final result into sum

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

SUB ACC,loc16 << #0..16 — Subtract Shifted Value From Accumulator www.ti.com

414 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

SUB ACC,loc16 << #0..16 Subtract Shifted Value From Accumulator

Syntax Options

Syntax Options Opcode Objmode RPT CYC
SUB ACC,loc16 << #0 1010 1110 LLLL LLLL 1 Y N+1

1000 0000 LLLL LLLL 0 – 1

SUB ACC,loc16 <<
#1..15

0101 0110 0000 0000
0000 SHFT LLLL LLLL

1 Y N+1

1000 SHFT LLLL LLLL 0 – 1

SUB ACC,loc16 << #16 0000 0100 LLLL LLLL X Y N+1

Operands ACC – Accumulator register

loc16 – Addressing mode (see Chapter 5)

#0..16 – Shift value (default is "<< #0” if no value specified)

Description Subtract the left-shifted 16-bit location pointed to by the ”loc16” addressing mode from
the ACC register. The shifted value is sign extended if sign extension mode is turned on
(SXM=1) else the shifted value is zero extended (SXM= 0). The lower bits of the shifted
value are zero filled:

if(SXM = 1) // sign extension mode enabled
ACC = ACC − S:[loc16] << shift value;

else // sign extension mode disabled
ACC = ACC − 0:[loc16] << shift value;

Flags and Modes

Flags and Modes Description
Z After the subtraction, the Z flag is set if ACC is zero, else Z is cleared.
N After the subtraction, the N flag is set if bit 31 of the ACC is 1, else Z is cleared.

C If the subtraction generates a borrow, C is cleared; otherwise C is set.
Exception: If a shift of 16 is used, the SUB instruction can clear C but not set it.

V If an overflow occurs, V is set; otherwise V is not affected.

OVC

If(OVM = 0, disabled) then if the operation generates a positive overflow, then the
counter is incremented and if the operation generates a negative overflow, then the
counter is decremented. If(OVM = 1, enabled) then the counter is not affected by the
operation.

SXM If sign extension mode bit is set; then the 16-bit operand, addressed by the ”loc16”
field, will be sign extended before the addition. Else, the value will be zero extended.

OVM If overflow mode bit is set; then the ACC value will saturate maximum positive (0x7FFF
FFFF) or maximum negative (0x8000 0000) if the operation overflowed.

Repeat If the operation is repeatable, then the instruction will be executed N+1 times. The state
of the Z, N, C flags will reflect the final result. The V flag will be set if an intermediate
overflow occurs. The OVC flag will count intermediate overflows, if overflow mode is
disabled. If the operation is not repeatable, the instruction will execute only once.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com SUB ACC,loc16 << #0..16 — Subtract Shifted Value From Accumulator

415SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

Example ; Calculate signed value: ACC = (VarA << 10) - (VarB << 6);
SETC SXM ; Turn sign extension mode on
MOV ACC,@VarA << #10 ; Load ACC with VarA left shifted by 10
SUB ACC,@VarB << #6 ; Subtract VarB left shifted by 6 to ACC0

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

SUB ACC,loc16 << T — Subtract Shifted Value From Accumulator www.ti.com

416 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

SUB ACC,loc16 << T Subtract Shifted Value From Accumulator

Syntax Options SUB ACC,loc16 << T

Opcode 0101 0110 0010 0111
0000 0000 LLLL LLLL

Objmode 1

RPT Y

CYC N+1

Operands ACC – Accumulator register

loc16 – Addressing mode (see Chapter 5)

T – Upper 16−bits of the multiplicand register, XT(31:16)

Description Subtract from the ACC register the left−shifted contents of the 16-bit location pointed to
by the “loc16” addressing mode. The shift value is specified by the four least significant
bits of the T register, T(3:0) = shift value = 0..15. Higher order bits are ignored. The
shifted value is sign extended if sign extension mode is turned on (SXM=1) else the
shifted value is zero extended (SXM=0). The lower bits of the shifted value are zero
filled:
if(SXM = 1) // sign extension mode enabled

ACC = ACC − S:[loc16] << T(3:0);
else // sign extension mode disabled

ACC = ACC − 0:[loc16] << T(3:0);

Flags and Modes

Flags and Modes Description
Z After the subtraction, the Z flag is set if the ACC value is zero, else Z is cleared.
N After the subtraction, the N flag is set if bit 31 of the ACC is 1, else N is cleared.
C If the subtraction generates a borrow, C is cleared; otherwise C is set.
V If an overflow occurs, V is set; otherwise V is not affected.

OVC

If(OVM = 0, disabled) then if the operation generates a positive overflow, then the
counter is incremented and if the operation generates a negative overflow, then the
counter is decremented. If(OVM = 1, enabled) then the counter is not affected by the
operation.

SXM If sign extension mode bit is set; then the 16-bit operand, addressed by the ”loc16”
field, will be sign extended before the addition. Else, the value will be zero extended.

OVM If overflow mode bit is set; then the ACC value will saturate maximum positive (0x7FFF
FFFF) or maximum negative (0x8000 0000) if the operation overflowed.

Repeat If this operation is repeated, then the instruction will be executed N+1 times. The state of
the Z, N, C flags will reflect the final result. The V flag will be set if an intermediate
overflow occurs. The OVC flag will count intermediate overflows, if overflow mode is
disabled.

Example ; Calculate signed value: ACC = (VarA << SB) − (VarB << SB)
SETC SXM ; Turn sign extension mode on
MOV T,@SA ; Load T with shift value in SA
MOV ACC,@VarA << T ; Load in ACC shifted contents of VarA
MOV T,@SB ; Load T with shift value in SB
SUB ACC,@VarB << T ; Subtract from ACC shifted contents

; of VarB

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com SUB ACC,#16bit << #0..15 — Subtract Shifted Value From Accumulator

417SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

SUB ACC,#16bit << #0..15 Subtract Shifted Value From Accumulator

Syntax Options SUB ACC,#16bit << #0..15

Opcode 1111 1111 0000 SHFT
CCCC CCCC CCCC CCCC

Objmode X

RPT –

CYC 1

Operands ACC – Accumulator register

#16bit – 16-bit immediate constant value

#0..15 – Shift value (default is ”<<#0” if no value specified)

Description Subtract the left shifted 16-bit immediate constant value from the ACC register. The
shifted value is sign extended if sign extension mode is turned on (SXM=1) else the
shifted value is zero extended (SXM=0). The lower bits of the shifted value are zero
filled:
if(SXM = 1) // sign extension mode enabled

ACC = ACC − S:16bit << shift value;
else // sign extension mode disabled

ACC = ACC − 0:16bit << shift value;

Smart Encoding:

If #16bit is an 8-bit number and the shift is zero, then the assembler will encode this
instruction as SUBB ACC, #8bit for improved efficiency. To override this encoding, use
the SUBW ACC, #16bit instruction alias.

Flags and Modes

Flags and Modes Description
Z After the subtraction, the Z flag is set if ACC is zero, else Z is cleared.
N After the subtraction, the N flag is set if bit 31 of the ACC is 1, else N is cleared.
C If the subtraction generates a borrow, C is cleared; otherwise C is set.
V If an overflow occurs, V is set; otherwise V is not affected.

OVC

If(OVM = 0, disabled) then if the operation generates a positive overflow, then the
counter is incremented and if the operation generates a negative overflow, then the
counter is decremented. If(OVM = 1, enabled) then the counter is not affected by the
operation.

SXM If sign extension mode bit is set; then the 16-bit operand, addressed by the ”loc16”
field, will be sign extended before the addition. Else, the value will be zero extended.

OVM If overflow mode bit is set; then the ACC value will saturate maximum positive
(0x7FFFFFFF) or maximum negative (0x80000000) if the operation overflowed.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Calculate signed value: ACC = (VarB << 10) - (23 << 6);
SETC SXM ; Turn sign extension mode on
MOV ACC,@VarB << #10 ; Load ACC with VarB left shifted by 10
SUB ACC,#23 << #6 ; Subtract from ACC 23 left shifted by 6

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

SUB AX, loc16 — Subtract Specified Location From AX www.ti.com

418 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

SUB AX, loc16 Subtract Specified Location From AX

Syntax Options SUB AX, loc16

Opcode 1001 111A LLLL LLLL

Objmode X

RPT –

CYC 1

Operands AX – Accumulator high (AH) or accumulator low (AL) register

loc16 – Addressing mode (see Chapter 5)

Description Subtract the 16−bit content of the location pointed to by the “loc16” addressing mode
from the specified AX register (AH or AL) and store the results in AX:
AX = AX − [loc16];

Flags and Modes

Flags and Modes Description

N After the subtraction, AX is tested for a negative condition. If bit 15 of AX is 1, then the
negative flag bit is set; otherwise it is cleared.

Z After the subtraction, AX is tested for a zero condition. The zero flag bit is set if the
operation generates AX = 0, otherwise it is cleared.

C If the subtraction generates a borrow, C is cleared; otherwise C is set.

V

If an overflow occurs, V is set; otherwise V is not affected. Signed positive overflow
occurs if the result crosses the max positive value (0x7FFF) in the positive direction.
Signed negative overflow occurs if the result crosses the max negative value (0x8000)
in the negative direction.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Subtract the contents of VarA with VarB and store in VarC
MOV AL,@VarA ; Load AL with contents of VarA
SUB AL,@VarB ; Subtract from AL contents of VarB
MOV @VarC,AL ; Store result in VarC

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com SUB loc16, AX — Reverse-Subtract Specified Location From AX

419SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

SUB loc16, AX Reverse-Subtract Specified Location From AX

Syntax Options SUB loc16, AX

Opcode 0111 010A LLLL LLLL

Objmode X

RPT –

CYC 1

Operands loc16 – Addressing mode (see Chapter 5)

AX – Accumulator high (AH) or accumulator low (AL) register

Description Subtract the content of the specified AX register (AH or AL) from the 16-bit content of the
location pointed to by the “loc16” addressing mode and store the result in location
pointed to by ”loc16”:
[loc16] = [loc16] − AX;

Flags and Modes

Flags and Modes Description

N After the subtraction, [loc16] is tested for a negative condition. If bit 15 of [loc16] is 1,
then the negative flag bit is set; otherwise it is cleared.

Z After the subtraction, [loc16] is tested for a zero condition. The zero flag bit is set if the
operation generates [loc16] = 0; otherwise it is cleared

C If the subtraction generates a borrow, C is cleared; otherwise C is set.

V

If an overflow occurs, V is set; otherwise V is not affected. Signed positive overflow
occurs if the result crosses the max positive value (0x7FFF) in the positive direction.
Signed negative overflow occurs if the result crosses the max negative value (0x8000)
in the negative direction.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Subtract the contents of VarA from index register AR0:
MOV AL,@VarA ; Load AL with contents of VarA
SUB @AR0,AL ; AR0 = AR0 − AL

; Subtract the contents of VarB from VarC:
MOV AH,@VarB ; Load AH with contents of VarB
SUB @VarC,AH ; VarC = VarC − AH

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

SUBB ACC,#8bit — Subtract 8-bit Value www.ti.com

420 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

SUBB ACC,#8bit Subtract 8-bit Value

Syntax Options SUBB ACC,#8bit

Opcode 0001 1001 CCCC CCCC

Objmode X

RPT –

CYC 1

Operands ACC – Accumulator register

#8bit – 8-bit immediate constant value

Description Subtract the zero−extended, 8-bit constant from the ACC register:
ACC = ACC − 0:8bit;

Flags and Modes

Flags and Modes Description
Z After the subtraction, the Z flag is set if ACC is zero, else Z is cleared.
N After the subtraction, the N flag is set if bit 31 of the ACC is 1, N is cleared.
C If the subtraction generates a borrow, C is cleared; otherwise C is set.
V If an overflow occurs, V is set; otherwise, V is not affected.

OVC

If(OVM = 0, disabled) then if the operation generates a positive overflow, then the
counter is incremented and if the operation generates a negative overflow, then the
counter is decremented. If(OVM = 1, enabled) then the counter is not affected by the
operation.

OVM If overflow mode bit is set; then the ACC value will saturate maximum positive
(0x7FFFFFFF) or maximum negative (0x80000000) if the operation overflowed.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example Example ; Decrement contents of 32-bit location VarA:
MOVL ACC,@VarA ; Load ACC with contents of VarA
SUBB ACC,#1 ; Subtract 1 from ACC
MOVL @VarA,ACC ; Store result back into VarA

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com SUBB SP,#7bit — Subtract 7-bit Value

421SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

SUBB SP,#7bit Subtract 7-bit Value

Syntax Options SUBB SP,#7bit

Opcode 1111 1110 1CCC CCCC

Objmode X

RPT –

CYC 1

Operands SP – Stack pointer

#7bit – 7-bit immediate constant value

Description Subtract a 7-bit unsigned constant from SP and store the result in SP:
SP = SP − 0:7bit;

Flags and Modes None

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example FuncA: ; Function with local variables on
; stack.

ADDB SP,#N ; Reserve N 16−bit words of space for
; local variables on stack:

.

.

.
SUBB SP,#N ; Deallocate reserved stack space.
LRETR ; Return from function.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

SUBB XARn,#7bit — Subtract 7-Bit From Auxiliary Register www.ti.com

422 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

SUBB XARn,#7bit Subtract 7-Bit From Auxiliary Register

Syntax Options SUBB XARn,#7bit

Opcode 1101 1nnn 1CCC CCCC

Objmode X

RPT –

CYC 1

Operands XARn – XAR0 to XAR7, 32-bit auxiliary registers

#7bit – 7−bit immediate constant value

Description Subtract the 7−bit unsigned constant from XARn and store the result in XARn:
XARn = XARn − 0:7bit;

Flags and Modes None

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example
MOVL XAR1,#VarA ; Initialize XAR1 pointer with address

; of VarA
MOVL XAR2,*XAR1 ; Load XAR2 with contents of VarA
SUBB XAR2,#10h‘ ; XAR2 = VarA − 0x10

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com SUBBL ACC, loc32 — Subtract 32-bit Value Plus Inverse Borrow

423SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

SUBBL ACC, loc32 Subtract 32-bit Value Plus Inverse Borrow

Syntax Options SUBBL ACC, loc32

Opcode 0101 0110 0101 0100
0000 0000 LLLL LLLL

Objmode 1

RPT –

CYC 1

Operands loc32 – Addressing mode (see Chapter 5)

ACC – Accumulator register

Description Subtract from the ACC the 32-bit location pointed to by the “loc32” addressing mode and
the logical inversion of the value in the carry flag bit:
ACC = ACC − [loc32] − ~C;

Flags and Modes

Flags and Modes Description
Z After the subtraction, the Z flag is set if the ACC value is zero, else Z is cleared.
N After the subtraction, the N flag is set if bit 31 of the ACC is 1, else N is cleared.

C The state of the carry bit before execution is included in the subtraction. If the
subtraction generates a borrow, C is cleared; otherwise C is set.

V If an overflow occurs, V is set; otherwise V is not affected.

OVC

If(OVM = 0, disabled) then if the operation generates a positive overflow, then the
counter is incremented and if the operation generates a negative overflow, then the
counter is decremented. If(OVM = 1, enabled) then the counter is not affected by the
operation.

OVM If overflow mode bit is set; then the ACC value will saturate maximum positive
(0x7FFFFFFF) or maximum negative (0x80000000) if the operation overflowed.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Subtract two 64-bit values (VarA and VarB) and store result
; in VarC:
MOVL ACC,@VarA+0 ; Load ACC with contents of the low

; 32-bits of VarA
SUBUL ACC,@VarB+0 ; Subtract from ACC the contents of

; the low 32-bits of VarB
MOVL @VarC+0,ACC ; Store low 32-bit result into VarC
MOVL ACC,@VarA+2 ; Load ACC with contents of the high

; 32-bits of VarA
SUBBL ACC,@VarB+2 ; Subtract from ACC the contents of

; the high 32-bits of VarB with borrow
MOVL @VarC+2,ACC ; Store high 32-bit result into VarC

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

SUBCU ACC,loc16 — Subtract Conditional 16 Bits www.ti.com

424 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

SUBCU ACC,loc16 Subtract Conditional 16 Bits

Syntax Options SUBCU ACC,loc16

Opcode 0001 1111 LLLL LLLL

Objmode X

RPT Y

CYC N+1

Operands ACC – Accumulator register

loc32 – Addressing mode (see Chapter 5)

Description Perform 16-bit conditional subtraction, which can be used for unsigned modulus division:
temp(32:0) = ACC << 1 − [loc16] << 16
if(temp(32:0) > 0)

ACC = temp(31:0) + 1
else

ACC = ACC << 1

To perform 16-bit unsigned modulus division, the AH register is zeroed and the AL
register is loaded with the ”Numerator” value prior to executing the SUBCU instruction.
The value pointed to be the ”loc16” addressing mode contains the ”Denominator” value.
After executing the SUBCU instruction 16 times, the AH register will contain the
”Remainder” and the AL register will contain the ”Quotient” results. To perform signed
modulus division, the ”Numerator” and ”Denominator” values must be converted to
unsigned quantities, before executing the SUBCU instruction. The final ”Quotient” result
must be negated if the ”Numerator” and ”Denominator” values were of different sign else
the quotient is left unchanged.

Flags and Modes

Flags and Modes Description

Z At the end of the operation, the Z flag is set if the ACC value is zero, else Z is cleared.
The calculation of temp(32:0) has no effect on the Z bit.

N At the end of the operation, the N flag is set if bit 31 of the ACC is 1, else N is cleared.
The calculation of temp(32:0) has no effect on the N bit.

C If the calculation of temp(32:0) generates a borrow, C is cleared; otherwise C is set.
Note: The V and OVC flags are not affected by the operation.

Repeat If this operation is repeated, then the instruction will be executed N+1 times. The state of
the Z, N, C flags will reflect the final result. The V flag will be set if an intermediate
overflow occurs. The OVC flag will count intermediate overflows, if overflow mode is
disabled.

Example 1 ; Calculate unsigned: Quot16 = Num16Den16, Rem16 = Num16%Den16
MOVU ACC,@Num16 ; AL = Num16, AH = 0
RPT #15 ; Repeat operation 16 times

||SUBCU ACC,@Den16 ; Conditional subtract with Den16
MOV @Rem16,AH ; Store remainder in Rem16
MOV @Quot16,AL ; Store quotient in Quot16

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com SUBCU ACC,loc16 — Subtract Conditional 16 Bits

425SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

Example 2 ; Calculate signed: Quot16 = Num16Den16, Rem16 = Num16%Den16
CLRC TC ; Clear TC flag, used as sign flag
MOV ACC,@Den16 << 16 ; AH = Den16, AL = 0
ABSTC ACC ; Take abs value, TC = sign ^ TC
MOV T,@AH ; Temp save Den16 in T register
MOV ACC,@Num16 << 16 ; AH = Num16, AL = 0
ABSTC ACC ; Take abs value, TC = sign ^ TC
MOVU ACC,@AH ; AH = 0, AL = Num16
RPT #15 ; Repeat operation 16 times

||SUBCU ACC,@T ; Conditional subtract with Den16
MOV @Rem16,AH ; Store remainder in Rem16
MOV ACC,@AL << 16 ; AH = Quot16, AL = 0
NEGTC ACC ; Negate if TC = 1
MOV @Quot16,AH ; Store quotient in Quot16

Example 3 ; Calculate unsigned: Quot32 = Num32/Den16, Rem16 = Num32%Den16
MOVU ACC,@Num32+1 ; AH = 0, AL = high 16-bits of Num32
RPT #15 ; Repeat operation 16 times

||SUBCU ACC,@Den16 ; Conditional subtract with Den16
MOV @Quot32+1,AL ; Store high 16-bit in Quot32
MOV AL,@Num32+0 ; AL = low 16-bits of Num32
RPT #15 ; Repeat operation 16 times

||SUBCU ACC,@Den16 ; Conditional subtract with Den16
MOV @Rem16,AH ; Store remainder in Rem16
MOV @Quot32+0,AL ; Store low 16-bit in Quot32

Example 4 ; Calculate signed: Quot32 = Num32/Den16, Rem16 = Num32%Den16
CLRC TC ; Clear TC flag, used as sign flag
MOV ACC,@Den16 << 16 ; AH = Den16, AL = 0
ABSTC ACC ; Take abs value, TC = sign ^ TC
MOV T,@AH ; Temp save Den16 in T register
MOVL ACC,@Num32 ; ACC = Num32
ABSTC ACC ; Take abs value, TC = sign ^ TC
MOV P,@ACC ; P = Num32
MOVU ACC,@PH ; AH = 0, AL = high 16-bits of Num32
RPT #15 ; Repeat operation 16 times

||SUBCU ACC,@T ; Conditional subtract with Den16
MOV @Quot32+1,AL ; Store high 16-bit in Quot32
MOV AL,@PL ; AL = low 16-bits of Num32
RPT #15 ; Repeat operation 16 times

||SUBCU ACC,@T ; Conditional subtract with Den16
MOV @Rem16,AH ; Store remainder in Rem16
MOV ACC,@AL << 16 ; AH = low 16-bits of Quot32, AL = 0
NEGTC ACC ; Negate if TC = 1
MOV @Quot32+0,AH ; Store low 16-bit in Quot32

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

SUBCUL ACC,loc32 — Subtract Conditional 32 Bits www.ti.com

426 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

SUBCUL ACC,loc32 Subtract Conditional 32 Bits

Syntax Options SUBCUL ACC,loc32

Opcode 0101 0110 0001 0111
0000 0000 LLLL LLLL

Objmode 1

RPT Y

CYC N+1

Operands ACC – Accumulator register

loc32 – Addressing mode (see Chapter 5)

Description Perform 32-bit conditional subtraction, which can be used for unsigned modulus division:
temp(32:0) = ACC << 1 + P(31) − [loc32];
if(temp(32:0) >= if(temp(32:0) >= 0)

ACC = temp(31:0);
P = (P << 1) + 1;

else
ACC:P = ACC:P << 1;

To perform 32-bit unsigned modulus division, the ACC register is zeroed and the P
register is loaded with the ”Numerator” value prior to executing the SUBCUL instruction.
The value pointed to be the ”loc32” addressing mode contains the ”Denominator” value.
After executing the SUBCUL instruction 32 times, the ACC register will contain the
”Remainder” and the P register will contain the ”Quotient” results. To perform signed
modulus division, the ”Numerator” and ”Denominator” values must be converted to
unsigned quantities, before executing the SUBCUL instruction. The final ”Quotient” result
must be negated if the ”Numerator” and ”Denominator” values were of different sign else
the quotient is left unchanged.

Flags and Modes

Flags and Modes Description

Z At the end of the operation, the Z flag is set if the ACC value is zero, else Z is cleared.
The calculation of temp(32:0) has no effect on the Z bit.

N At the end of the operation, the N flag is set if bit 31 of the ACC is 1, else N is cleared.
The calculation of temp(32:0) has no effect on the N bit.

C If the calculation of temp(32:0) generates a borrow, C is cleared; otherwise C is set.
Note: The V and OVC flags are not affected by the operation.

Repeat If this operation is repeated, then the instruction will be executed N+1 times. The state of
the Z, N, C flags will reflect the final result. The V flag will be set if an intermediate
overflow occurs. The OVC flag will count intermediate overflows, if overflow mode is
disabled.

Example 1 ; Calculate unsigned: Quot32 = Num32/Den32, Rem32 = Num32%Den32
MOVB ACC,#0 ; Zero ACC
MOVL P,@Num32 ; Load P register with Num32
RPT #31 ; Repeat operation 32 times

||SUBCUL ACC,@Den32 ; Conditional subtract with Den32
MOVL @Rem32,ACC ; Store remainder in Rem32
MOVL @Quot32,P ; Store quotient in Quot32

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com SUBCUL ACC,loc32 — Subtract Conditional 32 Bits

427SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

Example 2 ; Calculate signed: Quot32 = Num32/Den32, Rem32 = Num32%Den32
CLRC TC ; Clear TC flag, used as sign flag
MOVL ACC,@Den32 ; Load ACC with contents of Den32
ABSTC ACC ; Take absolute value, TC = sign ^ TC
MOVL XT,@ACC ; Temp save denominator in XT register
MOVL ACC,@Num32 ; Load ACC register with Num32
ABSTC ACC ; Take abs value, TC = sign ^ TC
MOVL P,@ACC ; Load P register with numerator
OVB ACC,#0 ; Zero ACC
RPT #31 ; Repeat operation 32 times

||SUBCUL ACC,@XT ; Conditional subtract with denominator
MOVL @Rem32,ACC ; Store remainder in Rem32
MOVL ACC,@P ; Load ACC with quotient
NEGTC ACC ; Negate ACC if TC=1 (negative result)
MOVL @Quot32,ACC ; Store quotient in Quot32

Example 3 ; Calculate unsigned: Quot64 = Num64Den32, Rem32 = Num64%Den32
MOVB ACC,#0 ; Zero ACC
MOVL P,@Num64+2 ; Load P with high 32-bits of Num64
RPT #31 ; Repeat operation 32 times

||SUBCUL ACC,@Den32 ; Conditional subtract with Den32
MOVL @Quot64+2,P ; Store high 32 bit quotient in Quot64
MOVL P,@Num64+0 ; Load P with low 32-bits of Num64
RPT #31 ; Repeat operation 32 times

||SUBCUL ACC,@Den32 ; Conditional subtract with Den32
MOVL @Rem32,ACC ; Store remainder in Rem32
MOVL @Quot64+0,P ; Store low 32 bit quotient in Quot64

Example 4 ; Calculate signed: Quot64 = Num364Den32, Rem32 = Num64%Den32
MOVL ACC,@Num64+2 ; Load ACC:P with 64-bit numerator
MOVL P,@Num64+0
TBIT @AH,#15 ; TC = sign of numerator
SBF $10,NTC ; Take absolute value of numerator
NEG64 ACC:P

$10:
MOVL @XAR3,P ; Temp save numerator low in XAR3
MOVL P,@ACC ; Load P register with numerator high
MOVL ACC,@Den32 ; Load ACC with contents of Den32
ABSTC ACC ; Take absolute value, TC = sign ^ TC
MOVL XT,@ACC ; Temp save denominator in XT register
MOVB ACC,#0 ; Zero ACC
RPT #31 ; Repeat operation 32 times

||SUBCUL ACC,@XT ; Conditional subtract with denominator
MOVL @XAR4,P ; Store high quotient in XAR4
MOVL P,@XAR3 ; Load P with low numerator
RPT #31 ; Repeat operation 32 times

||SUBCUL ACC,@XT ; Conditional subtract with denominator
MOVL @Rem32,ACC ; Store remainder in Rem32
MOVL ACC,@XAR4 ; Load ACC with high quotient from XAR4
SBF $20,NTC ; Take absolute value of quotient
NEG64 ACC:P

$20:
MOVL @Quot64+0,P ; Store low quotient into Quot64
MOVL @Quot64+2,ACC ; Store high quotient into Quot64

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

SUBL ACC, loc32 — Subtract 32-bit Value www.ti.com

428 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

SUBL ACC, loc32 Subtract 32-bit Value

Syntax Options SUBL ACC, loc32

Opcode 0000 0011 LLLL LLLL

Objmode 1

RPT –

CYC 1

Operands ACC – Accumulator register

loc32 – Addressing mode (see Chapter 5)

Description Subtract the 32-bit location pointed to by the “loc32” addressing mode from the ACC
register :
ACC = ACC − [loc32];

Flags and Modes

Flags and Modes Description
Z After the subtraction, the Z flag is set if the ACC value is zero, else Z is cleared.
N After the subtraction, the N flag is set if bit 31 of the ACC is 1, else N is cleared.
C If the subtraction generates a borrow, C is cleared; otherwise C is set.
V If an overflow occurs, V is set; otherwise V is not affected.

OVC

If OVM = 0 (disabled), then if the operation generates a positive overflow, then the
counter is incremented and if the operation generates a negative overflow, then the
counter is decremented.
If OVM = 1 (enabled), then the counter is not affected by the operation.

OVM If overflow mode bit is set; then the ACC value will saturate maximum positive
(0x7FFFFFFF) or maximum negative (0x80000000) if the operation overflowed.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Calculate the 32-bit value: VarC = VarA−VarB
MOVL ACC,@VarA ; Load ACC with contents of VarA
SUBL ACC,@VarB ; Subtract from ACC the contents of VarB
MOVL @VarC,ACC ; Store result into VarC

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com SUBL ACC,P << PM — Subtract 32-bit Value

429SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

SUBL ACC,P << PM Subtract 32-bit Value

Syntax Options SUBL ACC,P << PM

Opcode 0001 0001 1010 1100

Objmode X

RPT Y

CYC N+1

Note: This instruction is an alias for the ”MOVS T,loc16” operation with “loc16 = @T”
addressing mode.

Operands ACC – Accumulator register

P – Product register

<<PM – Product shift mode

Description Subtract the content of the P register, shifted as specified by the product shift mode
(PM), from the content of the ACC register:
ACC = ACC − P << PM;

Flags and Modes

Flags and Modes Description
Z After the subtraction, the Z flag is set if the ACC value is zero, else Z is cleared.
N After the subtraction, the N flag is set if bit 31 of the ACC is 1, else N is cleared.
C If the subtraction generates a borrow, C is cleared; otherwise C is set.
V If an overflow occurs, V is set; otherwise V is not affected.

OVC

If OVM = 0 (disabled) and the operation generates a positive overflow, the counter is
incremented; if the operation generates a negative overflow, the counter is
decremented.
If OVM = 1 (enabled), the counter is not affected by the operation.

OVM If overflow mode bit is set; then the ACC value will saturate maximum positive
(0x7FFFFFFF) or maximum negative (0x80000000) if the operation overflowed.

PM

The value in the PM bits sets the shift mode for the output operation from the product
register. If the product shift value is positive (logical left shift operation), then the low
bits are zero filled. If the product shift value is negative (arithmetic right shift operation),
the upper bits are sign extended.

Repeat If this operation is repeated, then the instruction will be executed N+1 times. The state of
the Z, N, C flags will reflect the final result. The V flag will be set if an intermediate
overflow occurs. The OVC flag will count intermediate overflows, if overflow mode is
disabled.

Example ; Calculate: Y = ((B << 11) − (M*X << 4)) << 10
; Y, M, X, B are Q15 values
SPM −4 ; Set product shift to << 4
SETC SXM ; Enable sign extension mode
MOV T,@M ; T = M
MPY P,T,@X ; P = M * X
MOV ACC,@B << 11 ; ACC = S:B << 11
SUBL ACC,P << PM ; ACC = (S:B << 11) − (M*X << 4)
MOVH @Y,ACC << 5 ; Store Q15 result into Y

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

SUBL loc32, ACC — Subtract 32-bit Value www.ti.com

430 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

SUBL loc32, ACC Subtract 32-bit Value

Syntax Options SUBL loc32, ACC

Opcode 0101 0110 0100 0001
0000 0000 LLLL LLLL

Objmode 1

RPT –

CYC 1

Operands loc32 – Addressing mode (see Chapter 5)

ACC – Accumulator register

Description Subtract the content of the ACC register from the location pointed to by the “loc32”
addressing mode:
[loc32] = [loc32] − ACC;

Flags and Modes

Flags and Modes Description
Z After the subtraction, the Z flag is set if the ACC value is zero, else Z is cleared.
N After the subtraction, the N flag is set if bit 31 of the [loc32] is 1, else N is cleared.
C If the subtraction generates a borrow, C is cleared; otherwise C is set.
V If an overflow occurs, V is set; otherwise V is not affected.

OVC

If OVM = 0 (disabled) and the operation generates a positive overflow, the counter is
incremented and if the operation generates a negative overflow, the counter is
decremented.
If OVM = 1 (enabled) the counter is not affected by the operation.

OVM If overflow mode bit is set; then the ACC value will saturate maximum positive
(0x7FFFFFFF) or maximum negative (0x80000000) if the operation overflowed.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Decrement the 32-bit value VarA:
MOVB ACC,#1 ; Load ACC with 0x00000001
SUBL @VarA,ACC ; VarA = VarA − ACC

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com SUBR loc16,AX — Reverse-Subtract Specified Location From AX

431SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

SUBR loc16,AX Reverse-Subtract Specified Location From AX

Syntax Options SUBR loc16,AX

Opcode 1110 101A LLLL LLLL

Objmode 1

RPT –

CYC 1

Operands loc16 – Addressing mode (see Chapter 5)

AX – Accumulator high (AH) or accumulator low (AL) register

Description Subtract the 16−bit content of the location pointed to by the “loc16” addressing mode
from the specified AX register (AH or AL), and store the result in location pointed to by
”loc16”:
[loc16] = AX − [loc16]

This instruction performs a read-modify-write operation.

Flags and Modes

Flags and Modes Description

N After the subtraction, [loc16] is tested for a negative condition. If bit 15 of [loc16] is 1,
then the negative flag bit is set; otherwise it is cleared.

Z After the subtraction, [loc16] is tested for a zero condition. The zero flag bit is set if the
operation generates [loc16] = 0, otherwise it is cleared.

C If the subtraction generates a borrow, C is cleared; otherwise C is set.

V

If an overflow occurs, V is set; otherwise V is not affected. Signed positive overflow
occurs if the result crosses the max positive value (0x7FFF) in the positive direction.
Signed negative overflow occurs if the result crosses the max negative value (0x8000)
in the negative direction.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Subtract index register AR0 from VarA and store in AR0:
MOV AL,@VarA ; Enable ; Load AL with contents of VarA

; sign extension with a left shift of 3

SUBR @AR0,AL ; AR0 = AL − AR0
; Subtract the contents of VarC from VarB and store in VarC:

MOV AH,@VarB ; Load AH with contents of VarB
SUBR @VarC,AH ; VarC = AH − VarC

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

SUBRL loc32, ACC — Reverse-Subtract Specified Location From ACC www.ti.com

432 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

SUBRL loc32, ACC Reverse-Subtract Specified Location From ACC

Syntax Options SUBRL loc32, ACC

Opcode 0101 0110 0100 1001
0000 0000 LLLL LLLL

Objmode 1

RPT –

CYC 1

Operands loc32 – Addressing mode (see Chapter 5)

ACC – Accumulator register

Description Subtract from the ACC register the 32-bit location pointed to by the “loc32” addressing
mode and store the result in the location pointed to by “loc32”:
[loc32] = ACC − [loc32];

Flags and Modes

Flags and Modes Description
Z After the subtraction, the Z flag is set if the ACC value is zero, else Z is cleared.
N After the subtraction, the N flag is set if bit 31 of the ACC is 1, else N is cleared.
C If the subtraction generates a borrow, C is cleared; otherwise C is set.
V If an overflow occurs, V is set; otherwise V is not affected.

OVC

If(OVM = 0, disabled) then if the operation generates a positive overflow, then the
counter is incremented and if the operation generates a negative overflow, then the
counter is decremented. If(OVM = 1, enabled) then the counter is not affected by the
operation.

OVM If overflow mode bit is set; then the ACC value will saturate maximum positive
(0x7FFFFFFF) or maximum negative (0x80000000) if the operation overflowed.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Calculate the 32-bit value: VarA = VarB − VarA
MOVL ACC,@VarB ; Load ACC with contents of VarB
SUBRL @VarA,ACC ; VarA = ACC − VarA

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com SUBU ACC, loc16 — Subtract Unsigned 16-bit Value

433SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

SUBU ACC, loc16 Subtract Unsigned 16-bit Value

Syntax Options SUBU ACC, loc16

Opcode 0000 0001 LLLL LLLL

Objmode X

RPT Y

CYC N+1

Operands loc16 – Addressing mode (see Chapter 5)

ACC – Accumulator register

Description Subtract the 16-bit contents of the location pointed to by the “loc16” addressing mode
from the ACC register. The addressed location is zero extended before the add:
ACC = ACC − 0:[loc16];

Flags and Modes

Flags and Modes Description
Z After the subtraction, the Z flag is set if ACC is zero, else Z is cleared.
N After the subtraction, the N flag is set if bit 31 of the ACC is 1, else N is cleared.
C If the subtraction generates a borrow, C is cleared; otherwise C is set.
V If an overflow occurs, V is set; otherwise V is not affected.

OVC

If OVM = 0 (disabled) and the operation generates a positive overflow, the counter is
incremented and if the operation generates a negative overflow, the counter is
decremented.
If OVM = 1 (enabled), the counter is not affected by the operation.

OVM If overflow mode bit is set; then the ACC value will saturate maximum positive
(0x7FFFFFFF) or maximum negative (0x80000000) if the operation overflowed.

Repeat If this operation is repeated, then the instruction will be executed N+1 times. The state of
the Z, N, C flags will reflect the final result. The V flag will be set if an intermediate
overflow occurs. The OVC flag will count intermediate overflows, if overflow mode is
disabled.

Example ; Subtract three 32-bit unsigned variables by 16-bit parts:
MOVU ACC,@VarAlow ; AH = 0, AL = VarAlow
ADD ACC,@VarAhigh << 16 ; AH = VarAhigh, AL = VarAlow
SUBU ACC,@VarBlo293w ; ACC = ACC − 0:VarBlow
SUB ACC,@VarBhigh << 16 ; ACC = ACC − VarBhigh << 16
SBBU ACC,@VarClow ; ACC = ACC − VarClow − ~Carry
SUB ACC,@VarChigh << 16 ; ACC = ACC − VarChigh << 16

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

SUBUL ACC, loc32 — Subtract Unsigned 32-bit Value www.ti.com

434 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

SUBUL ACC, loc32 Subtract Unsigned 32-bit Value

Syntax Options SUBUL ACC, loc32

Opcode 0101 0110 0101 0101
0000 0000 LLLL LLLL

Objmode 1

RPT –

CYC 1

Operands loc32 – Addressing mode (see Chapter 5)

ACC – Accumulator register

Description Subtract from the ACC register the 32-bit the location pointed to by the “loc32”
addressing mode. The subtraction is treated as an unsigned SUBL operation:
ACC = ACC − [loc32]; // unsigned subtraction

Note: The difference between a signed and unsigned 32-bit subtract is in the treatment
of the overflow counter (OVC). For a signed SUBL, the OVC counter monitors
positive/negative overflow. For an unsigned SUBL, the OVC unsigned (OVCU) counter
monitors the borrow.

Flags and Modes

Flags and Modes Description
Z After the subtraction, the Z flag is set if the ACC value is zero, else Z is cleared.
N After the subtraction, the N flag is set if bit 31 of the ACC is 1, else N is cleared.
C If the subtraction generates a borrow, C is cleared; otherwise C is set.
V If an overflow occurs, V is set; otherwise V is not affected.

OVCU The overflow counter is decremented whenever a subtraction operation generates an
unsigned borrow. The OVM mode does not affect the OVCU counter.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Subtract two 64-bit values (VarA and VarB) and store result
; in VarC:
MOVL ACC,@VarA+0 ; Load ACC with contents of the low

; 32-bits of VarA
SUBUL ACC,@VarB+0 ; Subtract from ACC the contents of

; the low 32-bits of VarB
MOVL @VarC+0,ACC ; Store low 32-bit result into VarC
MOVL ACC,@VarA+2 ; Load ACC with contents of the high

; 32-bits of VarA
SUBBL ACC,@VarB+2 ; Subtract from ACC the contents of

; the high 32-bits of VarB with borrow
MOVL @VarC+2,ACC ; Store high 32-bit result into VarC

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com SUBUL P,loc32 — Subtract Unsigned 32-bit Value

435SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

SUBUL P,loc32 Subtract Unsigned 32-bit Value

Syntax Options SUBUL P,loc32

Opcode 0101 0110 0101 1101
0000 0000 LLLL LLLL

Objmode 1

RPT –

CYC 1

Operands P – Product register

loc32 – Addressing mode (see Chapter 5)

Description Subtract from the P register the 32-bit content of the location pointed to by the “loc32”
addressing mode. The addition is treated as an unsigned SUB operation:
P = P − [loc32]; // unsigned subtract

Note: The difference between a signed and unsigned 32-bit subtract is in the treatment
of the overflow counter (OVC). For a signed SUBL, the OVC counter monitors
positive/negative overflow. For an unsigned SUBL, the OVC unsigned (OVCU) counter
monitors the borrow.

Flags and Modes

Flags and Modes Description
Z After the subtraction, the Z flag is set if the P value is zero, else Z is cleared.
N After the subtraction, the N flag is set if bit 31 of P is 1, else N is cleared.
C If the subtraction generates a borrow, C is cleared; otherwise C is set.
V If a signed overflow occurs, V is set; otherwise V is not affected.

OVCU The overflow counter is decremented whenever a subtraction operation generates an
unsigned borrow. The OVM mode does not affect the OVCU counter.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Subtract 64-bit VarA − VarB and store result in VarC:
MOVL P,@VarA+0 ; Load P with low 32-bits of VarA
MOVL ACC,@VarA+2 ; Load ACC with high 32-bits of VarA
SUBUL P,@VarB+0 ; Sub from P unsigned low 32-bits of VarB
SUBBL ACC,@VarB+2 ; Sub from ACC with borrow high 32-bits of VarB
MOVL @VarC+0,P ; Store low 32-bit result into VarC
MOVL @VarC+2,ACC ; Store high 32-bit result into VarC

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

TBIT loc16,#bit — Test Specified Bit www.ti.com

436 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

TBIT loc16,#bit Test Specified Bit

Syntax Options TBIT loc16,#bit

Opcode 0100 BBBB LLLL LLLL

Objmode X

RPT –

CYC 1

Operands #bit – Immediate constant bit index from 0 to 15

loc16 – Addressing mode (see Chapter 5)

Description Test the specified bit of the data value in the location pointed to by the “loc16”
addressing mode:
TC = [loc16(bit)];

The value specified for the #bit immediate operand directly corresponds to the bit
number. For example, if #bit = 0, you will access bit 0 (least significant bit) of the
addressed location; if #bit = 15, you will access bit 15 (most significant bit).

Flags and Modes

Flags and Modes Description
TC If the bit tested is 1, TC is set; if the bit tested is 0, TC is cleared.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; if(VarA.Bit4 = 1)
; VarB.Bit6 = 1;
;
; else
VarB.Bit6 = 0;

TBIT @VarA,#4 ; Test bit 4 of VarA contents
SB $10,NTC ; Branch if TC = 0
TSET @VarB,#6 ; Set bit 6 of VarB contents
SB $20,UNC ; Branch unconditionally

$10:
TCLR @VarB,#6 ; Clear bit 6 of VarB contents
$20:

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com TBIT loc16,T — Test Bit Specified by Register

437SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

TBIT loc16,T Test Bit Specified by Register

Syntax Options TBIT loc16,T

Opcode 0101 0110 0010 0101
0000 0000 LLLL LLLL

Objmode 1

RPT –

CYC 1

Operands T – Upper 16 bits of the multiplicand register (XT)

loc16 – Addressing mode (see Chapter 5)

Description Test the bit specified by the four least significant bits of the T register, T(3:0) = 0…15 of
the data value in the location pointed to by the “loc16” addressing mode. Upper bits of
the T register are ignored:
bit = 15 − T(3:0);
TC = [loc16(bit)];

A value of 15 in the T register corresponds to bit 0 (least significant bit). A value of 0 in
the T register corresponds to bit 15 (most significant bit). The upper 12 bits of the T
register are ignored.

Flags and Modes

Flags and Modes Description
TC If the bit tested is 1, TC is set; if the bit tested is 0, TC is cleared.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; if(VarA.VarB = 1)
; VarC.Bit6 = 1;
; else
; VarC.Bit6 = 0;

MOV T,@VarB ; Load T with bit value in VarB
XOR @T,#15 ; Reverse order of bit testing
TBIT @VarA,T ; Test bit of VarA selected by VarB
SB $10,NTC ; Branch if TC = 0
TSET @VarB,#6 ; Set bit 6 of VarB contents
SB $20,UNC ; Branch unconditionally

$10:
TCLR @VarB,#6 ; Clear bit 6 of VarB contents

$20:

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

TCLR loc16,#bit — Test and Clear Specified Bit www.ti.com

438 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

TCLR loc16,#bit Test and Clear Specified Bit

Syntax Options TCLR loc16,#bit

Opcode 0101 0110 0000 1001
0000 BBBB LLLL LLLL

Objmode 1

RPT –

CYC 1

Operands #bit – Immediate constant bit index from 0 to 15

loc16 – Addressing mode (see Chapter 5)

Description Test the specified bit of the data value in the location pointed to by the “loc16”
addressing mode and then clear that same bit to 0:
TC = [loc16(bit)];
[loc16(bit)] = 0;

The value specified for the #bit immediate operand directly corresponds to the bit
number. For example, if #bit = 0, you will access bit 0 (least significant bit) of the
addressed location; if #bit = 15, you will access bit 15 (most significant bit).

TCLR performs a read-modify-write operation.

Flags and Modes

Flags and Modes Description
N If (loc16 = @AX) and bit 15 (MSB) of @AX is 1, then N flag is set.
Z If (loc16 = @AX) and @AX gets zeroed out, then Z flag is set.

TC If the bit tested is 1, TC is set; if the bit tested is 0, TC is cleared.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; if(VarA.Bit4 = 1)
; VarB.Bit6 = 1;
; else

VarB.Bit6 = 0;
TBIT @VarA,#4 ; Test bit 4 of VarA contents
SB $10,NTC ; Branch if TC = 0
TSET @VarB,#6 ; Set bit 6 of VarB contents
SB $20,UNC ; Branch unconditionally

$10:
TCLR @VarB,#6 ; Clear bit 6 of VarB contents

$20:

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com TEST ACC — Test for Accumulator Equal to Zero

439SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

TEST ACC Test for Accumulator Equal to Zero

Syntax Options TEST ACC

Opcode 1111 1111 0101 1000

Objmode X

RPT –

CYC 1

Operands ACC – Accumulator register

Description Compare the ACC register to zero and set the status flag bits accordingly:
Modify flags on (ACC − 0x00000000);

Flags and Modes

Flags and Modes Description
N If bit 31 of the ACC is 1, N is set; else N is cleared.
Z If ACC is zero, Z is set; else Z is cleared.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Test contents of ACC and branch if zero:
TEST ACC ; Modify flags on (ACC − 0x00000000)
SB Zero,EQ ; Branch if zero

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

TRAP #VectorNumber — Software Trap www.ti.com

440 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

TRAP #VectorNumber Software Trap

Syntax Options TRAP #VectorNumber

Opcode 0000 0000 001C CCCC

Objmode X

RPT –

CYC 8

Operands Vector Number – CPU interrupt vector 0 to 31

Description The TRAP instruction transfers program control to the interrupt service routine that
corresponds to the vector specified in the instruction. It does not affect the interrupt flag
register (IFR) or the interrupt enable register (IER), regardless of whether the chosen
interrupt has corresponding bits in these registers. The TRAP instruction is not affected
by the interrupt global mask bit (INTM) in status register ST1. It also is not affected by
the enable bits in the IER or the debug interrupt enable register (DBGIER). Once the
TRAP instruction reaches the decode phase of the pipeline, hardware interrupts cannot
be serviced until the TRAP instruction is done executing (until the interrupt service
routine begins).

The following table indicates which interrupt vector is associated with a chosen value for
the VectorNumber operand:

Vector Number Interrupt Vector Vector Number Interrupt Vector
0 RESET 16 RTOSINT
1 INT1 17 Reserved
2 INT2 18 NMI
3 INT3 19 ILLEGAL
4 INT4 20 USER1
5 INT5 21 USER2
6 INT6 22 USER3
7 INT7 23 USER4
8 INT8 24 USER5
9 INT9 25 USER6
10 INT10 26 USER7
11 INT11 27 USER8
12 INT12 28 USER9
13 INT13 29 USER10
14 INT14 30 USER11
15 DLOGINT 31 USER12

Part of the operation involves saving pairs of 16-bit core registers onto the stack pointed
to by the SP register. Each pair of registers is saved in a single 32-bit operation. The
register forming the low word of the pair is saved first (to an even address); the register
forming the high word of the pair is saved next (to the following odd address). For
example, the first value saved is the concatenation of the T register and the status
register ST0 (T:ST0). ST0 is saved first, then T.

This instruction should not be used with vectors 1−12 when the peripheral interrupt
expansion (PIE) is enabled.

Note: The TRAP #0 instruction does not initiate a full reset. It only forces execution of
the interrupt service routine that corresponds to the RESET interrupt vector.
Flush the pipeline;

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com TRAP #VectorNumber — Software Trap

441SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

temp = PC + 1;
Fetch specified vector;
SP = SP + 1;
[SP] = T:ST0;
SP = SP + 2;
[SP] = AH:AL;
SP = SP + 2;
[SP] = PH:PL;
SP = SP + 2;
[SP] = AR1:AR0;
SP = SP + 2;
[SP] = DP:ST1;
SP = SP + 2;
[SP] = DBGSTAT:IER;
SP = SP + 2;
[SP] = temp;
SP = SP = 2;
INTM = 0; // disable INT1−INT14, DLOGINT, RTOSINT
DBGM = 1; // disable debug events
EALLOW = 0; // disable access to emulation registers
LOOP = 0; // clear loop flag
IDLESTAT = 0; // clear idle flag
PC = fetched vector;

Flags and Modes

Flags and Modes Description
DBGM Debug events are disabled by setting the DBGM bit.
INTM Setting the INTM bit disables maskable interrupts.

EALLOW EALLOW is cleared to disable access to protected registers.
LOOP The loop flag is cleared.

IDLESTAT The idle flag is cleared.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

TSET loc16,#16bit — Test and Set Specified Bit www.ti.com

442 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

TSET loc16,#16bit Test and Set Specified Bit

Syntax Options TSET loc16,#16bit

Opcode 0101 0110 0000 1101
0000 BBBB LLLL LLLL

Objmode 1

RPT –

CYC 1

Operands #bit – Immediate constant bit index from 0 to 15

loc16 – Addressing mode (see Chapter 5)

Description Test the specified bit of the data value in the location pointed to by the “loc16”
addressing mode and then set the same bit to 1:
TC = [loc16(bit)];
[loc16(bit)] = 1;

The value specified for the #bit immediate operand directly corresponds to the bit
number. For example, if #bit = 0, you will access bit 0 (least significant bit) of the
addressed location; if #bit = 15, you will access bit 15 (most significant bit).

TSET performs a read-modify-write operation.

Flags and Modes

Flags and Modes Description
N If (loc16 = = @AX) and bit 15 (MSB) of @AX is 1, then N flag is set.
Z If (loc16 = = @AX) and @AX gets zeroed out, then Z flag is set.

TC If the bit tested is 1, TC is set; if the bit tested is 0, TC is cleared.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; if(VarA.Bit4 = 1)
; VarB.Bit6 = 1;
; else
VarB.Bit6 = 0;

TBIT @VarA,#4 ; Test bit 4 of VarA contents
SB $10,NTC ; Branch if TC = 0
TSET @VarB,#6 ; Set bit 6 of VarB contents
SB $20,UNC ; Branch unconditionally

$10:
TCLR @VarB,#6 ; Clear bit 6 of VarB contents

$20:

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com UOUT *(PA),loc16 — Unprotected Output Data to I/O Port

443SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

UOUT *(PA),loc16 Unprotected Output Data to I/O Port

Syntax Options UOUT *(PA),loc16

Opcode 1011 0000 LLLL LLLL
CCCC CCCC CCCC CCCC

Objmode 1

RPT Y

CYC N+2

Operands *(PA) – Immediate I/O space memory address

loc16 – Addressing mode (see Chapter 5)

Description Store the 16-bit value from the location pointed to by the “loc16” addressing mode into
the I/O space location pointed to by ”*(PA):
IOspace[0x000:PA] = loc16;

I/O Space is limited to 64K range (0x0000 to 0xFFFF). On the external interface
(XINTF), if available on a particular device, the I/O strobe signal (XISn) is toggled during
the operation. The I/O address appears on the lower 16 address lines (XA(15:0)) and the
upper address lines are zeroed. The data appears on the lower 16 data lines (XD(15:0).

Note: The UOUT operation is not pipeline protected. Therefore, if an IN instruction
immediately follows a UOUT instruction, the IN will occur before the UOUT. To be
certain of the sequence of operation, use the OUT instruction, which is pipeline
protected. I/O space may not be implemented on all C28x devices. See the data sheet
for your particular device for details.

Flags and Modes None

Repeat This instruction is repeatable. If the operation follows a RPT instruction, then it will be
executed N+1 times. When repeated, the ”*(PA)” I/O space address is post-incremented
by 1 during each repetition.

Example ; IORegA address = 0x0300;
; IOREgB address = 0x0301;
; IOREgC address = 0x0302;
; IORegA = 0x0000;
; IORegB = 0x0400;
; IORegC = VarA;
; if(IORegC = 0x2000)
; IORegC = 0x0000;
IORegA .set 0x0300 ; Define IORegA address
IORegB .set 0x0301 ; Define IORegB address
IORegC .set 0x0302 ; Define IORegC address

MOV @AL,#0 ; AL = 0
UOUT *(IORegA),@AL ; IOspace[IORegA] = AL
MOV @AL,#0x0400 ; AL = 0x0400
UOUT *(IORegB),@AL ; IOspace[IORegB] = AL
OUT *(IORegC),@VarA ; IOspace[IORegC] = VarA
IN @AL,*(IORegC) ; AL = IOspace[IORegC]
CMP @AL,#0x2000 ; Set flags on (AL − 0x2000)
SB $10,NEQ ; Branch if not equal
MOV @AL,#0 ; AL = 0
UOUT *(IORegC),@AL ; IOspace[IORegC] = AL

$10:

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

XB *AL — C2 xLP Source-Compatible Indirect Branch www.ti.com

444 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

XB *AL C2 xLP Source-Compatible Indirect Branch

Syntax Options XB *AL

Opcode 0101 0110 0001 0100

Objmode 1

RPT –

CYC 7

Operands *AL – Indirect program-memory addressing using register AL, can only access high 64K
of program space range (0x3F0000 to 0x3FFFFF)

Description Unconditional indirect branch by loading the low 16 bits of PC with the contents of
register AL and forcing the upper 6 bits of the PC to 0x3F:
PC = 0x3F:AL;

Note: This branch instruction can only branch to a location located in the upper 64K
range of program space (0x3F0000 to 0x3FFFFF).

Flags and Modes None

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Branch to subroutines in SwitchTable selected by Switch value.
; This example only works for code located in upper 64K of
; program space:
SwitchTable: ; Switch address table:

.word Switch0 ; Switch0 address

.word Switch1 ; Switch1 address
.
.

MOVL XAR2,#SwitchTable ; XAR2 = pointer to SwitchTable
MOVZ AR0,@Switch ; AR0 = Switch index
MOV AL,*+XAR2[AR0] ; AL = SwitchTable[Switch]
XB *AL ; Indirect branch using AL

SwitchReturn:
.

Switch0: ; Subroutine 0:
.
.
XB SwitchReturn,UNC ; Return: branch

Switch1: ; Subroutine 1:
.
.
XB SwitchReturn,UNC ; Return: branch

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com XB pma,*,ARPn — C2xLP Source-Compatible Branch with ARP Modification

445SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

XB pma,*,ARPn C2xLP Source-Compatible Branch with ARP Modification

Syntax Options XB pma,*,ARPn

Opcode 0011 1110 0111 0nnn
CCCC CCCC CCCC CCCC

Objmode 1

RPT –

CYC 4

Operands pma – 16-bit immediate program -memory address, can only access high 64K of
program space range (0x3F0000 to 0x3FFFFF)

ARPn – 3-bit auxiliary register pointer (ARP0 to ARP7)

Description Unconditional branch with ARP modification by loading the low 16 bits of PC with the 16-
bit immediate value ”pma” and forcing the upper 6 bits of the PC to 0x3F. Also, change
the auxiliary register pointer as specified by the “ARPn” operand:
PC = 0x3F:pma;
ARP = n;

Note: This branch instruction can only branch to a location located in the upper 64K
range of program space (0x3F0000 to 0x3FFFFF).

Flags and Modes None

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Branch to SubA and set ARP. Load ACC with pointer pointed to
; by ARP and return to. This example only works for code
; located in upper 64K of program space:

XB SubA,*,ARP1 ; Branch to SubA with ARP pointing
; to XAR1

SubReturn:
.

SubAA: ; Subroutine A:
MOVL ACC,* ; Load ACC with contents

; pointed to by XAR(ARP)
XB SubReturn,UNC ; Return unconditionally

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

XB pma,COND — C2 xLP Source-Compatible Branch www.ti.com

446 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

XB pma,COND C2 xLP Source-Compatible Branch

Syntax Options XB pma,COND

Opcode 0101 0110 1101 COND
CCCC CCCC CCCC CCCC

Objmode 1

RPT –

CYC 7/4

Operands pma – 16-bit immediate program -memory address, can only access high 64K of
program space range (0x3F0000 to 0x3FFFFF)

COND – Conditional codes:

COND Syntax Description Flags Tested
0000 NEQ Not Equal To Z = 0
0001 EQ Equal To Z = 1
0010 GT Greater Than Z = 0 AND N = 0
0011 GEQ Greater Than or Equal To N = 0
0100 LT Less Than N = 1
0101 LEQ Less Than or Equal To Z = 1 OR N = 1
0110 HI Higher C = 1 AND Z = 0
0111 HIS, C Higher or Same, Carry Set C = 1
1000 LO, NC Lower, Carry Clear C = 0
1001 LOS Lower or Same C = 0 OR Z = 1
1010 NOV No Overflow V = 0
1011 OV Overflow V = 1
1100 NTC Test Bit Not Set TC = 0
1101 TC Test Bit Set TC = 1
1110 NBIO BIO Input Equal To Zero BIO = 0
1111 UNC Unconditional –

Description Conditional branch. If the specified condition is true, then branch by loading the low 16
bits of PC with the 16-bit immediate value ”pma” and forcing the upper 6 bits of the PC
to 0x3F.; otherwise continue execution without branching:
If (COND = true) PC(15:0) = pma;
If (COND = false) PC(15:0) = PC(15:0) + 2;
PC(21:16) = 0x3F;

Note: If (COND = true) then the instruction takes 7 cycles.

If (COND = false) then the instruction takes 4 cycles.

Flags and Modes

Flags and Modes Description
V If the V flag is tested by the condition, then V is cleared.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com XB pma,COND — C2 xLP Source-Compatible Branch

447SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

Example ; Branch to subroutines in SwitchTable selected by Switch value.
; This example only works for code located in upper 64K of
; program space:
SwitchTable: ; Switch address table:

.word Switch0 ; Switch0 address

.word Switch1 ; Switch1 address

.

.
MOVL XAR2,#Switch- ; XAR2 = pointer to SwitchTable

Table
MOVZ AR0,@Switch ; AR0 = Switch index
MOV AL,*+XAR2[AR0] ; AL = SwitchTable[Switch]
XB *AL ; Indirect branch using AL

SwitchReturn:
.

Switch0: ; Subroutine 0:
.
.

XB SwitchReturn,UNC ; Return: branch

Switch1: ; Subroutine 1:
.
.

XB SwitchReturn,UNC ; Return: branch

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

XBANZ pma,*ind{,ARPn} — C2 x LP Source-Compatible Branch If ARn Is Not Zero www.ti.com

448 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

XBANZ pma,*ind{,ARPn} C2 x LP Source-Compatible Branch If ARn Is Not Zero

Syntax Options

Syntax Options Opcode Objmode RPT CYC
XBANZ pma,* 0101 0110 0000 1100

CCCC CCCC CCCC CCCC
1 – 4/2

XBANZ pma,*++ 0101 0110 0000 1010
CCCC CCCC CCCC CCCC

1 – 4/2

XBANZ pma,*–– 0101 0110 0000 1011
CCCC CCCC CCCC CCCC

1 – 4/2

XBANZ pma,*0++ 0101 0110 0000 1110
CCCC CCCC CCCC CCCC

1 – 4/2

XBANZ pma,*0–– 0101 0110 0000 1111
CCCC CCCC CCCC CCCC

1 – 4/2

XBANZ pma,*,ARPn 0011 1110 0011 0nnn
CCCC CCCC CCCC CCCC

1 – 4/2

XBANZ pma,*++,ARPn 0011 1110 0011 1nnn
CCCC CCCC CCCC CCCC

1 – 4/2

XBANZ pma,*––’,ARPn 0011 1110 0100 0nnn
CCCC CCCC CCCC CCCC

1 – 4/2

XBANZ pma,*0++,ARPn 0011 1110 0100 1nnn
CCCC CCCC CCCC CCCC

1 – 4/2

XBANZ pma,*0––,ARPn 0011 1110 0101 0nnn
CCCC CCCC CCCC CCCC

1 – 4/2

Operands pma – 16-bit immediate program -memory address, can only access high 64K of
program space range (0x3F0000 to 0x3FFFFF)

ARPn – 3-bit auxiliary register pointer (ARP0 to ARP7)

Description If the lower 16 bits of the auxiliary register pointed to by the current auxiliary register
pointer (ARP) is not equal to 0, then a branch is taken by loading the lower 16 bits of the
PC with the 16-bit immediate “pma” value and forcing the upper 6 bits of the PC to 0x3F.
Then, the current auxiliary register, pointed to by the ARP, is modified as specified by
the indirect mode. Then,, if indicated, the ARP pointer value is changed to point a new
auxiliary register:
if(AR[ARP] != 0)

PC = 0x3F:pma
if(*++ indirect mode) XAR[ARP] = XAR[ARP] + 1;
if(*−− indirect mode) XAR[ARP] = XAR[ARP] - 1;
if(*0++ indirect mode) XAR[ARP] = XAR[ARP] + AR0;
if(*0−− indirect mode) XAR[ARP] = XAR[ARP] − AR0;
if(ARPn specified) ARPn = n;

This instruction can only transfer program control to a location located in the upper 64K
range of program space (0x3F0000 to 0x3FFFFF). The cycle times for this operation are:

If branch is taken, then the instruction takes 4 cycles

If branch is not taken, then the instruction takes 2 cycles

Flags and Modes None

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com XBANZ pma,*ind{,ARPn} — C2 x LP Source-Compatible Branch If ARn Is Not Zero

449SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

Example ; Copy the contents of Array1 to Array2:
; int32 Array1[N];
; int32 Array2[N];
; for(i=0; i < N; i++)
; Array2[i] = Array1[i];
; This example only works for code located in upper 64K of
; program space:

MOVL XAR2,#Array1 ; XAR2 = pointer to Array1
MOVL XAR3,#Array2 ; XAR3 = pointer to Array2
MOV @AR0,#(N−1) ; Repeat loop N times
NOP *,ARP2 ; Point to XAR2
SETC AMODE ; Full C2XLP address mode compatible

Loop:
MOVL ACC,*++,ARP3 ; ACC = Array1[i], point to XAR3
MOVL *++,ACC,ARP0 ; Array2[i] = ACC, point to XAR0
BANZ Loop,*−−,ARP2 ; Loop if AR[ARP] != 0, AR[ARP]−−,

; point to XAR2

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

XCALL *AL — C2 x LP Source-Compatible Function Call www.ti.com

450 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

XCALL *AL C2 x LP Source-Compatible Function Call

Syntax Options XCALL *AL

Opcode 0101 0110 0011 0100

Objmode 1

RPT –

CYC 7

Operands *AL – Indirect program-memory addressing using register AL, can only access high 64K
of program space range (0x3F0000 to 0x3FFFFF)

Description Indirect call with destination address in AL. The lower 16 bits of the current PC address
are saved onto the software stack. Then, the low 16 bits of PC is loaded with the
contents of register AL and the upper 6 bits of the PC are loaded with 0x3F:
temp(21:0) = PC + 1;
[SP] = temp(15:0);
SP = SP + 1;
C = 0x3F:AL;

Note: This instruction can only transfer program control to a location located in the upper
64K range of program space (0x3F0000 to 0x3FFFFF). To return from a call made by
XCALL, the XRETC instruction must be used.

Flags and Modes None

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Call function in FuncTable selected by FuncIndex value.
; This example only works for code located in upper 64K of
; program space:
FuncTable: ; Function address table:

.word FuncA ; FuncA address

.word FuncB ; FuncB address

.

.
MOVL XAR2,#FuncTable ; XAR2 = pointer to FuncTable
MOVZ AR0,@FuncIndex ; AR0 = FuncTable index
MOV AL,*+XAR2[AR0] ; AL = Table[FuncIndex]
XCALL *AL ; Indirect call using AL
.
.

FuncA: ; Function A:
.
.
XRETC UNC ; Return unconditionally

FuncB: ; Function B:
.
.
XRETC UNC ; Return unconditionally

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com XCALL pma,*,ARPn — C2 x LP Source-Compatible Function Call

451SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

XCALL pma,*,ARPn C2 x LP Source-Compatible Function Call

Syntax Options XCALL pma,*,ARPn

Opcode 0011 1110 0110 1nnn
CCCC CCCC CCCC CCCC

Objmode 1

RPT –

CYC 4

Operands pma – 16-bit immediate program -memory address, can only access high 64K of
program space range (0x3F0000 to 0x3FFFFF)

ARPn – 3-bit auxiliary register pointer (ARP0 to ARP7)

Description Unconditional call with ARP modification. The lower 16 bits of the return address are
pushed onto the software stack. Then, the lower 16 bits of the PC are loaded with the
16-bit immediate ”pma” value and the upper 6 bits of the PC are forced to 0x3F. Then,
the 3-bit ARP pointer will be set to the ”ARPn” field value:
temp(21:0) = PC + 1;
[SP] = temp(15:0);
SP = SP + 1;
PC = 0x3F:pma;
ARP = n;

Note: This instruction can only transfer program control to a location located in the upper
64K range of program space (0x3F0000 to 0x3FFFFF). To return from a call made by
XCALL, the XRETC instruction must be used.

Flags and Modes None

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Call FuncA and set ARP. Load ACC with pointer pointed to by ARP.
; This example only works for code located in upper 64K of program
; space:

XCALL FuncA,*,ARP1 ; Call FuncA with ARP pointing to XAR1
. Fun;A: ; Function A:

MOVL ACC,* ; Load ACC with contents pointed to
; by XAR (ARP)

XRETC UNC ; Return unconditionally

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

XCALL pma,COND — C2xLP Source-Compatible Function Call www.ti.com

452 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

XCALL pma,COND C2xLP Source-Compatible Function Call

Syntax Options XCALL pma,COND

Opcode 0101 0110 1110 COND
CCCC CCCC CCCC CCCC

Objmode 1

RPT –

CYC 7/4

Operands pma – 16-bit immediate program -memory address, can only access high 64K of
program space range (0x3F0000 to 0x3FFFFF)

COND – Conditional codes:

COND Syntax Description Flags Tested
0000 NEQ Not Equal To Z = 0
0001 EQ Equal To Z = 1
0010 GT Greater Than Z = 0 AND N = 0
0011 GEQ Greater Than or Equal To N = 0
0100 LT Less Than N = 1
0101 LEQ Less Than or Equal To Z = 1 OR N = 1
0110 HI Higher C = 1 AND Z = 0
0111 HIS, C Higher or Same, Carry Set C = 1
1000 LO, NC Lower, Carry Clear C = 0
1001 LOS Lower or Same C = 0 OR Z = 1
1010 NOV No Overflow V = 0
1011 OV Overflow V = 1
1100 NTC Test Bit Not Set TC = 0
1101 TC Test Bit Set TC = 1
1110 NBIO BIO Input Equal To Zero BIO = 0
1111 UNC Unconditional –

Description Conditional call. If the specified condition is true, then the low 16 bits of the return
address is pushed onto the software stack and the low 16 bits of the PC are loaded with
the 16-bit immediate ”pma” value and the upper 6 bits of the PC are forced to 0x3F;
otherwise continue execution with instruction following the XCALL operation:
if(COND = true)

{
temp(21:0) = PC + 2;
[SP] = temp(15:0);
SP = SP + 1;
PC = 0x3F:pma;
}

else
PC = PC + 2;

Note: This instruction can only transfer program control to a location located in the upper
64K range of program space (0x3F0000 to 0x3FFFFF). To return from a call made by
XCALL, the XRETC instruction must be used. The cycle times for this operation are:

If (COND = true) then the instruction takes 7 cycles.

If (COND = false) then the instruction takes 4 cycles.

Flags and Modes

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com XCALL pma,COND — C2xLP Source-Compatible Function Call

453SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

Flags and Modes Description
V If the V flag is tested by the condition, then V is cleared.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Call FuncA if VarA does not equal zero. This example only
; works for code located in upper 64K of program space:

MOV AL,@VarA ; Load AL with VarA
XCALL FuncA,NEQ ; Call FuncA if not equal to zero
.
.

FuncA: ; Function A:
.
.
XRETC UNC ; Return unconditionally

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

XMAC P,loc16,*(pma) — C2xLP Source-compatible Multiply and Accumulate www.ti.com

454 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

XMAC P,loc16,*(pma) C2xLP Source-compatible Multiply and Accumulate

Syntax Options XMAC P,loc16,*(pma)

Opcode 1000 0100 LLLL LLLL
CCCC CCCC CCCC CCCC

Objmode 1

RPT Y

CYC N+2

Operands P – Product register

loc16 – Addressing mode (see Chapter 5)

*(pma) – Immediate program memory address, access high 64K range of program
space only (0x3F0000 to 0x3FFFFF)

Description Add the previous product (stored in the P register), shifted as specified by the product
shift mode (PM), to the ACC register. Next, load the T register with the content of the
location pointed to by the “loc16” addressing mode. Last, multiply the signed 16-bit
content of the T register by the signed 16-bit content of the addressed program memory
location and store the 32-bit result in the P register:
ACC = ACC + P << PM;
T = [loc16];
P = signed T * signed Prog[0x3F:pma];

The C28x forces the upper 6 bits of the program memory address, specified by
the ”*(pma)” addressing mode, to 0x3F when using this form of the MAC instruction. This
limits the program memory address to the high 64K of program address space
(0x3F0000 to 0x3FFFFF). On the C28x devices, memory blocks are mapped to both
program and data space (unified memory), hence the ”*(pma)” addressing mode can be
used to access data space variables that fall within its address range.

Flags and Modes

Flags and Modes Description
Z After the addition, the Z flag is set if the ACC value is zero, else Z is cleared.
N After the addition, the N flag is set if bit 31 of the ACC is 1, else N is cleared.
C If the addition generates a carry, C is set; otherwise C is cleared.
V If an overflow occurs, V is set; otherwise V is not affected.

OVC
If overflow mode is disabled; and if the operation generates a positive overflow, then
the counter is incremented. If overflow mode is disabled; and if the operation generates
a negative overflow, then the counter is decremented.

OVM If overflow mode bit is set; then the ACC value will saturate maximum positive
(0x7FFFFFFF) or maximum negative (0x80000000) if the operation overflowed.

PM

The value in the PM bits sets the shift mode for the output operation from the product
register. If the product shift value is positive (logical left shift operation), then the low
bits are zero filled. If the product shift value is negative (arithmetic right shift operation),
the upper bits are sign extended.

Repeat This instruction is repeatable. If the operation follows a RPT instruction, then it will be
executed N+1 times. The state of the Z, N, C and OVC flags will reflect the final result.
The V flag will be set if an intermediate overflow occurs. When repeated, the program-
memory address is incremented by 1 during each repetition.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com XMAC P,loc16,*(pma) — C2xLP Source-compatible Multiply and Accumulate

455SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

Example ; Calculate sum of product using 16-bit multiply:
; int16 X[N] ; Data information
; int16 C[N] ; Coefficient information, located in high 64K
; sum = 0;
; for(i=0; i < N; i++)
; sum = sum + (X[i] * C[i]) >> 5;

MOVL XAR2,#X ; XAR2 = pointer to X
SPM -5 ; Set product shift to ">> 5"
ZAPA ; Zero ACC, P, OVC
RPT #N−1 ; Repeat next instruction N times

||XMAC P,*XAR2++,*(C) ; ACC = ACC + P >> 5,
; P = *XAR2++ * *C++

ADDL ACC, P << PM ; Perform final accumulate
MOVL @sum,ACC ; Store final result into sum

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

XMACD P,loc16,*(pma) — C2xLP Source-Compatible Multiply and Accumulate With Data Move www.ti.com

456 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

XMACD P,loc16,*(pma) C2xLP Source-Compatible Multiply and Accumulate With Data Move

Syntax Options XMACD P,loc16,*(pma)

Opcode 1010 0100 LLLL LLLL
CCCC CCCC CCCC CCCC

Objmode 1

RPT Y

CYC N+2

Operands P – Product register

loc16 – Addressing mode (see Chapter 5)

Note: For this operation, register-addressing modes cannot be used. The modes are:
@ARn, @AH, @AL, @PH, @PL, @SP, @T. An illegal instruction trap will be generated.

*(pma) – Immediate program memory address, access high 64K range of program
space only (0x3F0000 to 0x3FFFFF)

Description The XMACD instruction functions in the same manner as the XMAC, with the addition of
a data move. Add the previous product (stored in the P register), shifted as specified by
the product shift mode (PM), to the ACC register. Next, load the T register with the
content of the location pointed to by the “loc16” addressing mode. Then, multiply the
signed 16-bit content of the T register by the signed 16-bit content of the addressed
program memory location and store the 32-bit result in the P register. Last, store the
content in the T register onto the next highest memory address pointed to by ”loc16”
addressing mode:
ACC = ACC + P << PM;
T = [loc16];
P = signed T * signed Prog[0x3F:pma];
[loc16 + 1] = T;

The C28x forces the upper 6 bits of the program memory address, specified by
the ”*(pma)” addressing mode, to 0x3F when using this form of the MAC instruction. This
limits the program memory address to the high 64K of program address space
(0x3F0000 to 0x3FFFFF). On the C28x devices, memory blocks are mapped to both
program and data space (unified memory), therefore, the “(pma)” addressing mode can
be used to access data-space variables that fall within its address range.

Flags and Modes

Flags and Modes Description
Z After the addition, the Z flag is set if the ACC value is zero, else Z is cleared.
N After the addition, the N flag is set if bit 31 of the ACC is 1, else N is cleared.
C If the addition generates a carry, C is set; otherwise C is cleared.
V If an overflow occurs, V is set; otherwise V is not affected.

OVC
If overflow mode is disabled and if the operation generates a positive overflow, the
counter is incremented. If overflow mode is disabled and if the operation generates a
negative overflow, the counter is decremented.

OVM If overflow mode bit is set, the ACC value will saturate maximum positive
(0x7FFFFFFF) or maximum negative (0x80000000) if the operation overflowed.

PM

The value in the PM bits sets the shift mode for the output operation from the product
register. If the product shift value is positive (logical left shift operation), then the low
bits are zero filled. If the product shift value is negative (arithmetic right shift operation),
the upper bits are sign extended.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com XMACD P,loc16,*(pma) — C2xLP Source-Compatible Multiply and Accumulate With Data Move

457SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

Repeat This instruction is repeatable. If the operation follows a RPT instruction, then it will be
executed N+1 times. The state of the Z, N, C and OVC flags will reflect the final result.
The V flag will be set if an intermediate overflow occurs. When repeated, the program-
memory address is incremented by 1 during each repetition.

Example ; Calculate FIR filter using 16-bit multiply:
; int16 X[N] ; Data information
; int16 C[N] ; Coefficient information, located in high 64K
; sum = X[N−1] * C[0];
; for(i=1; i < N; i++)
; {
; sum = sum + (X[N−1−i] * C[i]) >> 5;
; X[N−i] = X[N−1−i];
; }
; X[1] = X[0];

MOVL XAR2,#X+N ; XAR2 = point to end of X array
SPM -5 ; Set product shift to ">> 5"
ZAPA ; Zero ACC, P, OVC
XMAC P,*−−XAR2,*(C) ; ACC = 0, P = X[N−1] * C[0]
RPT #N−2 ; Repeat next instruction N−1 times

||XMACD P,*−−XAR2,*(C+1) ; ACC = ACC + P >> 5,
; P = X[N−1−i] * C[i],
; i++

MOV *+XAR2[2],T ; X[1] = X[0]
ADDL ACC, P << PM ; Perform final accumulate
MOVL @sum,ACC ; Store final result into sum

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

XOR ACC,loc16 — Bitwise Exclusive OR www.ti.com

458 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

XOR ACC,loc16 Bitwise Exclusive OR

Syntax Options XOR ACC,loc16

Opcode 1011 0111 LLLL LLLL

Objmode 1

RPT Y

CYC N+1

Operands ACC – Accumulator register

loc16 – Addressing mode (see Chapter 5)

Description Perform a bitwise XOR operation on the ACC register with the zero-extended content of
the location pointed to by the “loc16” address mode. The result is stored in the ACC
register:
ACC = ACC XOR 0:[loc16];

Flags and Modes

Flags and Modes Description

N The load to ACC is tested for a negative condition. If bit 31 of ACC is 1, then the
negative flag bit is set; otherwise it is cleared.

Z The load to ACC is tested for a zero condition. The zero flag bit is set if the operation
generates ACC = 0; otherwise it is cleared

Repeat This operation is repeatable. If the operation follows a RPT instruction, then the XOR
instruction will be executed N+1 times. The state of the Z and N flags will reflect the final
result.

Example ; Calculate the 32-bit value: VarA = VarA XOR 0:VarB
MOVL ACC,@VarA ; Load ACC with contents of VarA
XOR ACC,@VarB ; XOR ACC with contents of 0:VarB
MOVL @VarA,ACC ; Store result in VarA

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com XOR ACC,#16bit << #0..16 — Bitwise Exclusive OR

459SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

XOR ACC,#16bit << #0..16 Bitwise Exclusive OR

Syntax Options

Syntax Options Opcode Objmode RPT CYC
XOR ACC,#16bit <<

#0..15
0011 1110 0010 SHFT
CCCC CCCC CCCC CCCC

1 – 1

XOR ACC,#16bit << #16 0101 0110 0100 1110
CCCC CCCC CCCC CCCC

1 – 1

Operands ACC – Accumulator register

#16bit – 16-bit immediate constant value

#0..16 – Shift value (default is "<<#0" if no value specified)

Description Perform a bitwise XOR operation on the ACC register with the given 16-bit unsigned
constant value left shifted as specified. The value is zero extended and lower order bits
are zero filled before the XOR operation. The result is stored in the ACC register:
ACC = ACC XOR (0:16bit << shift value);

Flags and Modes

Flags and Modes Description

N The load to ACC is tested for a negative condition. If bit 31 of ACC is 1, then the
negative flag bit is set; otherwise it is cleared.

B The load to ACC is tested for a zero condition. The zero flag bit is set if the operation
generates ACC = 0; otherwise it is cleared.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Calculate the 32-bit value: VarA = VarA XOR 0x08000000
MOVL ACC,@VarA ; Load ACC with contents of VarA
XOR ACC,#0x8000 << 12 ; XOR ACC with 0x08000000
MOVL @VarA,ACC ; Store result in VarA

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

XOR AX,loc16 — Bitwise Exclusive OR www.ti.com

460 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

XOR AX,loc16 Bitwise Exclusive OR

Syntax Options XOR AX,loc16

Opcode 0111 000A LLLL LLLL

Objmode X

RPT –

CYC 1

Operands AX – Accumulator high (AH) or accumulator low (AL) register

loc16 – Addressing mode (see Chapter 5)

Description Perform a bitwise exclusive OR operation on the specified AX register (AH or AL) and
the contents of the location pointed to by the “loc16” addressing mode. The result is
stored in the specified AX register:
AX = AX XOR [loc16];

Flags and Modes

Flags and Modes Description

N The load to AX is tested for a negative condition. If bit 15 of AX is 1, then the negative
flag bit is set; otherwise it is cleared.

Z The load to AX is tested for a zero condition. The zero flag bit is set if the operation
generates AX = 0, otherwise it is cleared.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; XOR the contents of VarA and VarB and store in VarC:
MOV AL,@VarA ; Load AL with contents of VarA
XOR AL,@VarB ; XOR AL with contents of VarB
MOV @VarC,AL ; Store result in VarC

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com XOR loc16, AX — Bitwise Exclusive OR

461SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

XOR loc16, AX Bitwise Exclusive OR

Syntax Options XOR loc16, AX

Opcode 1111 001A LLLL LLLL

Objmode X

RPT –

CYC 1

Operands AX – Accumulator high (AH) or accumulator low (AL) register

loc16 – Addressing mode (see Chapter 5)

Description Perform a bitwise exclusive OR operation on the 16-bit contents of location pointed to by
the “loc16” addressing mode and the specified AX register (AH or AL). The result is
stored in the location pointed to by “loc16”:
[loc16] = [loc16] XOR AX;

This instruction performs a read-modify-write operation.

Flags and Modes

Flags and Modes Description

N The load to [loc16] is tested for a negative condition. If bit 15 of [loc16] is 1, then the
negative flag bit is set; otherwise it is cleared.

Z The load to [loc16] is tested for a zero condition. The zero flag bit is set if the operation
generates [loc16] = 0, otherwise it is cleared.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; XOR the contents of VarA with VarB and store in VarB:
MOV AL,@VarA ; Load AL with contents of VarA
XOR @VarB,AL ; VarB = VarB XOR AL

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

XOR loc16,#16bit — Bitwise Exclusive OR www.ti.com

462 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

XOR loc16,#16bit Bitwise Exclusive OR

Syntax Options XOR loc16,#16bit

Opcode 0001 1100 LLLL LLLL
CCCC CCCC CCCC CCCC

Objmode X

RPT –

CYC 1

Operands loc16 – Addressing mode (see Chapter 5)

#16bit – 16-bit immediate constant value

Description Perform a bitwise XOR operation on the content of the location pointed to by the “loc16”
addressing mode and the 16-bit immediate constant value. The result is stored in the
location pointed to by “loc16”:
[loc16] = [loc16] XOR 16bit;

Smart Encoding:

If loc16 = AH or AL and #16bit is an 8-bit number, then the assembler will encode this
instruction as XO”RB AX,#8bt. To override this encoding, use the XORW AX,#16bit
instruction alias.

Flags and Modes

Flags and Modes Description
N After the operation if bit 15 of [loc16] 1, set N; otherwise, clear N.
Z After the operation if [loc16] is zero, set Z; otherwise, clear Z.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Toggle Bits 2 and 14 of VarA:
; VarA = VarA XOR #(1 << 2 | 1 << 14)
XOR @VarA,#(1 << 2 | 1 << 14) ; Toggle bits 2 and 11 of VarA

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com XORB AX, #8bit — Bitwise Exclusive OR 8-bit Value

463SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

XORB AX, #8bit Bitwise Exclusive OR 8-bit Value

Syntax Options XORB AX, #8bit

Opcode 1111 000A CCCC CCCC

Objmode X

RPT –

CYC 1

Operands AX – Accumulator high (AH) or accumulator low (AL) register

#8bit – 8-bit immediate constant value

Description Perform a bitwise exclusive OR operation on the specified AX register and the 8-bit
unsigned immediate constant zero extended. The result is stored in the AX register:
AX = AX XOR 0x00:8bit;

Flags and Modes

Flags and Modes Description

N The load to AX is tested for a negative condition. If bit 15 of AX is 1, then the negative
flag bit is set; otherwise it is cleared.

Z The load to AX is tested for a zero condition. The zero flag bit is set if the operation
generates [loc16] = 0, otherwise it is cleared.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Toggle bit 7 of VarA and store result in VarB:
MOV AL,@VarA ; Load AL with contents of VarA
XORB AL,#0x80 ; XOR contents of AL with 0x0080
MOV @VarB,AL ; Store result in VarB

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

XPREAD loc16, *(pma) — C2xLP Source-Compatible Program Read www.ti.com

464 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

XPREAD loc16, *(pma) C2xLP Source-Compatible Program Read

Syntax Options XPREAD loc16, *(pma)

Opcode 1010 1100 MMMM MMMM
LLLL LLLL LLLL LLLL

Objmode 1

RPT Y

CYC N+2

Operands loc16 – Addressing mode (see Chapter 5)

*(pma) – Immediate program-memory address, can only access high 64K of program
space range (0x3F0000 to 0x3FFFFF)

Description Load the 16-bit data-memory location pointed to by the “loc16” addressing mode with the
16-bit content of the program-memory location pointed to by ”*(pma)” addressing mode:
[loc16] = Prog[0x3F:pma];

The C28x forces the upper 6 bits of the program memory address, specified by
the ”*(pma)” addressing mode, to 0x3F when using this form of the XPREAD instruction.
This limits the program memory address to the high 64K of program address space
(0x3F0000 to 0x3FFFFF). On the C28x devices, memory blocks are mapped to both
program and data space (unified memory), hence the ”*(pma)” addressing mode can be
used to access data space variables that fall within its address range.

Flags and Modes

Flags and Modes Description
N If (loc16 = @AX) and bit 15 of AX is 1, then N is set; otherwise N is cleared.
Z If (loc16 = @AX) and the value of AX is zero, then Z is set; otherwise Z is cleared.

Repeat This instruction is repeatable. If the operation follows a RPT instruction, then it will be
executed N+1 times. When repeated, the ”*(pma)” program-memory address is copied to
an internal shadow register and the address is post-incremented by 1 during each
repetition.

Example ; Copy the contents of Array1 to Array2:
; int16 Array1[N]; // Located in high 64K of program space
; int16 Array2[N]; // Located in data space
; for(i=0; i < N; i++)
; Array2[i] = Array1[i];

MOVL XAR2,#Array2 ; XAR2 = pointer to Array2
RPT #(N−1) ; Repeat next instruction N times

||XPREAD *XAR2++,*(Array1) ; Array2[i] = Array1[i],
; i++

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com XPREAD loc16, *AL — C2xLP Source-Compatible Program Read

465SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

XPREAD loc16, *AL C2xLP Source-Compatible Program Read

Syntax Options XPREAD loc16, *AL

Opcode 0101 0110 0011 1100
0000 0000 LLLL LLLL

Objmode 1

RPT Y

CYC N+4

Operands loc16 – Addressing mode (see Chapter 5)

*AL – Indirect program-memory addressing using register AL, can only access high 64K
of program space range (0x3F0000 to 0x3FFFFF)

Description Load the 16-bit data-memory location pointed to by the “loc16” addressing mode with the
16-bit content of the program-memory location pointed to by ”*AL” addressing mode:
[loc16] = Prog[0x3F:AL];

The C28x forces the upper 6 bits of the program memory address, specified by the ”*AL”
addressing mode, to 0x3F when using this form of the XPREAD instruction. This limits
the program memory address to the high 64K of program address space (0x3F0000 to
0x3FFFFF). On the C28x devices, memory blocks are mapped to both program and data
space (unified memory), hence the ”*AL” addressing mode can be used to access data
space variables that fall within its address range.

Flags and Modes

Flags and Modes Description
N If (loc16 = @AX) and bit 15 of AX is 1, then N is set; otherwise N is cleared.
Z If (loc16 = @AX) and the value of AX is zero, then Z is set; otherwise Z is cleared.

Repeat This instruction is repeatable. If the operation follows a RPT instruction, then it will be
executed N+1 times. When repeated, the ”*AL” program-memory address is copied to an
internal shadow register and the address is post-incremented by 1 during each
repetition.

Example ; Copy the contents of Array1 to Array2:
; int16 Array1[N]; // Located in high 64K of program space
; int16 Array2[N]; // Located in data space
; for(i=0; i < N; i++)
; Array2[i] = Array1[i];

MOV @AL,#Array1 ; AL = pointer to Array1
MOVL XAR2,#Array2 ; XAR2 = pointer to Array2
RPT #(N−1) ; Repeat next instruction N times

||XPREAD *XAR2++,*AL ; Array2[i] = Array1[i],
; i++

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

XPWRITE *A,loc16 — C2xLP Source-Compatible Program Write www.ti.com

466 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

XPWRITE *A,loc16 C2xLP Source-Compatible Program Write

Syntax Options XPWRITE *A,loc16

Opcode 0101 0110 0011 1101
0000 0000 LLLL LLLL

Objmode 1

RPT Y

CYC N+4

Operands loc16 – Addressing mode (see Chapter 5)

*AL – Indirect program-memory addressing using register AL, can only access high 64K
of program space range (0x3F0000 to 0x3FFFFF)

Description Load the 16-bit program-memory location pointed to by ”*AL” addressing mode with the
16-bit content of the location pointed to by the “loc16” addressing mode:
Prog[0x3F:AL] = [loc16];

The C28x forces the upper 6 bits of the program memory address, specified by the ”*AL”
addressing mode, to 0x3F when using this form of the XPWRITE instruction. This limits
the program memory address to the high 64K of program address space (0x3F0000 to
0x3FFFFF). On the C28x devices, memory blocks are mapped to both program and data
space (unified memory), hence the ”*AL” addressing mode can be used to access data
space variables that fall within its address range.

Flags and Modes None

Repeat This instruction is repeatable. If the operation follows a RPT instruction, then it will be
executed N+1 times. When repeated, the ”*AL” program-memory address is copied to an
internal shadow register and the address is post-incremented by 1 during each
repetition.

Example ; Copy the contents of Array1 to Array2:
; int16 Array1[N]; // Located in data space
; int16 Array2[N]; // Located in high 64K of program space
; for(i=0; i < N; i++)
; Array2[i] = Array1[i];

MOVL XAR2,#Array1 ; XAR2 = pointer to Array1
MOV @AL,#Array2 ; AL = pointer to Array2
RPT #(N−1) ; Repeat next instruction N times

||XPWRITE *AL,*XAR2++ ; Array2[i] = Array1[i],
; i++

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com XRET — C2xLP Source-Compatible Return

467SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

XRET C2xLP Source-Compatible Return

Syntax Options XRET

Opcode 0101 0110 1111 1111

Objmode 1

RPT –

CYC 7

Note: XRET is an alias for RETC unconditional.

Operands None

Description Return conditionally. If the specified condition is true, a 16-bit value is popped from the
stack and stored into the low 16 bits of the PC while the upper 6 bits of the PC are
forced to 0x3F; Otherwise, execution continues with the instruction following the XRETC
operation:
if(COND = true)

SP = SP − 1;
PC = 0x3F:[SP];

Note: This instruction can transfer program control only to a location located in the upper
64K range of program space (0x3F0000 to 0x3FFFFF). To return from a call made by
XCALL, the XRET instruction must be used.

Flags and Modes

Flags and Modes Description
V If the V flag is tested by the condition, then V is cleared.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Return from FuncA if VarA does not equal zero, else set VarB
; to zero and return. This example only works for code located
; in upper 64K of program space:

XCALL FuncA ; Call FuncA
.

FuncA: ; Function A:
.
.
.
.
MOV AL,@VarA ; Load AL with contents of VarA
XRET NEQ ; Return if VarA does not equal 0
MOV @VarA,#0 ; Store 0 into VarB
XRETC UNC ; Return unconditionally

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

XRETC COND — C2xLP Source-Compatible Conditional Return www.ti.com

468 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

XRETC COND C2xLP Source-Compatible Conditional Return

Syntax Options XRETC COND

Opcode 0101 0110 1111 COND

Objmode 1

RPT –

CYC 4/7

Operands COND – Conditional codes:

COND Syntax Description Flags Tested
0000 NEQ Not Equal To Z = 0
0001 EQ Equal To Z = 1
0010 GT Greater Than Z = 0 AND N = 0
0011 GEQ Greater Than or Equal To N = 0
0100 LT Less Than N = 1
0101 LEQ Less Than or Equal To Z = 1 OR N = 1
0110 HI Higher C = 1 AND Z = 0
0111 HIS, C Higher or Same, Carry Set C = 1
1000 LO, NC Lower, Carry Clear C = 0
1001 LOS Lower or Same C = 0 OR Z = 1
1010 NOV No Overflow V = 0
1011 OV Overflow V = 1
1100 NTC Test Bit Not Set TC = 0
1101 TC Test Bit Set TC = 1
1110 NBIO BIO Input Equal To Zero BIO = 0
1111 UNC Unconditional –

Description Return conditionally. If the specified condition is true, a 16-bit value is popped from the
stack and stored into the low 16 bits of the PC while the upper 6 bits of the PC are
forced to 0x3F; Otherwise, execution continues with the instruction following the XRETC
operation:
if(COND = true)

{
SP = SP − 1;
PC = 0x3F:[SP];
}

else
PC = PC + 1;

Note: This instruction can only transfer program control to a location located in the upper
64K range of program space (0x3F0000 to 0x3FFFFF). To return from a call made by
XCALL, the XRETC instruction must be used. The cycle times for this operation are:

If (COND = true) then the instruction takes 7 cycles.

If (COND = false) then the instruction takes 4 cycles.

Flags and Modes

Flags and Modes Description
V If the V flag is tested by the condition, then V is cleared.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com XRETC COND — C2xLP Source-Compatible Conditional Return

469SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Return from FuncA if VarA does not equal zero, else set VarB
; to zero and return. This example only works for code located
; in upper 64K of program space:

XCALL FuncA ; Call FuncA
.

FuncA: ; Function A:
.
.
.
.
MOV AL,@VarA ; Load AL with contents of VarA
XRETC NEQ ; Return if VarA does not equal 0
MOV @VarA,#0 ; Store 0 into VarB
XRETC UNC ; Return unconditionally

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

ZALR ACC,loc16 — Zero AL and Load AH With Rounding www.ti.com

470 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

ZALR ACC,loc16 Zero AL and Load AH With Rounding

Syntax Options ZALR ACC,loc16

Opcode 0101 0110 0001 0011
0000 0000 LLLL LLLL

Objmode 1

RPT –

CYC 1

Operands ACC – Accumulator register

loc16 – Addressing mode (see Chapter 5)

Description Load low accumulator (AL) with the value 0x8000 and load high accumulator (AH) with
the 16-bit contents pointed to by the ”loc16” addressing mode.
AH = [loc16];
AL = 0x8000;

Flags and Modes

Flags and Modes Description

N The load to ACC is tested for a negative condition. If bit 31 of ACC is 1, then the
negative flag bit is set; otherwise it is cleared.

Z The load to ACC is tested for a zero condition. The zero flag bit is set if the operation
generates ACC = 0; otherwise it is cleared.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Calculate: Y = round(M*X << 1 + B << 16)
; Y, M, X, B are all Q15 numbers
SPM +1 ; Set product shift mode to << 1
MOV T,@M ; T = M (Q15)
MPY P,T,@X ; P = M * X (Q30)
ZALR ACC,@B ; ACC = B << 16 + 0x8000 (Q31)
ADDL ACC,P << PM ; Add P to ACC with shift (Q31)
MOV @Y,AH ; Store AH into Y (Q15)

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com ZAP OVC — Clear Overflow Counter

471SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

ZAP OVC Clear Overflow Counter

Syntax Options ZAP OVC

Opcode 0101 0110 0101 1100

Objmode 1

RPT –

CYC 1

Operands OVC – Overflow counter bits in Status Register 0 (ST0)

Description Clear the overflow counter (OVC) bits in Status Register 0 (ST0).

Flags and Modes

Flags and Modes Description
OVC The 6-bit overflow counter bits (OVC) are cleared.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Calculate: VarD = sat(VarA + VarB + VarC)
ZAP OVC ; Zero overflow counter
MOVL ACC,@VarA ; ACC = VarA
ADDL ACC,@VarB ; ACC = ACC + VarB
ADDL ACC,@VarC ; ACC = ACC + VarC
SAT ACC ; Saturate if OVC != 0
MOVL @VarD,ACC ; Store saturated result into VarD

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

ZAPA — Zero Accumulator and P Register www.ti.com

472 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

ZAPA Zero Accumulator and P Register

Syntax Options ZAPA

Opcode 0101 0110 0011 0011

Objmode 1

RPT –

CYC 1

Operands None

Description Zero the ACC and P registers as well as the overflow counter (OVC):
ACC = 0;
P = 0;
OVC = 0;

Flags and Modes

Flags and Modes Description
N The N bit is set.
Z The Z bit is cleared.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Calculate sum of product using 32-bit multiply and retain
; high result:
; int32 X[N]; // Data information
; int32 C[N]; // Coefficient information (located in low 4M)
; int32 sum = 0;
; for(i=0; i < N; i++)
; sum = sum + ((X[i] * C[i]) >> 32) >> 5;

MOVL XAR2,#X ; XAR2 = pointer to X
MOVL XAR7,#C ; XAR7 = pointer to C
SPM -5 ; Set product shift to ">> 5"
ZAPA ; Zero ACC, P, OVC
RPT #(N−1) ; Repeat next instruction N times

||QMACL P,*XAR2++,*XAR7++ ; ACC = ACC + P >> 5,
; P = (X[i] * C[i]) >> 32
; i++

ADDL ACC, P << PM ; Perform final accumulate
MOVL @sum,ACC ; Store final result into sum

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

473SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

Emulation Features

Chapter 7
SPRU430F–August 2001–Revised April 2015

Emulation Features

The CPU in the C28x contains hardware extensions for advanced emulation features that can assist you
in the development of your application system (software and hardware). This chapter describes the
emulation features that are available on all C28x devices using only the JTAG port (with TI extensions).

For more information about instructions shown in examples in this chapter, see Chapter 6, Assembly
Language Instructions.

Topic ... Page

7.1 Overview of Emulation Features... 474
7.2 Debug Interface .. 474
7.3 Debug Terminology .. 476
7.4 Execution Control Modes .. 476
7.5 Aborting Interrupts With the ABORTI Instruction.. 480
7.6 DT-DMA Mechanism.. 480
7.7 Analysis Breakpoints, Watchpoints, and Counter(s) ... 482
7.8 Data Logging ... 484
7.9 Sharing Analysis Resources .. 488
7.10 Diagnostics and Recovery ... 489

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

Interface a Target

TMS 1 2 TRST

TDI 3 4 GND

PD(VCC) 5 6 No pin (key)

TDO 7 8 GND

TCK_RET 9 10 GND

TCK 11 12 GND

EMU0 13 14 EMU1

Header dimensions:
Pin-to-pin spacing: 0.100 in. (X,Y)
Pin width: 0.025- in. square post

Overview of Emulation Features www.ti.com

474 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

Emulation Features

7.1 Overview of Emulation Features
The CPU’s hardware extensions for advanced emulation features provide simple, inexpensive, and speed-
independent access to the CPU for sophisticated debugging and economical system development, without
requiring the costly cabling and access to processor pins required by traditional emulator systems. It
provides this access without intruding on system resources.

The on-chip development interface provides:
• Minimally intrusive access to internal and external memory
• Minimally intrusive access to CPU and peripheral registers
• Control of the execution of background code while continuing to service time-critical interrupts

– Break on a software breakpoint instruction (instruction replacement)
– Break on a specified program or data access without requiring instruction replacement

(accomplished using bus comparators)
– Break on external attention request from debug host or additional hardware
– Break after the execution of a single instruction (single-stepping)
– Control over the execution of code from device power up

• Nonintrusive determination of device status
– Detection of a system reset, emulation/test-logic reset, or power-down occurrence
– Detection of the absence of a system clock or memory-ready signal
– Determination of whether global interrupts are enabled
– Determination of why debug accesses might be blocked

• Rapid transfer of memory contents between the device and a host (data logging)
• A cycle counter for performance benchmarking. With a 100-MHz cycle clock, the counter can

benchmark actions up to 3 hours in duration.

7.2 Debug Interface
The target-level TI debug interface uses the five standard IEEE 1149.1 (JTAG) signals (TRST, TCK, TMS,
TDI, and TDO) and the two TI extensions (EMU0 and EMU1). Table D-3 shows the 14-pin JTAG header
that is used to interface the target to a scan controller, and Table 7-1 defines the pins.

As shown in Table 7-1, the header requires more than the five JTAG signals and the TI extensions. It also
requires a test clock return signal (TCK_RET), the target supply (VCC) and ground (GND). TCK_RET is a
test clock out of the scan controller and into the target system. The target system uses TCK_RET if it does
not supply its own test clock (in which case TCK would simply not be used). In many target systems,
TCK_RET is simply connected to TCK and used as the test clock.

Figure 7-1. JTAG Header to Interface a Target to the Scan Controller

these paragraphs are for spacing only, when page break is applied to the GenTable it causes the table not
to indent like the rest of the tables. fc

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com Debug Interface

475SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

Emulation Features

(1) I = input; O = output
(2) Do not use pullup resistors on TRST: it has an internal pulldown device. In a low-noise environment, TRST can be left floating. In

a high-noise environment, an additional pulldown resistor may be needed. (The size of this resistor should be based on electrical
current considerations.)

Table 7-1. 14-Pin Header Signal Descriptions

Signal Description Emulator
State (1)

Target
State (1)

EMU0 Emulation pin 0 I I/O
EMU1 Emulation pin 1 I I/O
GND Ground

PD (VCC) Presence detect. Indicates that the emulation cable is connected and that the target is
powered up. PD should be tied to VCC in the target system. I O

TCK Test clock. TCK is a clock source from the emulation cable pod. This signal can be used to
drive the system test clock. O I

TCK_RET Test clock return. Test clock input to the emulator. Can be a buffered or unbuffered version
of TCK. I O

TDI Test data input O I O I
TDO Test data output I O
TMS Test mode select O I
TRST (2) Test reset O I

The state of the TRST, EMU0, and EMU1 signals at device power up determine the operating mode of the
device. The operating mode takes effect as soon as the device has sufficient power to operate. Should the
TRST signal rise, the EMU0 and EMU1 signals are sampled on its rising edge and the\at operating mode
is latched. Some of these modes are reserved for test purposes, but those that can be of use in a target
system are detailed in Table 7-2. A target system is not required to support any mode other than normal
mode.

Table 7-2. Selecting Device Operating Modes By Using TRST, EMU0, and EMU1

TRST EMU1 EMU0 Device Operating Mode JTAG Cable
Active?

Low Low Low Slave mode. Disables the CPU and memory portions of the C28x. Another
processor treats the C28x as a peripheral.

No

Low Low High Reserved for testing No
Low High Low Wait-in-reset mode. Prolongs the device’s reset until released by external

means. This allows a C28x to power up in reset, provided external hardware
holds EMU0 low only while power-up reset is active.

Yes

Low High High Normal mode with emulation disabled. This is the setting that should be
used on target systems when a scan controller (such as the XDS510) is not
attached. TRST will be pulled down and EMU1 and EMU0 pulled up within
the C28x; this is the default mode.

No

High Low or
High

Low or High Normal mode with emulation enabled. This is the setting to use on target
systems when a scan controller is attached (the scan controller will control
TRST). TRST should not be high during device power-up.

Yes

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

Debug Terminology www.ti.com

476 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

Emulation Features

7.3 Debug Terminology
The following definitions will help you to understand the information in the rest of this chapter:
• Background code. The body of code that can be halted during debugging because it is not time-

critical.
• Foreground code. The code of time-critical interrupt service routines, which are executed even when

background code is halted.
• Debug-halt state. The state in which the device does not execute back-ground code.
• Time-critical interrupt. An interrupt that must be serviced even when background code is halted. For

example, a time-critical interrupt might service a motor controller or a high-speed timer.
• Debug event. An action, such as the decoding of a software breakpoint instruction, the occurrence of

an analysis breakpoint/watchpoint, or a request from a host processor that can result in special debug
behavior, such as halting the device or pulsing one of the signals EMU0 or EMU1.

• Break event. A debug event that causes the device to enter the debug-halt state.

7.4 Execution Control Modes
The C28x supports two debug execution control modes:
• Stop mode
• Real-time mode

Stop mode provides complete control of program execution, allowing for the disabling of all interrupts.
Real-time mode allows time-critical interrupt service routines to be performed while execution of other
code is halted. Both execution modes can suspend program execution at break events, such as
occurrences of software breakpoint instructions or specified program-space or data-space accesses.

7.4.1 Stop Mode
Stop mode causes break events, such as software breakpoints and analysis watchpoints, to suspend
program execution at the next interrupt boundary (which is usually identical to the next instruction
boundary). When execution is suspended, all interrupts (including NMI and RS) are ignored until the CPU
receives a directive to run code again. In stop mode, the CPU can operate in the following execution
states:
• Debug-halt state. This state is entered through a break event, such as the decoding of a software

breakpoint instruction or the occurrence of an analysis breakpoint/watchpoint. This state can also be
entered by a request from the host processor. In the stop mode debug-halt state, the CPU is halted.
You can place the device into one of the other two states by giving the appropriate command to the
debugger.
The CPU cannot service any interrupts, including NMI and RS (reset). When multiple instances of the
same interrupt occurs without the first instance being serviced, the later instances are lost.

• Single-instruction state. This state is entered when you tell the debugger to execute a single
instruction by using a RUN 1 command or a STEP 1 command. The CPU executes the single
instruction pointed to by the PC and then returns to the debug-halt state (it executes from one interrupt
boundary to the next). The CPU is only in the single-instruction state until that single instruction is
done.
If an interrupt occurs in this state, the command used to enter this state determines whether that
interrupt can be serviced. If a RUN 1 command was used, the CPU can service the interrupt. If a STEP
1 command was used, the CPU cannot, even if the interrupt is NMI or RS.

• Run state. This state is entered when you use a run command from the debugger interface. The CPU
executes instructions until a debugger command or a debug event returns the CPU to the debug-halt
state.
The CPU can service all interrupts in this state. When an interrupt occurs simultaneously with a debug
event, the debug event has priority; however, if interrupt processing began before the debug event
occurred, the debug event cannot be processed until the interrupt service routine begins.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

Single-instruction state Run state

Cannot observe CPU

Can service an interrupt

if RUN 1 used†

Cannot observe CPU

Can service interrupts

Debugger command

After executing

one instruction

Debugger command

Debugger command,

breakpoint, or analysis stop

Debug-halt state

Can observe CPU

Cannot service interrupts

If you use a RUN 1 command to execute a single instruction, an interrupt can be serviced in the single-instruction state. If you use

a STEP 1 command for the same purpose, an interrupt cannot be serviced.

†

www.ti.com Execution Control Modes

477SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

Emulation Features

Figure 7-2 illustrates the relationship among the three states. Notice that the C28x cannot pass directly
between the single-instruction and run states. Notice also that the CPU can be observed only in the
debug-halt state. In practical terms, this means the contents of CPU registers and memory are not
updated in the debugger display in the single-instruction state or the run state. Maskable interrupts
occurring in any state are latched in the interrupt flag register (IFR).

Figure 7-2. Stop Mode Execution States

7.4.2 Real-Time Mode
Real-time mode provides for the debugging of code that interacts with interrupts that must not be disabled.
Real-time mode allows you to suspend back-ground code at break events while continuing to execute
time-critical interrupt service routines (also referred to as foreground code). In real-time mode, the CPU
can operate in the following execution states:
• Debug-halt state. This state is entered through a break event such as the decoding of a software

breakpoint instruction or the occurrence of an analysis breakpoint/watchpoint. This state can also be
enter by a request from the host processor. You can place the device into one of the other two states
by giving the appropriate command to the debugger.
In this state, only time-critical interrupts can be serviced. No other code can be executed. Maskable
interrupts are considered time-critical if they are enabled in the debug interrupt enable register
(DBGIER). If they are also enabled in the interrupt enable register (IER), they are serviced. The
interrupt global mask bit (INTM) is ignored. NMI and RS are also considered time-critical, and are
always serviced once requested. It is possible for multiple interrupts to occur and be serviced while the
device is in the debug-halt state.
Suspending execution adds only one cycle to interrupt latency. When the C28x returns from a time-
critical ISR, it reenters the debug-halt state.
If a CPU reset occurs (initiated by RS), the device runs the corresponding interrupt service routine until
that routine clears the debug enable mask bit (DBGM) in status register ST1. When a reset occurs,
DBGM is set, disabling debug events. To reenable debug events, the interrupt service routine must
clear DBGM. Only then will the outstanding emulation-suspend condition be recognized.

NOTE: Should a time-critical interrupt occur in real-time mode at the precise moment that the
debugger receives a RUN command, the time-critical interrupt will be taken and serviced in
its entirety before the CPU changes states.

• Single-instruction state. This state is entered when you tell the de-bugger to execute a single
instruction by using a RUN 1 command or a STEP 1 command. The CPU executes the single
instruction pointed to by the PC and then returns to the debug-halt state (it executes from one interrupt
boundary to the next).

• If an interrupt occurs in this state, the command used to enter this state deter-mines whether that
interrupt can be serviced. If a RUN 1 command was used, the CPU can service the interrupt. If a STEP
1 command was used, the CPU cannot, even if the interrupt is NMI or RS. In real-time mode, if the
DBGM bit is 1 (debug events are disabled), a RUN 1 or STEP 1 command forces continuous execution

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

Single-instruction state Run state

Cannot observe CPU

Can service an interrupt

if RUN 1 used†

Cannot observe CPU

Can service interrupts

Debugger command

After executing

one instruction

Debugger command

Debugger command,

breakpoint, or analysis stop

Debug-halt state

Can observe CPU

Can service time-critical interrupts

If you use a RUN 1 command to execute a single instruction, an interrupt can be serviced in the single-instruction state. If you use

a STEP 1 command for the same purpose, an interrupt cannot be serviced.

†

(including and)NMI RS

Execution Control Modes www.ti.com

478 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

Emulation Features

of instructions until DBGM is cleared.

NOTE: If you single-step an instruction in real-time emulation mode and that instruction sets DBGM,
the CPU continues to execute instructions until DBGM is cleared. If you want to single-step
through a non-time-critical interrupt service routine (ISR), you must initiate a CLRC DBGM
instruction at the beginning of the ISR. Once you clear DBGM, you can single-step or place
breakpoints.

• Run state. This state is entered when you use a run command from the debugger interface. The CPU
executes instructions until a debugger command or a debug event returns the CPU to the debug-halt
state.
The CPU can service all interrupts in this state. When an interrupt occurs simultaneously with a debug
event, the debug event has priority; however, if interrupt processing began before the debug event
occurred, the debug event cannot be processed until the interrupt service routine begins.

Figure 7-3 illustrates the relationship among the three states. Notice that the C28x cannot pass directly
between the single-instruction and run states. Notice also that the CPU can be observed in the debug-halt
state and in the run state. In the single-instruction state, the contents of CPU registers and memory are
not updated in the debugger display. In the debug-halt and run states, register and memory values are
updated unless DBGM = 1. Maskable interrupts occurring in any state are latched in the interrupt flag
register (IFR).

Figure 7-3. Real-time Mode Execution States

Caution about breakpoints within time-critical interrupt service routines
Do not use breakpoints within time-critical interrupt service routines. They will cause the device to enter
the debug-halt state, just as if the breakpoint were located in normal code. Once in the debug-halt state,
the CPU services requests for RS, NMI, and those interrupts enabled in the DBGIER and the IER.

After approving a maskable interrupt, the CPU disables the interrupt in the IER. This prevents subsequent
occurrences of the interrupt from being serviced until the IER is restored by a return from interrupt (IRET)
instruction or until the interrupt is deliberately re-enabled in the interrupt service routine (ISR). Do not
reenable that interrupt’s IER bit while using breakpoints within the ISR. If you do so and the interrupt is
triggered again, the CPU performs a new context save and restarts the interrupt service routine.

7.4.3 Summary of Stop Mode and Real-Time Mode
Figure 7-4 is a graphical summary of the differences between the execution states of stop mode and real-
time mode. Table 7-3 is a summary of how interrupts are handled in each of the states of stop mode and
real-time mode.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

Single-instruction state Run state

Cannot observe CPU

Can service an interrupt
if RUN 1 used†

Cannot observe CPU

Can service interrupts

After executing
one instruction

Debugger command

Debugger command

Debugger command,
breakpoint, or analysis stop

Debug-halt state

Can observe CPU

Cannot service interrupts

Stop mode

Real-time mode

Debugger command

Debugger command

Debug-halt state

Can observe CPU

Can service time-critical interrupts

(including NMI and RS)

Debugger command
Debugger command

Debugger command,
breakpoint, or analysis stop

Single-instruction state

Cannot observe CPU

Can service an interrupt
if RUN 1 used†

After executing
one instruction

Run state

Can observe CPU

Can service interrupts

If you use a RUN 1 debugger command to execute a single instruction, an interrupt can be serviced in the single-instruction state.

If you use a STEP 1 debugger command for the same purpose, an interrupt cannot be serviced.

†

www.ti.com Execution Control Modes

479SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

Emulation Features

Figure 7-4. Stop Mode Versus Real-Time Mode

Table 7-3. Interrupt Handling Information By Mode and State

Mode State If This Interrupt
Occurs ...

The Interrupt Is ...

Stop Debug-halt RS Not serviced
NMI Not serviced
Maskable interrupt Latched in IFR but not serviced

Single-instruction RS If running: Serviced
If stepping: Not serviced

NMI If running: Serviced
If stepping: Not serviced

Maskable interrupt If running: Serviced
If stepping: Latched in IFR but not serviced

Run RS Serviced
NMI Serviced
Maskable interrupt Serviced

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

Aborting Interrupts With the ABORTI Instruction www.ti.com

480 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

Emulation Features

Table 7-3. Interrupt Handling Information By Mode and State (continued)
Mode State If This Interrupt

Occurs ...
The Interrupt Is ...

Real-time Debug-halt RS Serviced
NMI Serviced
Maskable interrupt If time-critical: Serviced.

If not time-critical: Latched in IFR but not serviced
Single-instruction RS If running: Serviced

If stepping: Not serviced
NMI If running: Serviced

If stepping: Not serviced
Maskable interrupt If running: Serviced

If stepping: Latched in IFR but not serviced
Run RS Serviced

NMI Serviced
Maskable interrupt Serviced

NOTE: Unless you are using a real-time operating system, do not enable the real-time operating
system interrupt (RTOSINT). RTOSINT is completely disabled when bit 15 in the IER is 0
and bit 15 in the DBGIER is 0.

7.5 Aborting Interrupts With the ABORTI Instruction
Generally, a program uses the IRET instruction to return from an interrupt. The IRET instruction restores
all the values that were saved to the stack during the automatic context save. In restoring status register
ST1 and the debug status register (DBGSTAT), IRET restores the debug context that was present before
the interrupt.

In some target applications, you might have interrupts that must not be returned from by the IRET
instruction. Not using IRET can cause a problem for the emulation logic, because the emulation logic
assumes the original debug context will be restored. The abort interrupt (ABORTI) instruction is provided
as a means to indicate that the debug context will not be restored and the debug logic needs to be reset
to its default state. As part of its operation, the ABORTI instruction:
• Sets the DBGM bit in ST1. This disables debug events.
• Modifies select bits in DBGSTAT. The effect is a resetting of the debug context. If the CPU was in the

debug-halt state before the interrupt occurred, the CPU does not halt when the interrupt is aborted.
The CPU automatically switches to the run state. If you want to abort an interrupt, but keep the CPU
halted, insert a breakpoint after the ABORTI instruction.

The ABORTI instruction does not modify the DBGIER, the IER, the INTM bit, or any analysis registers (for
example, registers used for breakpoints, watch-points, and data logging).

7.6 DT-DMA Mechanism
The debug-and-test direct memory access (DT-DMA) mechanism provides access to memory, CPU
registers, and memory-mapped registers (such as emulation registers and peripheral registers) without
direct CPU intervention. DT-DMAs intrude on CPU time; however, you can block them by setting the
debug enable mask bit (DBGM) in ST1.

Because the DT-DMA mechanism uses the same memory-access mechanism as the CPU, any read or
write access that the CPU can perform in a single operation can be done by a DT-DMA. The DT-DMA
mechanism presents an address (and data, in the case of a write) to the CPU, which performs the
operation during an unused bus cycle (referred to as a hole). Once the CPU has obtained the desired
data, it is presented back to the DT-DMA mechanism. The DT-DMA mechanism can operate in the
following modes:

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

DT-DMA mechanism
requests access

Request

polite or rude?

Rude

Polite

No

DBGM = 0?

Access denied Yes

Mode

nonpreemptive or

preemptive?

Nonpreemptive

Preemptive

Force a hole

Wait for hole

Access performed

www.ti.com DT-DMA Mechanism

481SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

Emulation Features

• Nonpreemptive mode. The DT-DMA mechanism waits for a hole on the desired memory buses.
During the hole, the DT-DMA mechanism uses them to perform its read or write operation. These
holes occur naturally while the CPU is waiting for newly fetched instructions, such as during a branch.

• Preemptive mode. In preemptive mode, the DT-DMA mechanism forces the creation of a hole and
performs the access.

DT-DMAs can be polite or rude.
• Polite accesses. Polite DT-DMAs require that DBGM = 0.
• Rude accesses. Rude DT-DMAs ignore DBGM.

Figure 7-5 summarizes the process for handling a request from the DT-DMA mechanism.

Figure 7-5. Process for Handling a DT-DMA Request

Some key concepts of the DT-DMA mechanism are:
• Even if DBGM = 0, when the mechanism is in nonpreemptive mode, it must wait for a hole. This

minimizes the intrusiveness of the debug access on a system.
• Real-time-mode accesses are typically polite (although there may be reasons, such as error recovery,

to perform rude accesses in real-time mode). If the DBGM bit is permanently set to 1 due to a coding
bug but you need to regain debug control, use rude accesses, which ignore the state of DBGM.

• In stop mode, DBGM is ignored, and the DT-DMA mode is set to preemptive. This ensures that you
can gain visibility to and control of your system if an otherwise unrecoverable error occurs (for
example, if ST1 is changed to an undesired value due to stack corruption).

• The DT-DMA mechanism does not cause a program-flow discontinuity. No interrupt-like save/restore is
performed. When a preemptive DT-DMA forces a hole, no program address counters increment during
that cycle.

• A DT-DMA request awakens the device from the idle state (initiated by the IDLE instruction). However,
unlike returning from an interrupt, the CPU returns to the idle state upon completion of the DT-DMA.

NOTE: The information shown on the debugger screen is gathered at different times from the target;
therefore, it does not represent a snapshot of the target state, but rather a composite. It also
takes the host time to process and display the data. The data does not correspond to the
current target state, but rather, the target state as of a few milliseconds ago.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

Analysis Breakpoints, Watchpoints, and Counter(s) www.ti.com

482 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

Emulation Features

7.7 Analysis Breakpoints, Watchpoints, and Counter(s)
All C28x devices include two analysis units AU1 and AU2. Analysis Unit 1 (AU1) counts events or
monitors address buses. Analysis Unit 2 (AU2) monitors address and data buses. You can configure
these two analysis units as analysis breakpoints or watchpoints. In addition, AU1 can be configured as a
benchmark counter or event counter.

This section describes thee types of analysis features: analysis breakpoints, watchpoints, and counters.
Typical analysis unit configurations are presented in Section 7.7.4. Data logging is described in Section
7.8.

7.7.1 Analysis Breakpoints
An analysis breakpoint is sometimes called a hardware breakpoint, because it acts like a software
breakpoint instruction (in this case, the ESTOP0 instruction) but does not require a modification to the
application software. An analysis breakpoint triggers a debug event when an instruction at a breakpoint
address would have entered the decode 2 phase of the pipeline; this halts the CPU before the instruction
is executed. A bus comparator watches the program address bus, comparing its contents against a
reference address and a bit mask value.

Consider the following example. If a hardware breakpoint is set at T0, the CPU stops after returning from
the T1 subroutine, with the instruction counter (IC) pointing to T0.

NOP
CALL T1

T0: MOVB AL, #0x00
SB TIMINGS, UNC

T1: NOP
RET

T2: NOP

Hardware breakpoints allow masking of address bits. For example, a hardware breakpoint could be placed
on the address range 00 020016−00 02FF16 by specifying the following mask address, where the eight
LSBs are don’t cares:

00 0000 0000 0010 XXXX XXXX2

7.7.2 Watchpoints
A hardware watchpoint triggers a debug event when either an address or an address and data match a
compare value. The address portion is compared against a reference address and bit mask, and the data
portion is compared against a reference data value and a bit mask.

When comparing two addresses, you can set two watchpoints. When comparing an address and a data
value, you can set only one watchpoint. When performing a read watchpoint, the address is available a
few cycles earlier than the data; the watchpoint logic accounts for this.

The point where execution stops depends on whether the watchpoint was a read or write watchpoint, and
whether it was an address or an address/data read watchpoint. In the following example, a read address
watchpoint occurs when the address X is accessed, and the CPU stops with the instruction counter (IC)
pointing three instructions after that point:
MOV AR4,#X
MOV AL,*+AR4[0] ; Data read nop
nop
nop ; The IC will point here

For a read watchpoint that requires both an address and data match, the CPU stops with the IC pointing
six instructions after that point:
MOV AR4,#X
MOV AL,*+AR4[0] ; Data read nop
nop
nop
nop
nop
nop ; The IC will point here

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com Analysis Breakpoints, Watchpoints, and Counter(s)

483SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

Emulation Features

In the following example, a write address watchpoint occurs when the address Y is accessed, and the
CPU stops with the IC pointing six instructions after that point:
MOV AR4,#Y
MOV *+AR4[0],AL ; Data write
nop
nop
nop
nop
nop
nop ; The IC will point here

7.7.3 Benchmark Counter/Event Counter(s)
The 40-bit performance counter on the C28x can be used as a benchmark counter to increment every
CPU clock cycle (it can be configured not to count when the CPU is in the debug-halt state). Wait states
affect the counter. Wait states in the read 1 and write pipeline phases of an executing instruction affect the
counter, regardless of whether an instruction is being single-stepped or run. However, wait states in the
fetch 1 pipeline phase do not affect the counter during single-stepping, because the cycle counting does
not begin until the decode 2 pipeline phase. The counter counts wait states caused by instructions that are
fetched but not executed. In most cases, these effects cancel each other out. Benchmarking is best used
for larger portions of code. Do not rely heavily on the precision of the benchmarking. (For more information
about the pipeline, Chapter 4.)

Alternatively, you can configure the 40-bit performance counter as two 16-bit or one 32-bit event counter if
you want to generate a debug event when the counter equals a match value. The comparison between
the counter value and the match value is done before the count value is incremented. For example,
suppose you initialize a counter to 0. A match value of 0 causes an immediate debug event (when the
action to be counted occurs), and the counter holds 1 afterward.

You can also clear the counter when a hardware breakpoint or address watchpoint occurs. With this
feature, you can implement a mechanism similar to a watchdog timer: if a certain address is not seen on
the address bus within a certain number of CPU clock cycles, a debug event occurs.

7.7.4 Typical Analysis Unit Configurations
Each analysis unit can be configured to perform one analysis job at a time. Typical configurations for
these two analysis units can be any one of the following:
• Two analysis breakpoints (i.e., hardware breakpoints)

Detect when an instruction is executed from a specified address or range of addresses. Each
hardware breakpoint only requires one analysis unit.

• Two hardware address watch points
Detect when any value is either read from or written to a specified address or a range of addresses. In
this case, the data written or read is not specified. Only the address of the location is specified and
whether to watch for reads or writes to that address. Each watchpoint only requires one analysis unit.

• One address with data watchpoint
Detect when a specified data value is either read from or written to a specified address. In this
configuration you can either watch for a read or a write but not both reads and writes. This type of
watchpoint requires both analysis units.

• A set of two chained breakpoints
Detect when a given instruction is executed after another specified instruction.

• A benchmark counter/event counter
The benchmark counter is only available with analysis unit 1. This counter can be used as a
benchmark counter to count cycles or instructions. It can also be used to count AU2 events.

Configuration of the analysis resources is supported in Code Composer Studio. For more information on
configuring these, use the Code Composer online help.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

16 LSBs of end address

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

6 MSBs of transfer addressWord counter Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

16 LSBs of transfer address

Data Logging www.ti.com

484 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

Emulation Features

7.8 Data Logging
Data logging enables the C28x to send selected memory values to a host processor using the standard
JTAG port and an XDS510 or other compatible scan controller. You control data logging activity with your
application code.

To perform data logging, you must create a linear buffer of 32-bit words to hold a packet of information.
Your application code controls the size, format, and location of this buffer and also determines when to
send a buffer’s contents to the host. You can control the size of a data logging buffer in two ways:
• Specify a count value in the upper eight bits of ADDRH (when the number of 32-bit words you want to

log is between 1 and 256)
• Specify an end address

NOTE: When the debugger is not active, the data logging transfers are considered complete as
soon as they are enabled to prevent the application software from getting stuck when there is
nothing to receive the data.

7.8.1 Creating a Data Logging Transfer Buffer
To create a data logging transfer buffer, follow these steps in your application code:
1. Execute the EALLOW instruction to enable access to emulation registers.
2. Specify the start address of the buffer in ADDRL and the six LSBs of ADDRH (see Figure 7-6 and

Figure 7-7). The address in ADDRL and ADDRH is called the transfer address.
3. Use either of the following methods to specify when data logging is to end:

(a) If the number of words you want to log is between 1 and 256, specify a count value in the upper
eight bits of ADDRH (see Figure 7-7). The form of the count value is 256−n, where n is the number
of 32-bit words you want to log. As each word is transferred, both the transfer address and the
count value are decremented.

(b) If the number of words you want to log is greater than 256, specify a data logging end address in
REFL and the six LSBs of REFH (see Figure 7-8 and Figure 7-9). Load the ten MSBs of REFH with
0s. When using this method, be sure to set the data logging end address control register
(EVT_CNTRL) first, and then the DMA control register (DMA_CNTRL). EVT_CNTRL is described in
Table 7-5, and DMA_CNTRL is described in Table 7-4.

NOTE: The application must not read from the end address of the buffer during the data logging
operation. When the end address appears on the address bus, the C28x ends the transfer.

4. Execute the EDIS instruction to disable access to emulation registers.
See Table 7-4 and Table 7-5 on the following pages for descriptions of the registers associated with
data logging.

Figure 7-6. ADDRL (at Data-Space Address 00 083816)

Figure 7-7. ADDRH (at Data-Space Address 00 083916)

Figure 7-8. REFL (at Data-Space Address 00 084A16)

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

6 MSBs of end address0 0 0 0 0 0 0 0 0 0

www.ti.com Data Logging

485SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

Emulation Features

Figure 7-9. REFH (at Data-Space Address 00 084B16)

Table 7-4. Start Address and DMA Registers

Address Name Access Description
00 083816 ADDRL R/W Start address register (lower 16 bits)

15:0 Lower 16 bits of start address
00 083916 ADDRH R/W Word counter/start address register (upper 6 bits)

15:8 Word counter. When using this to stop the data logging transfer, set the counter
to 256 − n, where n is the number of 32-bit words to transfer. Otherwise set the
counter to 0.

7:6 Reserved. Set to 0.
5:0 Upper 6 bits of start address

00 083E16 DMA_CNTRL R/W DMA control register
15:14 Set to 0

13 Set to 1
12 Set to 1
11 Give higher priority to:

0: CPU (nonpreemptive mode)
1: Data logging (preemptive mode)

10 Allow data logging during time-critical ISR?
0: No
1: Yes

9 Allow data logging while DBGM = 1?
0: No (polite accesses)
1: Yes (rude accesses)

8:6 Set to 1
5:4 0: EMU0/EMU1 using TCK

1: EMU0/EMU1 using FCK/2
2: JTAG signals
3: Reserved

3:2 Method for ending data logging session:
0: Use the count register to stop data logging
1: Use an end address to stop data logging

1:0 Data logging control/status:
0: Release resource from data logging operation
1: Claim resource for data logging operation
2: Enable resource for data logging operation
3: Data logging operation is complete. Bits 14:10 are corrupted when this occurs.

00 083F16 DMA_ID R DMA ID register
15:14 Resource control:

0: Resource is free
1: Application owns resource
2: Debugger owns resource

13:12 Set to 3.
11:0 Set to 1.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

Data Logging www.ti.com

486 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

Emulation Features

Table 7-5. End-Address Registers

Address Name Access Description
00 084816 MASKL R/W Set to 0
00 084916 MASKH R/W Set to 0
00 084A16 REFL R/W Data logging end reference address (lower 16 bits)

15:0 Lower 16 bits of start address
00 084B16 REFH R/W Data logging end reference address (upper 6 bits)

15:6 Set to 0
5:0 Upper 6 bits of start address

00 084E16 EVT_CNTRL R/W Data logging end address control register
15:14 Set to 0

13 Set to 1
12 Set to 1

11:5 Set to 0
4:2 Set to 1
1:0 End-address resource control/status:

0: Release end-address resource.
1: Claim end-address resource.
2: Enable end-address resource.
3: Data logging operation has ended. Bits 14:10 are corrupted when this occurs.

00 084F16 EVT_ID R Data logging end address ID register
15:14 Resource control:

0: Resource is free
1: Application owns resource
2: Debugger owns resource

13:12 Set to 1
11:0 Set to 2

7.8.2 Accessing the Emulation Registers Properly
Make sure your application code follows the following protocol when accessing the emulation registers
that have been provided for data logging. Each resource has a control register and an ID register.
1. Enable writes to memory-mapped registers by using the EALLOW instruction.
2. Write to the appropriate control register to claim the resource you want to use. The resource for data

logging transfers uses DMA_CNTRL (see Table 7-4). The resource for detecting the data logging end
address uses EVT_CNTRL (see Table 7-5).

3. Wait at least three cycles so that the write to the control register (done in the write phase of the
pipeline) occurs before the read from the ID register in step 4. You can fill in the extra cycles with NOP
(no operation) instructions or with other instructions that do not involve accessing the emulation
registers

4. Read the appropriate ID register and verify that the application is the owner. The resource for data
logging transfers uses DMA_ID (see Table 7-4). The resource for detecting the data logging end
address uses EVT_ID (see Table 7-5). If the application is not the owner, then go back to step 2 until
this succeeds (you may want a time-out function to prevent an endless loop). This step is optional. The
application would fail to become the owner only if the debugger already owns the resource.

5. If the application is the owner, the remaining registers for that function can be programmed, and the
control register written to again, to enable the function. However, if the application is not the owner,
then all of its writes are ignored.

6. Disable writes to memory-mapped emulation registers by executing the EDIS instruction.

If an interrupt occurs between the EALLOW instruction in step 1 and the EDIS instruction in step 6, access
to emulation registers are automatically disabled by the CPU before the interrupt service routine begins
and automatically re-enabled when the CPU returns from the interrupt. This means that there is no need
to disable interrupts between the EALLOW instruction and the EDIS instruction.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com Data Logging

487SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

Emulation Features

The debugger can, at your request, seize ownership of a register from the application; however, that is not
the normal mode of operation.

7.8.3 Data Log Interrupt (DLOGINT)
The completion of a data logging transfer (determined either by the word counter or by the end address)
triggers a DLOGINT request. DLOGINT is serviced only if it is properly enabled. If the CPU is halted in
real-time mode, DLOGINT must be enabled in both the DBGIER and the IER. Otherwise, DLOGINT must
be enabled in the IER and by the INTM bit in status register ST1.

This interrupt capability is most useful when there are multiple buffers of data to be transferred through
data logging and the completion of one transfer should begin the next.

7.8.4 Examples of Data Logging
Section 7.8.4.1 shows how to log 20 32-bit words, starting at address 00 010016 in data memory. The
accesses are preemptive (they have higher priority than the CPU) and rude (they ignore the state of the
DBGM bit). In addition, data logging can occur during time-critical interrupt service routines. The
application can determine whether the data logging operation is complete by polling the LSB of the DMA
control register (DMA_CNTRL) at 00 083E16. When the operation is complete, that bit is set to 1.

7.8.4.1 Example 1: Initialization Code for Data Logging With Word Counter
; Base addresses
ADMA .set 0838h

; Offsets
DMA_ADDRL .set 0
DMA_ADDRH .set 1
DMA_CNTRL .set 6
DMA_ID .set 7

EALLOW
MOV AR4, #ADMA ; AR4 pointing to register base addr
MOV *+AR4[#DMA_CNTRL],#1 ; Attempt to claim resource
NOP
NOP
NOP
CMP *+AR4[#DMA_ID],#7001h ; Value expected in ID register
B FAIL, NEQ ; If we don’t see the correct ID, then we

; failed (the resource is already in use)

MOV *+AR4[#DMA_ADDRL],#0100h ; Set starting address of buffer,
; and then the count

MOV *+AR4[#DMA_ADDRH], #((256 - 20) << 8)

MOV *+AR4[#DMA_CNTRL],#3E62h

Section 7.8.4.2 shows how to log from address 00 010016 to address 00 02FF16 in data memory. The
accesses are nonpreemptive (they have lower priority than the CPU), and are polite (they are not
performed when the DBGM bit is 0). The data logging cannot occur when a time-critical interrupt is being
serviced. An end address of 00 02FF16 is used to end the transfer. The application must not read from 00
02FF16 during the data logging; a read from that address stops the data logging. As in Section 7.8.4.1, the
application can poll the LSB of DMA_CNTRL for a 1 to determine whether the data logging operation is
complete.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

Sharing Analysis Resources www.ti.com

488 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

Emulation Features

7.8.4.2 Example 2: Initialization Code for Data Logging With Word Counter
; Base addresses
ADMA .set 0838h
DEVT .set 0848h

; Offsets
DMA_ADDRL .set 0
DMA_ADDRH .set 1
DMA_CNTRL .set 6
DMA_ID .set 7
MASKL .set 0
MASKH .set 1
REFL .set 2
REFH .set 3
EVT_CNTRL .set 6
EVT_ID .set 7

EALLOW
MOV AR5, #DEVT ; AR5 pointing to End Address registers
MOV AR4, #ADMA ; AR4 pointing to Start/Control base
MOV *+AR5[#EVT_CNTRL],#1 ; Attempt to claim End Address
MOV *+AR4[#DMA_CNTRL],#1 ; Attempt to claim Start/Control
NOP
NOP
NOP

CMP *+AR5[#EVT_ID],#5002h ; Value expected in ID register

B Fail, NEQ ; If we don't see the correct ID, FAIL

CMP *+AR4[#DMA_ID],#7001h ; Value expected in ID register
B FAIL, NEQ ; If we expected in ID register, FAIL

MOV *+AR5[#MASKL],#0 ; Attempt to claim End Address
MOV *+AR5[#MASKH],#0 ; Attempt to claim End Address
MOV *+AR5[#REFL],#02FFh ; Stop data logging at address 0x02FF
MOV *+AR5[#REFH],#0 ; Attempt to claim End Addr

MOV *+AR5 [#EVT_CNTRL], # (2 | (1<<2) | (1<<12) | (1<<13))

MOV *+AR4[#DMA_ADDRL],#0100h ; Set buffer start address and then the count
MOV *+AR4[DMA_ADDRH],#0

MOV *+AR4[DMA_CNTRL],#3066h

EDIS

7.9 Sharing Analysis Resources
You can use analysis breakpoints, watchpoints, and a benchmark/event counter through the debugger,
and you can use data logging through application code. Table 7-6 lists the analysis resources, and
Figure 7-10 shows which resources are available to be used at the same time.

When the application owns analysis resources, they will be cleared (made unowned and set to the
completed state) by a reset. When the debugger owns the resources, they are not cleared by reset but by
the JTAG test-logic reset. This ensures that when you are using the debugger, the resources can be used
even while the target system undergoes a reset.

Table 7-6. Analysis Resources

Resource Purpose
BA0 Break on contents of program address or memory address bus
BA1 Break on contents of program address or memory address bus
DB Break on contents of program data, memory read data, or memory write data in addition to an address bus
Data log Perform data logging using counter
Benchmark Count CPU cycles

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com Diagnostics and Recovery

489SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

Emulation Features

† The data logging mode that uses the word counter allows this combination, but not the data logging mode that uses
the end address (see Section 7.8).

Figure 7-10. Valid Combinations of Analysis Resources

7.10 Diagnostics and Recovery
Debug registers within the CPU keep track of the state of several key signals. This allows diagnosis of
such problems as a floating READY signal, NMI signal, or RS (reset) signal. Should the debug software
attempt an operation that does not complete after a certain time-out period (as determined by the debug
software), it attempts to determine the probable cause and display the situation to you. You can then
abort, correct the situation or allow it to correct itself, or chose to override it.

Such situations include:
• RS being asserted
• A ready signal not being asserted for a memory access
• NMI being asserted
• The absence of a functional clock
• The occurrence of a JTAG test-logic-reset

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

490 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

Register Quick Reference

Appendix A
SPRU430F–August 2001–Revised April 2015

Register Quick Reference

For the status and control registers of the ’28x, this appendix summarizes:
• Their reset values
• The instructions available for accessing them
• The functions of their bits

Topic ... Page

A.1 Reset Values of and Instructions for Accessing the Registers 491
A.2 Register Figures ... 491

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com Reset Values of and Instructions for Accessing the Registers

491SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

Register Quick Reference

A.1 Reset Values of and Instructions for Accessing the Registers
Table A-1 lists the CPU status and control registers, their reset values, and the instructions that are
available for accessing the registers.

Table A-1. Reset Values of the Status and Control Registers

Register Description Reset Values Instructions
ST0 Status register 0 0000 0000 0000 00002 PUSH, POP, SETC, CLRC
ST1 Status register 1 0000 M000 0000 V0112 PUSH, POP, SETC, CLRC
IFR Interrupt flag register 0000 0000 0000 00002 PUSH, POP, AND, OR
IER Interrupt enable register 0000 0000 0000 00002 MOV, AND, OR

DBGIER Debug interrupt enable register 0000 0000 0000 00002 PUSH, POP

NOTE: V: Bit 3 of ST1 (the VMAP bit) depends on the level of the VMAP input signal at reset. If the
VMAP signal is low, the VMAP bit is 0 after reset; if the VMAP signal is high, the VMAP bit is
1 after reset. For C28x devices that do not pin out VMAP, the signal is tied high internal to
the device.

M: Bit 11 of ST1 (the M0M1MAP bit) depends on the level of the M0M1MAP input signal at
reset. If the M0M1MAP signal is low, the bit is 0, high bit is 1. For C28x devices that do not
pinout MOM1MAP, the signal is tied high internal to the device.

A.2 Register Figures
The following figures summarize the content of the ’28x status and control registers. Each figure in this
provides information in this way:
• The value shown in the register is the value after reset.
• Each unreserved bit field or set of bits has a callout that very briefly de- scribes its effect on the

processor.
• Each nonreserved bit field or set of bits is labeled with one of the following symbols:

– R indicates that your software can read the bit field but cannot write to it.
– R indicates that your software can read the bit field but cannot write to it.

• Where needed, footnotes provide additional information for a particular figure.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

OVC/OVCU PM V N Z C TC OVM SXM

R/W R/W R/W R/W R/W R/W R/W R/W R/W

Negative flag Sign-extension mode
0 Negative condition false
1 Negative condition true

0 Sign extension suppressed
1 Sign extension mode selected

Overflow flag ACC overflow mode
0 Flag is reset
1 Overflow detected

0 Results overflow normally
1 Overflow mode selected

Product shift mode Test/control flag
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Left shift by 1
No shift
Right shift by 1, sign extended
Right shift by 2, sign extended
Right shift by 3, sign extended
Right shift by 4, sign extended
Right shift by 5, sign extended
Right shift by 6, sign extended

Holds result of test performed
by TBIT or NORM instruction

Carry bit

0 Carry not detected/borrow detected
1 Carry detected/borrow not detected

Overflow counter Zero flag
Behaves differently for signed and unsigned
operations:
Signed operations (OVC)
Increments by 1 for each positive overflow;
Decrements by 1 for each negative overflow.

Unsigned operations (OVCU)
Increments by 1 for ADD operations that
generate a Carry

Decrements by 1 for SUB operations that
generate a Borrow

0 Zero condition false
1 Zero condition true

Register Figures www.ti.com

492 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

Register Quick Reference

Figure A-1. Status Register ST0

NOTE: Note: For more details about ST0, see section 2.3 on page 2-16.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

0 0 0 0 0 0 0 0

ARP XF MOM1MAP CNF OBJMODE AMODE

15 14 13 12 11 10 9 8

R/W R/W R R/W R/W R/W

XF status bit

0 XFS output signal low
1 XFS output signal is high

Address mode bit
0 C28x/C27x processing mode
1 C2xLP addressing modes

Auxiliary register pointer
Object compatibility mode bit

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

XAR0 selected
XAR1 selected
XAR2 selected
XAR3 selected
XAR4 selected
XAR5 selected
XAR6 selected
XAR7 selected

0 C27x compatible map
1 C28x/C2xLP compatible map

C2xLP-mapping mode bit

0 PAGE0 stack addressing mode
1 PAGE0 direct addressing mode

M0 and M1 mapping mode bit

0 M0 is 0−3FF data, 400−7FF pro-
1 gram

M0 is 0−3FF data and program
SP starts at 0x400.

www.ti.com Register Figures

493SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

Register Quick Reference

Figure A-2. Status Register ST1, Bits 15-8

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

7 6 5 4 3 2 1 0

0 0 0 0 X‡ 0 1 1

IDLESTAT EALLOW LOOP SPA VMAP PAGE0 DBGM INTM

R R/W R R/W R/W R/W R/W R/W

Stack pointer alignment bit

0 Stack pointer has not been
1 aligned to even address

Stack pointer has been aligned to
even address

Loop instruction status bit

Interrupt enable mask bit

0 Maskable interrupts globally enabled
1 Maskable interrupts globally disabled

0 LOOPNZ/LOOPZ instruction done
1 LOOPNZ/LOOPZ instruction in

progress

Debug enable mask bit

0 Debug events enabled
1 Debug events disabled

Emulation access enable bit
0 Access to emulation registers disabled
1 Access to emulation registers enabled

IDLE status flag bit

PAGE0 addressing configuration bit

0 PAGE0 stack addressing mode
1 PAGE0 direct addressing mode

0 IDLE instruction done
1 IDLE instruction in progress

Vector map bit

0 Interrupt vectors mapped to program-
memory addresses 00 000016−00 003F16

1 Interrupt vectors mapped to program-
memory addresses 3F FFC016−3F FFFF16

Register Figures www.ti.com

494 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

Register Quick Reference

(1) These reserved bits are always 0s and are not affected by writes.
(2) The VMAP bit depends on the level of the VMAP input signal at reset. If the VMAP signal is low, the VMAP

bit is 0 after reset; if the VMAP signal is high, the VMAP bit is 1 after reset. For C28x devices that do not pin
out the VMAP signal, the signal is tied high internal to the device.

Figure A-3. Status Regsiter ST1, Bits 7-0

NOTE: For more details about ST1, see section 2.4 on page 2-34.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

15 14 13 12 11 10 9 8

0 0 0 0 0 0 0 0

RTOSINT DLOGINT INT14 INT13 INT12 INT11 INT10 INT9

R/W R/W R/W R/W R/W R/W R/W R/W

INT13 flag bit INT9 flag bit
0 INT13 not pending
1 INT13 pending

0 INT9 not pending
1 INT9 pending

INT14 flag bit INT10 flag bit

0 INT14 not pending
1 INT14 pending

0 INT10 not pending
1 INT10 pending

DLOGINT flag bit INT11 flag bit
0 DLOGINT not pending
1 DLOGINT pending

0 INT11 not pending
1 INT11 pending

RTOSINT flag bit INT12 flag bit

0 RTOSINT not pending 0 INT12 not pending
1 RTOSINT pending 1 INT12 pending

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0

INT8 INT7 INT6 INT5 INT4 INT3 INT2 INT1

R/W R/W R/W R/W R/W R/W R/W R/W

INT5 flag bit INT1 flag bit
0 INT5 not pending
1 INT5 pending

0 INT1 not pending
1 INT1 pending

INT6 flag bit INT2 flag bit

0 INT6 not pending
1 INT6 pending

0 INT2 not pending
1 INT2 pending

INT7 flag bit INT3 flag bit
0 INT7 not pending
1 INT7 pending

0 INT3 not pending
1 INT3 pending

INT8 flag bit INT4 flag bit

0 INT8 not pending
1 INT8 pending

0 INT4 not pending
1 INT4 pending

www.ti.com Register Figures

495SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

Register Quick Reference

Figure A-4. Interrupt Flag Register (IFR)

NOTE: For more details about the IFR, see section 3.3.1 on page 3-7.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

15 14 13 12 11 10 9 8

0 0 0 0 0 0 0 0

RTOSINT DLOGINT INT14 INT13 INT12 INT11 INT10 INT9

R/W R/W R/W R/W R/W R/W R/W R/W

INT13 enable bit INT9 enable bit

0 INT13 disabled

1 INT13 enabled
0 INT9 disabled

1 INT9 enabled

INT14 enable bit INT10 enable bit

0 INT14 disabled

1 INT14 enabled

0 INT10 disabled

1 INT10 enabled

DLOGINT enable bit INT11 enable bit

0 DLOGINT disabled

1 DLOGINT enabled
0 INT11 disabled

1 INT11 enabled

RTOSINT enable bit INT12 enable bit

0 RTOSINT disabled 0 INT12 disabled

1 RTOSINT enabled 1 INT12 enabled

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0

INT8 INT7 INT6 INT5 INT4 INT3 INT2 INT1

R/W R/W R/W R/W R/W R/W R/W R/W

INT5 enable bit INT1 enable bit

0 INT5 disabled

1 INT5 enabled
0 INT1 disabled

1 INT1 enabled

INT6 enable bit INT2 enable bit

0 INT6 disabled

1 INT6 enabled

0 INT2 disabled

1 INT2 enabled

INT7 enable bit INT3 enable bit

0 INT7 disabled

1 INT7 enabled
0 INT3 disabled

1 INT3 enabled

INT8 enable bit INT4 enable bit

0 INT8 disabled

1 INT8 enabled

0 INT4 disabled

1 INT4 enabled

Register Figures www.ti.com

496 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

Register Quick Reference

Figure A-5. Interrupt Enable Register (IER)

NOTE: For more details about the IER, see section 3.3.2 on page 3-8.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

15 14 13 12 11 10 9 8

0 0 0 0 0 0 0 0

RTOSINT DLOGINT INT14 INT13 INT12 INT11 INT10 INT9

R/W R/W R/W R/W R/W R/W R/W R/W

INT13 debug enable bit INT9 debug enable bit
0 INT13 disabled

1 INT13 enabled
0 INT9 disabled

1 INT9 enabled

INT14 debug enable bit INT10 debug enable bit

0 INT14 disabled

1 INT14 enabled

0 INT10 disabled

1 INT10 enabled

DLOGINT debug enable bit INT11 debug enable bit
0 DLOGINT disabled

1 DLOGINT enabled
0 INT11 disabled

1 INT11 enabled

RTOSINT debug enable bit INT12 debug enable bit

0 RTOSINT disabled 0 INT12 disabled

1 RTOSINT enabled 1 INT12 enabled

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0

INT8 INT7 INT6 INT5 INT4 INT3 INT2 INT1

R/W R/W R/W R/W R/W R/W R/W R/W

INT5 debug enable bit INT1 debug enable bit
0 INT5 disabled

1 INT5 enabled
0 INT1 disabled

1 INT1 enabled

INT6 debug enable bit INT2 debug enable bit

0 INT6 disabled

1 INT6 enabled

0 INT2 disabled

1 INT2 enabled

INT7 debug enable bit INT3 debug enable bit
0 INT7 disabled

1 INT7 enabled
0 INT3 disabled

1 INT3 enabled

INT8 debug enable bit INT4 debug enable bit

0 INT8 disabled

1 INT8 enabled

0 INT4 disabled

1 INT4 enabled

www.ti.com Register Figures

497SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

Register Quick Reference

Figure A-6. Debug Interrupt Enable Register (DBGIER)

NOTE: For more details about the DBGIER, see section 3.3.2 on page 3-8

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

498 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C2xLP and C28x Architectural Differences

Appendix B
SPRU430F–August 2001–Revised April 2015

C2xLP and C28x Architectural Differences

This appendix highlights some of the architecture differences between the C2xLP and the C28x. Not all of
the changes are listed here. An emphasis is placed on those changes of which you need to be aware
while migrating from a C2xLP-based design to a C28x design. In particular changes in CPU registers and
memory map are addressed.

Topic ... Page

B.1 Summary of Architecture Differences Between C2xLP and C28x............................ 499
B.2 Registers ... 499
B.3 Memory Map .. 507

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com Summary of Architecture Differences Between C2xLP and C28x

499SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C2xLP and C28x Architectural Differences

B.1 Summary of Architecture Differences Between C2xLP and C28x
The C28x CPU features many improvements over the C2xLP CPU. A summary of the enhancements is
given here.

Table B-1. General Features

Features C2xLP C28x
Program memory space 64K (16 address signals) 4M (22 address signals)

Data memory space 64K (16 address signals) 4G (32 address signals)
Number of internal buses 3 (prog, data-read, data-write) 3 (prog, data-read, data-write)

Addressable word size 16 16/32
Multiplier 16 bits 16/32 bits

Maskable CPU interrupts 6 14

B.1.1 Enhancements of the C28x over the C2xLP
• Much higher MHz operation
• 32 x 32 MAC
• 16 x16 Dual MAC
• 32-bit register file
• 32-bit single-cycle operations
• 4M linear program-address reach
• 4G linear data-address reach
• Dedicated software stack pointer
• Monitorless real-time emulation
• 40−50% better C code efficiency than C2xLP
• 20−30% better assembly code efficiency than C2xLP
• Atomic operation eliminates need to disable/re-enable interrupts
• Extended debugging features (Analysis block, data logging, etc.)
• Faster interrupt context save/restore
• More efficient addressing modes
• Unified memory map
• Byte packing and unpacking operations

When you first recompile your C2xLP code set for C28x, you will not be able to take advantage of every
enhancement since you are limited by the original source code. Once you begin migrating your code,
however, you will quickly begin to take advantage of the full capabilities the C28x offers. See Appendix D
for help with migration to C28x.

B.2 Registers
The register modifications to the C2xLP are shown in Figure B-1. Registers that are shaded show the
changes or enhancements on the C28x. The italicized names on the left are the original C2xLP names for
the registers. The names on the right are the C28x names for the registers.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

C2xLP

Names

32 bits

16 16

bits bits
C28x

Names

TREG

PREG

ACC

T or TH

PH

AH

TL XT

PL P

AL ACC

DP

AR0

9

AR0H AR0

SP

DP

XAR0

AR1

AR2

AR1H

AR2H

AR1

AR2

XAR1

XAR2

AR3 AR3H AR3 XAR3

AR4

AR5

AR6

AR7

PC

AR4H

AR5H

AR6H

AR7H

AR4

AR5

AR6

AR7

XAR4

XAR5

XAR6

XAR7

PC

RPC

22 bits

IMR
†

IFR
†

ST0

ST1

IER

DBGIER

IFR

ST0

ST1

Registers www.ti.com

500 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C2xLP and C28x Architectural Differences

Figure B-1. Register Changes from C2xLP to C28x

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com Registers

501SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C2xLP and C28x Architectural Differences

B.2.1 CPU Register Changes
A brief description of the register modifications is given below. For a complete description of each register,
see descriptions in the C2xLP and C28x Reference Guides.

XT — Multiplicand register
The 32-bit multiplicand register is called XT on the C28x. The C2xLP TREG is represented by the
upper 16 bits (T). The lower 16 bit area is known as TL. The assembler will also accept TH in place
of T for the upper 16 bits of the XT register.

P — Product register
This register is the same as the C2xLP PREG. You can separately access the high half (PH) or the
low half (PL) on the C28x.

ACC —Accumulator
The size of ACC is the same on the C28x. Access to the register has been enhanced. On C28x,
you can access it as two 16-bit registers (AL and AH).

SP — Stack Pointer
The SP is new on the C28x. It points directly to the C28x software stack

XAR0 - XAR7 —Auxiliary registers
All of the auxiliary registers (XARn) are increased to 32 bits on the C28x. This enables a full 32-bit
address reach in data space. Some instructions separately access the low half of the registers
(ARn).

PC — Program counter
The PC is 22 bits on C28x. On the C2xLP, the PC is 16 bits

RPC —Return program counter
The RPC register is new on the C28x. When a call operation is performed, the return address is
saved in the RPC register and the old value in the RPC is saved on the stack. When a return
operation is performed, the return address is read from the RPC register and the value on the stack
is written into the RPC register. The net result is that return operations are faster (4 instead of 8
cycles). This register is only used when certain call and return instructions are used. Normal call
and return instructions bypass this register.

IER —Interrupt enable register
The IER is analogous to the Interrupt Mask Register (IMR) on the C2xLP. It performs the same
function, however, the name has changed to more appropriately describe the function of the
register. Each bit in the register enables one of the maskable interrupts. On the C2xLP, there are
six maskable CPU interrupts. On the C28x CPU, there are 16 CPU interrupts. On the C2xLP, the
IMR was memory mapped.

DBGIER —Debug interrupt-enable register
The DBGIER is new on the C28x. It enables interrupts during debug events and allows the
processor and debugger to perform real-time emulation.

IFR —Interrupt flag register
The IFR functions the same as on the C2xLP. There are more valid bits in this register to
accommodate the additional interrupts on the C28x. On the C2xLP, the IFR was memory mapped.

STO/ST1 —Status Registers
The C28x status register bit positions are different compared to the C2xLP. Figure B-3 shows the
differences.

DP — Data Page Pointer
On the C2xLP the DP is part of status register ST0. The DP on the C28x is a separate register and
is increased from 9 to 16 bits.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

15

C2xLP

15

16 bit address
0

7 6 0

DP (8:0) 7-bit offset

21
22 bit address

2 0

C28x

21 15 7 6 5 2 0

AMODE = 1:

AMODE = 0:

DP (15:1)

DP (15:0)

7-bit offset

6-bit offset

Registers www.ti.com

502 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C2xLP and C28x Architectural Differences

B.2.2 Data Page (DP) Pointer Changes

B.2.2.1 C2xLP DP
The direct addressing mode on the C2xLP can access any data memory location in the 64K address
range of the device using a 9-bit data page pointer and a 7-bit offset, supplied by the instruction, which is
concatenated with the data page pointer value to form the 16-bit data address location. An example
C2xLP operation is as follows:
LDP #VarA ; Load DP with page location for VarA
LACL VarA ; Load ACC low with contents of VarA

The first instruction initializes the DP register value with the ”page” location for the specified variable. Each
page is 128 words in size. The assembler/linker automatically resolve the page value by dividing the
absolute address of the specified location by 128. For example:
If "VarA" address = 0x3456, then the DP value is:

DP(8:0) = 0x3456/128 = 0x69

The next instruction will then calculate the 7-bit offset of the specified variable within the 128-word page.
This offset value is then embedded in the address field for that instruction. The assembler/linker
automatically resolves the offset value by taking the first 7 bits of the absolute address of the specified
location. For example:
If "VarA" address = 0x3456, then the 7bit offset value is:

7-bit offset = 0x3456 & 0x007F = 0x56

B.2.2.2 C28x DP
The C28x also supports the direct addressing mode using the DP register; however, the following changes
and enhancements have been made:
• Supports 22-bit address reach
• DP increased from 9 to 16 bits
• DP is a separate 16-bit register
• When AMODE == 0, page size is 64 words and DP(15:0) is used
• When AMODE == 1, page size is 128 words and DP(15:1) is used, bit 0 of DP is ignored

When AMODE == 1, the DP and the direct addressing mode behaves identically to the C2xLP but are
enhanced to 22-bit address reach from 16. When AMODE == 0, the page size is reduced by half. This
was done to accommodate other useful addressing modes.

The mapping of the direct addressing modes between the C2xLP and the C28x is as shown in Figure B-2.

Figure B-2. Direct Addressing Mode Mapping

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com Registers

503SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C2xLP and C28x Architectural Differences

Using the previous example, the assembler/linker will initialize the DP and offset values as follows on the
C28x:

C2xLP Original Source Mode (”−v28 −m20” mode, AMODE == 1)
LDP #VarA ; DP(15:0) = 0x3456/128 << 1 = 0x00D1
LACL VarA ; 7-bit offset = 0x3456 & 0x007F = 0x56

Equivalent C28x Mnemonics (after C2xLP source is reassembled with the C28x assembler)
MOVZ DP,#VarA ; DP(15:0) = 0x3456/128 << 1 = 0x00D1
MOVU ACC,@@VarA ; 7-bit offset = 0x3456 & 0x007F = 0x56

C28x Addressing Mode (”−v28” mode, AMODE == 0)
MOVZ DP,#VarA ; DP(15:0) = 0x3456/64 = 0x00D1
MOVU ACC,@VarA ; 6-bit offset = 0x3456 & 0x003F = 0x16

NOTE: When using C28x syntax, the 128 word data page is indicated by using the double ”@@”
symbol. The 64 word data page is indicated by the single ”@” symbol. This helps the user
and assembler to track which mode is being used.

B.2.3 Status Register Changes

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ARP OV OVM 1 INTM DP

R/W-X R/W-0 R/W-X R/W-1 R/W-X
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Figure B-3. C2xLP Status Register ST0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
OVC/OVCU PM V N Z C TC OVM SXM
R/W−000000 R/W−000 R/W−0 R/W−0 R/W−0 R/W−0 R/W−0 R/W−0 R/W−0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset
Figure B-4. C28X Status Register ST0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ARB CNF TC SXM C 1 1 1 1 XF 1 1 PM

R/W-X R/W-0 R/W-X R/W-1 R/W-1 R/W-1 R/W-00
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Figure B-5. C28XLP Status Register ST1

15 14 13 12 11 10 9 8
ARP XF M0M1MAP Reserved OBJMODE AMODE

R/W−000 R/W−0 R−1 R−0 R/W−0 R/W−0
7 6 5 4 3 2 1 0

IDLESTAT EALLOW LOOP SPA VMAP PAGE0 DBGM INTM
R−0 R/W−0 R−0 R/W−0 R/W−1 R/W−0 R/W−1 R/W−1

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset
Figure B-6. C28x Status Register ST1

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

Registers www.ti.com

504 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C2xLP and C28x Architectural Differences

Z — Zero flag
Z is new on the C28x. It is involved in determining if the results of certain operations are 0. It is also
used for conditional operations.

N — Negative flag
N is new on the C28x. It is involved in determining if the results of certain operations are negative.
It is also used for conditional operations.

V — Overflow flag
V has changed names from OV on the C2xLP. It flags overflow conditions in the accumulator.

PM — Product shift mode
The PM has increased to a 3-bit register with additional capabilities. Below is a comparison of the
PM register in the C2xLP and the C28x. Note that the register behaves differently depending on the
operational mode of the C28x device. The XSPM instructions correspond to equivalent C2xLP
instructions conversion. On the C2xLP, the PM bits corresponded to no shift at reset. On C28x,
however, the PM corresponds to a left shift of 1 at reset.

Table B-2. C2xLP Product Mode Shifter

Bits Shift Value Instruction
00 no shift SPM 0
01 shift left 1 SPM 1
10 shift left 4 SPM 2
11 shift right 6 SPM 3

Table B-3. C28x Product Mode Shifter

C2xLP Source-Compatible Mode
AMODE == 1

OBJMODE = 1
PAGE0 == 0

C28x Mode
AMODE == 0

OBJMODE = 1
PAGE0 == 0

Bits Shift Value Instruction Shift Value Instruction
000 shift left 1 SPM + 1 (or SPM) shift left 1 SPM+1
001 no shift SPM 0 (or SPM 0) no shift SPM 0
010 shift right 1 SPM–1 shift right 1 SPM–1
011 shift right 2 SPM–2 shift right 2 SPM–2
100 shift right 3 SPM–3 shift right 3 SPM–3
101 shift left 4 SPM+4 (or SPM 2) shift left 4 SPM–4
110 shift right 5 SPM–5 shift right 5 SPM–5
111 shift right 6 SPM–6 (or SPM 3) shift right 6 SPM–6

OVC —Overflow counter
OVC is new on the C28x. It can be viewed as an extension of the accumulator. For signed
operations, the OVC counter is an extension of the overflow mode. For unsigned operations, the
OVC counter (OVCU) is an extension of the carry mode.

DBGM —Debug enable mask bit
DBGM is new on the C28x. It is analogous to the INTM bit and works in cooperation with the
DBGIER register to globally enable interrupts in real-time emulation.

PAGE0 —PAGE0 addressing mode configuration bit
The PAGE0 bit is new on the C28x. It is used for compatibility to the C27x and should be left as 0
for users moving from the C2xLP to C28x.

VMAP —Vector map bit

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com Registers

505SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C2xLP and C28x Architectural Differences

The VMAP bit is new on the C28x. It determines from where in memory interrupt vectors will be
fetched.

SPA —Stack pointer alignment bit
The SPA bit is new on the C28x. It is a flag used to determine if aligning the stack pointer caused
an adjustment in the stack pointer address.

LOOP —Loop instruction status bit
The LOOP bit is new on the C28x. It is used in conjunction with the LOOPZ/LOOPNZ instructions.

EALLOW —Emulation access enable bit
The EALLOW bit is new on the C28x. It allows access to the emulation register on the C28x.

IDLESTAT —IDLE status bit
The IDLESTAT bit is new on the C28x. It flags an IDLE condition on the C28x, and is mainly used
when returning from an interrupt.

AMODE —Address mode bit
The AMODE bit is new on the C28x. This mode bit is used to select between C28x addressing
mode (AMODE == 0) and C2xLP addressing mode (AMODE == 1).

OBJMODE —Object mode bit
The OBJMODE bit is new on the C28x. It is used to select between C27x object mode (OBJMODE
== 0) and C28x object mode (OBJMODE == 1). For users moving from C2xLP to C28x, this bit
should always be set to 1.

NOTE: Upon reset of the C28x, this bit is set to 0 and needs to be changed in firmware.

M0M1MAP —M0 M1 map bit
The M0M1MAP bit is new on the C28x. It is only used for C27x compatibility. For users transitioning
from the C2xLP to C28x this bit should always be set to 1.

XF — XF pin status bit
The XF pin has the same function as on the C2xLP. Please note that the reset state has changed
on the C28x.

ARP —Auxiliary register pointer
The ARP has the same functionality as on the C2xLP. It should, however, only be used when
transitioning code to the C28x. The C28x has enhanced addressing modes which eliminate the
need to keep track of the ARP.

The functionality of the remaining bits is the same on C28x as they are on C2xLP. It should be noted that
although the functionality did not change, the bit position in the registers did. These bits are:
• Sign extension mode (SXM)
• Overflow mode (OVM)
• Test/control flag (TC)
• Carry bit (C)
• Interrupt global mask bit (INTM)

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

Registers www.ti.com

506 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C2xLP and C28x Architectural Differences

B.2.4 Register Reset Conditions
The reset conditions of internal registers have changed between the C2xLP and C28x as shown in
Table B-4. Most C28x registers are cleared on a reset.

Differences in Table B-5 are highlighted in bold.

(1) X = Uninintiated

Table B-4. Reset Conditions of Internal Registers (1)

C2xLP Register C2xLP Reset C28x Register C28x Reset
T X XT 0x00000000
P X P 0x00000000

ACC X ACC 0x00000000
AR0 − AR7 X XAR0 − XAR7 0x00000000

PC 0x0000 PC 0x3FFFC0
ST0 See Table B-5 ST0 0x0000
ST1 See Table B-5 ST1 0x080B
DP X DP 0x0000
− − SP 0x0400

IMR 0x00 IER 0x0000
− − DBGIER 0x0000

IFR 0x0000 IFR 0x0000
GREG 0x0000 − −

− − RPC 0x000000

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com Memory Map

507SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C2xLP and C28x Architectural Differences

Table B-5. Status Register Bits

Reg C2xLP Bit Name C2xLP Reset
Value C28x Bit Name C28x Reset Value

ST0

DP XXXXXXXXX SXM 0
INTM 1 OVM 0
OVM X TC 0
OV 0 C 0

ARP XXX Z 0
N 0
V 0

PM 000 (left shift 1)

ST1

PM 00 (no shift) INTM 1
XF 1 DBGM 1
C 1 PAGE0 0

SXM 1 VMAP 1
TC X SPA 0

CNF 0 LOOP 0
ARB XXX EALLOW 0

IDLESTAT 0
AMODE 0

OBJMODE 0
CNF not

implemented 0

M0M1MAP 1
XF 0

ARP 000

B.3 Memory Map
The major changes between the C2xLP and C28x memory maps are outlined in this section. There are
several differences between the C2xLP and C28x memory maps. These improvements are due to the
expanded architecture of the C28x. The C28x CPU memory map ranges from 4G to 4M in data and
program memory, respectively. However, C28x CPU-based devices may not use the entire memory
range. See the device data sheet for the specific memory range applicable to that device.

Vectors. On the C2xLP, only one vector table is present at address 0x0000. These vectors were generally
branch instructions to different interrupt service routines. On the C28x, the vector table can be placed in
two different locations depending on the state of the VMAP input pin. On devices that do not pin out the
VMAP signal, it is tied internal to the device. Generally, vectors will be located in non-volatile memory at
0x3FFFC0−0x3FFFFF. To take advantage of relocatable vectors or fetching vectors from fast internal
memory space, place the vectors at address 0x000000−0x00003F. Often the C28x CPU interrupt vectors
are expanded using external hardware logic. In such cases, see the related documents for the expanded
vector map.

Memory space. On the C2xLP, the memory space for program, data, and I/O space is each 64K words.
On the C28x, the program memory space is 4M words (22 address signals). The data memory space is
4G words (32 address signals). The global space (32K) and I/O space (64K) is generally used for C2xLP
compatibility.

Program space. On the C2xLP CPU, program space could be mapped anywhere from (0x0−0xFFFF).
With the extended address reach of the C28x (22 bits), the compatible region in program space for the
C2xLP is 0x3F0000−0x3FFFF. Thus, any program memory on the C2xLP must be remapped to this upper
region on the C28x. When the processor accesses program memory, the upper bits (bits 16−22) will be
forced to all 1’s when C2xLP- compatible instructions are used (See Appendix E).

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

C28x memory map for C2xLP

Data Space Program Space

VECTORS (32 x 32)
(enabled if VMAP = 0)

M0 SARAM (1K x 16)

M1 SARAM (1K x 16)

Emulation
registers
(2K x 16)

Reserved

Reserved for only C28x
addressing

Vectors (32 x 32)
(enabled if VMAP = 1)

C2xLP memory map

Data Space - 64K I/O space − 64K

Memory
Registers

B2 Block

B1 Block

B0 Block

Reserved

On-chip
4K SARAM

Don = 1

Global Space
0−32K

H
ig

h
6
4
K

(C
2
x
L

P
P

ro
g

ra
m

 S
p

a
c
e
)

L
o

w
 6

K
 (

C
2
x
L

P
D

a
ta

,
I/

O
S

p
a
c
e
)

Block Start
Address

0x0000-0000

0x0000-0040

0x0000-0060

0x0000-0200

0x0000-0300

0x0000-0400

0x0000-0800

0x0000-2000

0x0000-8000

0x0000-FFFF

0x001−0000

0x03E−FFFF

0x03F−0000

Program Space - 64K

Vectors 32 x 16

4K SARAM
Pon = 1

0x03F−FFC0

0x03F−FFFF

B0 Block
CNF = 1

Memory Map www.ti.com

508 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C2xLP and C28x Architectural Differences

A Memory map is not to scale.

Figure B-7. Memory Map Comparison (See Note A)

Data memory. The C2xLP has three internal memory regions (B0, B1, B2) totaling 544 words. The C28x
has two internal memory regions (M0,M1) totaling 1K words each. Note that for strict C2xLP compatibility,
the memory regions are placed at the same addresses as noted in Table B-6.

Table B-6. B0 Memory Map

C28x in C2xLP - Compatible Mode C2xLP
CNF Not Available CNF = 0

B0 range mapped in M0 block 200 − 2FFh.
(No mirroring of the block)

B0 in Data space
100 − 1FFh (mirrored locations)
200 − 2FFh

CNF Not Available CNF = 1

B0 range cannot be enabled in C2xLP-equivalent
program memory

B0 in program space
FE00 − FEFFh (mirrored locations)
FF00 − FFFFh

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com Memory Map

509SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C2xLP and C28x Architectural Differences

I/O space. I/O space has remained on the C28x for compatibility reasons, and can only be accessed
using IN and OUT/UOUT instructions. Not all C28x devices will support I/O space. See the data sheet of
your particular device for details.

Global space. Global space is not supported on all C28x devices. See the data sheet specific to your
device for details.

Reserved memory. Reserved memory regions have changed on the C28x. No user-defined memory or
peripherals are allowed at addresses 0x800−0x9FF on the C28x. While using C2xLP-compatible mode,
these addresses are reserved. It is recommended that C2xLP memory or peripherals be relocated to
avoid memory conflicts.

Stack space. The C28x has a dedicated software stack pointer. This pointer is initialized to address
0x0400 (the beginning of block M1) at reset, and it grows upward in address. It is up to the user to move
this stack pointer if needed in firmware.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

510 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C2xLP Migration Guidelines

Appendix C
SPRU430F–August 2001–Revised April 2015

C2xLP Migration Guidelines

The C28x DSP is source-code compatible with C2xLP DSP based devices. The C28x DSP assembler
accepts all C2xLP mnemonics with the exception of a few instructions. This chapter provides guidelines
for C2xLP code migration to a C28x device. C2xLP refers to the CPU used in all TMS320C24x,
TMS320C24xx, and TMS320C20x DSP devices.

Topic ... Page

C.1 Introduction ... 511
C.2 Recommended Migration Flow ... 511
C.3 Mixing C2xLP and C28x Assembly ... 513
C.4 Code Examples .. 514
C.5 Reference Tables for C2xLP Code Migration Topics ... 517

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com Introduction

511SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C2xLP Migration Guidelines

C.1 Introduction
This chapter provides guidelines that are intended for conversion from C2xLP assembly source to C28x
object code. The conversion steps highlight the architectural changes between C2xLP and C28x operating
modes. Future releases of documents will contain code conversion examples and software library
modules facilitating the conversion from C2xLP mixed C and assembly source to C28x object code.

This chapter will be best understood if the reader has prior knowledge of Appendix C and Appendix E, as
they explain the architectural and instructional enhancements between the C2xLP and C28x DSPs.

C.2 Recommended Migration Flow
Use the following steps (shown in Figure C-1) to migrate code:
1. Install the latest development tools for the C28x DSP (e.g. Code Composer StudioTM version 2.x or

higher)
2. Build the project with following C28x assembler options:

−m20 ; enable C2xLP instructions
− g ; enable source level debug to view the C2xLP

; instructions
−mw ; enable additional assembly checks

Code Composer Studio 2.x will assemble all C2xLP instructions and map all the compatible
instructions to their equivalent C28x instructions and mnemonics. Code Composer Studio 2.x
disassembly will display the instructions in the memory as C28x mnemonics only. If the source is built
with –g option, the relevant C2xLP source file will be also displayed and will facilitate C2xLP instruction
readability during debug.

3. Memory map:
Define your C28x device memory map with C2xLP compatible memory sections. Build a linker
command file (*.cmd). See Table C-8.
Select a C2xLP assembly source code *.asm for migration to C28x architecture.

4. Boot Code:
Add the C2xLP mode conversion code segment shown in Section C.4.1 as the first set of instructions
after reset.
After reset, the C28x powers up in C27x object−compatible mode. Adding these few lines of
initialization code will place the device in the proper operating mode for executing reassembled C2xLP
code.

NOTE: The C27x object-compatible mode is for use only for migration from the C27x CPU. It is a
reserved operating mode for all C28x and C2xLP applications.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

Start

Step 1
Migrate to Code Composer Studio

for the C28x DSP

Step 2

Configure your project with −m20,−mw, and −g assembler

options to enable acceptance of C2xLP mnemonics. Also

build a linker command file *.cmd for your C28x device.

Step 3
Select the C2xLP assembler source code for C28x

migration *.asm

Step 4
Add the initialization code segment to enable C2xLP

compatible mode in the beginning of the code.

Step 5
Comment or fix incompatible instructions in

C2xLP source, if any

Step 6
Invoke the C28x Assembler and assemble the modified

C2xLP source code to get a C28x *.obj file

See the tables in Section C.5 for

corrections to source code

Assembly
errors

?

Yes

No

Step 7
Invoke the C28x Linker with assembled .obj files

Fix Linker errors. See the tables in

Section C.5 if required.

Linker
errors

?

Yes

No

Step 8
Linker outputs C28x COFF file *.out

Migrated code ready for Debug

End

Legend: * represents user filename

Recommended Migration Flow www.ti.com

512 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C2xLP Migration Guidelines

5. This step will facilitate faster code conversion. In the C2xLP source file modify the interrupt section
with suggestions from the reference table in section D.5.
In particular, modify the following types of code:
(a) IMR and IFR − See the example code in Section C.4.2.
(b) Context Save/Restore − See the example code in Section C.4.3
(c) Comment all the known incompatible instructions or map with equivalent instructions. See Table D-

2.

Figure C-1. Flow Chart of Recommended Migration Steps

6. Link the assembled code with the linker command file generated in Step 2. Relink if necessary to avoid
any linker related errors.

7. Assemble or reassemble using the C28x assembler until the assembly is successful with no errors.
The tables in Section C.5 will help to resolve most of the errors during the assembly process. This will
prepare a *.obj file, ready for C28x Linker processing.

8. The Linker output COFF file, *.out, will be the migrated code and should be ready for Debug and
integration.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com Mixing C2xLP and C28x Assembly

513SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C2xLP Migration Guidelines

C.3 Mixing C2xLP and C28x Assembly
At this point your original C2xLP code will be running on the C28x device. To facilitate further migration to
C28x code, there are special assembler directives that will facilitate mixing of C2xLP code and C28x code
segments.

The .c28_amode and .lp_amode directives tell the assembler to override the assembler mode.

.c28_amode— The .c28_amode directive tells the assembler to operate in the C28x object mode (−v28).

.lp_amode —The .lp_amode directive tells the assembler to operate in C28x object − accept C2xLP
syntax mode (−m20).
These directives can be repeated throughout a source file.
For example, if a file is assembled with the −m20 option, the assembler begins the assembly in the
C28x object − accept C2xLP syntax mode. When it encounters the .c28_amode directive, it
changes the mode to C28x object mode and remains in that mode until it encounters an .lp_amode
directive or the end of file.

EXAMPLE
In this example, C28x code is inserted in the existing C2xLP code.
; C2xLP source code
.lp_amode
LDP #VarA
LACL VarA
LAR AR0 *+, AR2
SACL *+
.
.
CALL FuncA
.
.
; The C2xLP code in function FuncA is replaced with C28x Code
; using C28x addressing (AMODE = 0)

.c28_amode ; Override the assembler mode to C28x syntax
FuncA:

C28ADDR ; Set AMODE to 0 C28x addressing
MOV DP, #VarB
MOV AL, @VarB
MOVL XAR0, *XAR0++
MOV *XAR2++, AL
.lp_amode ; Change back the assembler mode to C2xLP.
LPADDR ; Set AMODE to 1 to resume C2xLP addressing.
LRET

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

Code Examples www.ti.com

514 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C2xLP Migration Guidelines

C.4 Code Examples

C.4.1 Boot Code for C28x Operating Initialization

NOTE: The following code fragment must be placed in your code just after reset. This code will
place the device in the proper operating mode to execute C2xLP converted code:
Code Explanation
SETC OBJMODE ;C28OBJ = 1 enable 28x object mode
CLRC PAGE0 ;PAGE0 = 0 not relevant for 28x mode,

;cleared to zero
SETC AMODE ;AMODE = 1 enable C2xLP compatible

;addressing mode
SETC SXM ;SXM = 1 for C2xLP at reset, SXM = 0

;for 28x at reset
SETC C ;Carry bit =1 for C2xLP at reset,

;Carry bit = 0 for 28x at reset
SPM 0 ;Set product shift mode zero, that is PM bits = 001

;compatible to C2xLP PM reset;mode

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com Code Examples

515SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C2xLP Migration Guidelines

C.4.2 IER/IFR Code

Table C-1. Code to Save Contents Of IMR (IER) And Disabling Lower Priority
Interrupts At Beginning Of ISR

C2xLP C28x
INTx: .

MAR *,AR1
LDP #0
LACL IMR
SACL *+
AND #~INT_MASK
SACL IMR
.
.

INTx: .
AND IER,#~INT_MASK
.

Note: C28x saves IER as part of
automatic context save operation and
disables the current interrupt
automatically to prevent recursive
interrupts.

Table C-2. Code to Disable an Interrupt

C2xLP C28x
SETC INTM

LDP #0
LACL IMR
AND #~INTx
SACL IMR
CLRC INTM

AND IER,#~INTx

;operation is atomic and
;will not be interrupted.

Table C-3. Code to Enable an Interrupt

C2xLP C28x
SETC INTM

LDP #0
LACL IMR
OR #INTx
SACL IMR
CLRC INTM

;write 0 to clear
AND IFR,#~INTx

;operation is atomic and
;will not be interrupted

Table C-4. Code to Clear the IFR Register

C2xLP C28x
;write 1 to clear

SETC INTM
LDP #0
SPLK #0FFFFh,IFR
CLRC INTM

;write 0 to clear
AND IFR,#~INTx

;operation is atomic and
;will not be interrupted

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

Code Examples www.ti.com

516 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C2xLP Migration Guidelines

C.4.3 Context Save/Restore
The C28x automatically saves a number of registers on each interrupt. To perform a full context save,
some additional code must be added. Table C-5 shows a typical full context save and restore for both
processors.

Table C-5. Full Context Save/Restore Comparison

C2xLP Full Context Save/Restore C28x Full Context Save/Restore
INTx_ISR:
; context save

MAR *, AR1
MAR *+
SST #1,*+ SST #0,*+ SACH *+ SACL *+
SPH *+
SPL *+
MPY #1
SPL *+
SAR AR0, *+
SAR AR2, *+
SAR AR3, *+
SAR AR4, *+
SAR AR5, *+
SAR AR6, *+
SAR AR7, *+
.
;interrupt code goes here
.
.

; context restore
MAR *, AR1
MAR *−
LAR AR7, *−
LAR AR6, *−
LAR AR5, *−
LAR AR4, *−
LAR AR3, *−
LAR AR2, *−
LAR AR0, *−
SETC INTM
MAR *−
SPM 0
LT *+
MPY #1
LT *−
MAR *−
LPH *−
LACL *−
ADD *−, 16
LST #0, *−
LST #1, *−
CLRC INTM
RET

;C28x automatically saves the
;following registers:
;T,ST0,AH,AL,PH,PL,AR1,AR0,DP,ST1,
;DBGSTAT,IER,PC

INTx_ISR:
;interrupt context save

PUSH AR1H:AR0H ; 32−bit
PUSH XAR2 ; 32−bit
PUSH XAR3 ; 32−bit
PUSH XAR4 ; 32−bit
PUSH XAR5 ; 32−bit
PUSH XAR6 ; 32−bit
PUSH XAR7 ; 32−bit
PUSH XT ; 32−bit
.
.
;interrupt code goes here
.
.

;interrupt context restore
POP XT
POP XAR7
POP XAR6
POP XAR5
POP XAR4
POP XAR3
POP XAR2
POP AR1H:AR0H IRET

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com Reference Tables for C2xLP Code Migration Topics

517SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C2xLP Migration Guidelines

C.5 Reference Tables for C2xLP Code Migration Topics
Table C-6 through Table C-10 explain the major differences between the C2xLP and C28x architectures
and in their respective code generation process. These tables are organized to highlight the differences in
interrupts, CPU registers, memory maps, instructions, registers, and syntax. While migrating the C2xLP
code, check the tables for these key differences to make the necessary changes to the source to avoid
assembler or linker errors.

Table C-6. C2xLP and C28x Differences in Interrupts

Migration topic C2xLP C28x

1 Interrupt flag register IFR − Memory mapped register
Write 1 to clear bits set in IFR

IFR is a CPU register
Write 0 to clear bits set in IFR

2 Interrupt enable register IMR – Memory mapped register Renamed as IER and is a CPU
register

3 TRAP instruction
Only one TRAP vector
TRAP
Affects: INTM bit is not affected

multiple,32− TRAP vectors
TRAP 0, .. TRAP31
Affects: INTM bit is set to 1

4 INTR instruction syntax

INTR0
...
INTR31
Affects:
IFR not cleared
IMR not affected
INTM bit =1

INTR INT0
…
INTR INT31
Affects:
IFR cleared
IER affected
INTM bit =1

5 NMI Instruction NMI TRAP NMI

6 CLRC INTM instruction

CLRC INTM instruction blocks all
interrupts until the next instruction is
executed.
CLRC INTM
next_instn ;interrupts

;blocked
;until this
;executed

Interrupts enabled after the instruction
CLRC INTM

7 Interrupt enable and return from
interrupt service

CLRC INTM
RET IRET

8 Interrupt enable and return from
function call

CLRC INTM
next_instn

next_instn
CLRC INTM

9 Interrupts Vector

Uses Branch statements at the vector
address.
Ex: B Start ;assembly

;code
;

opcode in memory
0x7980 ;branch

;instruction
0x0040 ;branch

;address

32−bit absolute addresses.
; code in vector location
0x0040 (low address)
0x003F (high address)

10 Context save
No automatic context save
See Section D.3 for a full context
save/restore example

Automatic context save of CPU
registers T, ST0, AH, AL, PH, PL,
AR1, AR0, DP, ST1, DBGSTAT, IER,
PC
See Table C-5 for a full context save/
restore example

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

Reference Tables for C2xLP Code Migration Topics www.ti.com

518 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C2xLP Migration Guidelines

Table C-7. C2xLP and C28x Differences in Status Registers

Migration topic C2xLP C28x

1 Saving ST0/ST1 registers

Save:
SST #0,mem ;store ST0
SST #1,mem ;store ST1
Restore:
LST #0,mem ;load ST0
LST #1,mem ;load ST1

Save:
PUSH ST ;store ST0 to stack
PUSH ST ;store ST1 to stack
Restore:
POP ST1 ;load ST1

;from stack
POP ST0 ;load ST0

;from stack

2 ST0/ST1 bit differences ST0/ST1 bits have CPU registers and
status bits

ST0/ST1 bits are rearranged
compared to C2xLP registers.

3 INTM bit in ST0 Cannot be saved if ST0 register is
saved Saved along with ST0 register

4 Data page pointer
DP save

DP save/restored along with ST0.
SST #0,mem ;store ST0
LST #0,mem ;load ST0

DP is a register, hence explicit
store/restore is required.
PUSH DP ;store DP

;to stack
PUSH DP:ST1 ; 32−bit

; save
POP DP ;load DP from

;stack
POP DP:ST1 ; 32−bit

; restore

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com Reference Tables for C2xLP Code Migration Topics

519SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C2xLP Migration Guidelines

Table C-8. C2xLP and C28x Differences in Memory Maps

Migration topic C2xLP C28x

1 Program memory
16−bit address
Size : 64kx16
Range :0x0000−0xFFFFh

22 – bit address
Size : 64kx16 mapped to Range:
0x3F 0000h – 0x3F FFFFh

2 Data memory
Size : 64kx16
mapped to Range:
0x00 0000h – 0x00 FFFFh

Size : 64kx16
Range :0x0000−0xFFFFh

6 B2 Block Size: 32 words
Range: 0x0060−0x007F

Located in M0 Block 1Kx16
Size: 1K words
Range:
0x00 0060 –0x00 07Fh

7 B1 Block
Size: 256 words
Range: 0x0100−0x01FF (mirrored)
: 0x0200−0x02FF

Located in M0 Block − 1Kx16
Not Mirrored
Range:
0x00 0200 –0x00 02FFh

8 B0 Block

Mirrored locations
Size: 256 words
Range: 0x0300−0x03FF
: 0x0400−0x04FF

Located in M0 Block − 1Kx16
Not Mirrored
Range:
0x00 0300 –0x00 03FFh

9 CNF bit mapping of B0 Block

CNF bit maps B0 in data and program
memory
CNF =0 − B0 in data memory
Range: 0x0300−0x03FF
: 0x0400−0x04FF
CNF =1 − B0 in program memory
Range: 0xFE00−0xFEFF
: 0xFF00−0xFFFF

Not applicable

10 Vector table range Size: 32x16 words
Range: 0x0000−0x003F

Size 32x32 words
0x3F FFC0 – 0x3F FFFF − at reset
In C28x based DSP devices may use
additional expanded vector table (e.g.,
PIE)

11 Internal SARAM mapping in data memory Mapped as internal memory map Reserved for emulation registers
Range : 0x0800 −0x1000h

5 I/O space Range: 0x0000 −0xFFFFh

Range: 0x0x00 000 −0x00 FFFFh
I/O Space may or may not be
implemented on a particular device. See
the device datasheet for details.

6 Global space Range: 0x8000 −0xFFFFh

Implemented via the XINTF
Global Space may or may not be
implemented on a specific C28x device.
See the device datasheet for details.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

Reference Tables for C2xLP Code Migration Topics www.ti.com

520 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C2xLP Migration Guidelines

Table C-9. C2xLP and C28x Differences in Instructions and Registers

Migration topic C2xLP C28x

1 Conditional Instructions
Branches, Calls, Returns

Can take more than one condition in
these instructions

The C28x assembler will automatically
break the instructions into multiple
instructions.

2 When are CPU Flags updated? Conditional flags update on Accumulator
operation only

Conditional flags update on Accumulator,
register and memory operations

3 Repeat instructions Many instructions are repeatable
Same instructions are repeatable. For
additional repeatable instructions see
Table D-3.

4 GREG register Memory mapped register

Memory mapped register in XINTF
Global Space may or may not be
implemented on a particular device.
See the device data sheet for details.

5 ARx registers

ARx registers are 16−bit only
LAR AR1, #0FFFFh
ADRK #1
Result:
AR1 = 0x0000h

XARn registers are 32 bits. Some
instructions access only the lower 16 bits
known as ARn
MOV XAR1, #0FFFFh
ADD XAR1,#1
Result:
XAR1 = 0x10000h

6 2s complement subtraction to ARx

LAR AR1, #0FFFFh
ADRK #0FE
Result:
AR1 = 0xFFFDh

MOV XAR1, #0FFFFh
ADD XAR1,#0FE
Result:
XAR1 = 0x1FFFDh

7 I/O instructions Supports IN, OUT instructions

Supports IN, OUT,UOUT
I/O Space may or may not be
implemented on a particular device. See
the device datasheet for details.

8 Stack
Uses 8−deep Hardware stack
C2xLP Compiler uses AR1 as Stack
Pointer

Uses software stack pointer register
(SP)
Compiler will use SP register, as stack
pointer

9 Program counter
16 bits in size
B 5000h ; Branch to 5000
; address

22 bits in size
The C28x assembler will use special
C2xLP compatible instructions that force
the upper program address lines to 0x3F
thus creating a 16−bit C2xLP compatible
PC.
B 0x3F5000 ;
or
XB 5000h

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com Reference Tables for C2xLP Code Migration Topics

521SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C2xLP Migration Guidelines

Table C-10. Code Generation Tools and Syntax Differences

Migration topic C2xLP C28x

1 Mnemonic

Source or destination not always
specified.
LACL, source
SACL, destination

Instructions are always of the form
mnemonic destination, source
MOV destination,source

2 Direct addressing syntax
−@ symbol LACL dma

MOV ACC, @@dma ; C2xLP mode
MOV ACC, @dma ; 28x mode
@@ − means 128 word data page
@ − means 64 word data page

3 Indirect address
pointer buffer, ARB

In indirect addressing, Auxiliary register
will be pointed by ARP register in ST0.
ARB is ARP pointer buffer in ST1.
MAR *,AR2 ; ARP =AR2
LACL *

No ARB equivalent in 28x.
Selected ARx is referenced in the
instruction itself.
MOV ACC,*AR2

4 New Address pointers
syntax − *(0 BLDD #4545h,RegA MOV @REGA, *(0:0x4545)

5 Repeat instructions
syntax change − ||

No additional syntax
RPT #5
NOP

Uses || syntax with repeat instructions
RPT #5
|| NOP

6
Reserved register names
Application code should not use these
reserved words

ST0, ST1, IFR, IMR, GREG

ST0, ST1, AH, AL, PH, PL,T, TL,
XAR0, XAR1, XAR2, XAR3, XAR4,
XAR5, XAR6, XAR7, DP, ST1,
DBGSTAT, IER, PC, RPC

7 Increment/Decrement
syntax change

MAR *,AR2
LACL *+
….
LACL *−

MOV ACC, *AR2++
…..
MOV ACC, *AR2−−

8 Shift syntax change LACL dma, 4 MOV ACC,dma <<4

9 Number radix usage

x .set 09 ;Assembler
;accepts
;this as
;decimal 9

x .set 09
Avoid leading zeros, else the assembler
will be use this as octal number.

10 Order of precedence in expressions –
Syntax change

Expressions in assembly statements do
not require parenthesis.
x.set A<<B = C>>D

Expressions in assembly statements do
require parenthesis.
x.set (A<<B = C>>D)

11 Tools Directives
.mmregs ; reserved register use
.port
.globl

not applicable
not applicable
.global

12 Macros Useful in coding style
Useful in coding style
All C2xLP Macros are not directly used
Convert them individually to 28x mode.

13 Assembler options −v2xx −m20, −v28

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

522 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C2xLP Instruction Set Compatibility

Appendix D
SPRU430F–August 2001–Revised April 2015

C2xLP Instruction Set Compatibility

This appendix highlights the differences in syntax between the C2xLP and the C28x instructions, and
details which C2xLP compatible instructions are repeatable on the C28x. The C28x assembler accepts
both C28x and C2xLP assembly source syntax. This enables you to quickly port C2xLP code with minimal
effort. Additionally, all compatible C2xLP instructions have an equivalent C28x style syntax. The C28x
disassembler will show the C28x equivalent syntax.

Topic ... Page

D.1 Condition Tests on Flags... 523
D.2 C2xLP vs. C28x Mnemonics... 523
D.3 Repeatable Instructions... 527

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com Condition Tests on Flags

523SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C2xLP Instruction Set Compatibility

D.1 Condition Tests on Flags
On the C28x, all EQ/NEQ/GT/LT/LEQ conditional tests are performed on the state of the Z and N flags.
On the C2xLP, the same condition tests are performed on the contents of the ACC register.

Table D-1. C28x and C2xLP Flags

Designation C28x Modes C2xLP Equivalent
NEQ != 0 ACC != 0
EQ == 0 ACC == 0
GT > 0 ACC > 0
GEQ >= 0 ACC >= 0
LT < 0 ACC < 0
LEQ <= 0 ACC <= 0
HI higher −
HIS, C higher or same, carry set C == 1
LO, NC lower, carry clear C == 0
LOS lower or same −
NOV no overflow OV == 0
OV overflow OV == 1
NTC TC == 0 TC == 0
TC TC == 1 TC == 1
NBIO test BIO input == 0 BIO == 0
UNC unconditional UNC

On the C28x, the Z and N flags are set on all ACC operations. That includes ACC loads. Therefore, the Z
and N flags reflect the current state of the ACC immediately after an operation on the ACC.

NOTE: The NBIO condition requires an external pin that is only present on TMS320x2801x devices.

D.2 C2xLP vs. C28x Mnemonics
Table D-2 lists the C2xLP instructions with the C28x equivalent syntax. The C28x assembler will accept
either the C2xLP syntax or the equivalent C28x syntax. The disassembler will decode and display the
C28x syntax.

The C2xLP cycle count numbers shown are for zero wait-state internal memory, where n equals the
number of repetitions (i.e., if an instruction is repeated, using the RPT instruction for repeatable
instructions, n times it is executed n+1 times).

Table D-2. C2xLP Instructions and C28x Equivalent Instructions

C2xLP C28x
Instruction Mnemonic Cycles Size Instruction Mnemonic Cycles Size

ABS n+1 16 ABS ACC 1 16
ADD loc16[,0] n+1 16 ADD ACC,loc16 {<<0} n+1 16
ADD loc16,1..15 n+1 16 ADD ACC,loc16 << 1..15 n+1 32
ADD loc16,16 n+1 16 ADD ACC,loc16 << 16 n+1 16
ADD #8bit 1 16 ADDB ACC,#8bit 1 16
ADD #16bit[,0..15] 2 32 ADD ACC,#16bit {<<0..15} 1 32
ADDC loc16 n+1 16 ADDCU ACC,loc16 1 16
ADDS loc16 n+1 16 ADDU ACC,loc16 n+1 16
ADDT loc16 n+1 16 ADD ACC,loc16 << T n+1 32
ADRK #8bit 1 16 ADRK #8bit 1 16

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

C2xLP vs. C28x Mnemonics www.ti.com

524 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C2xLP Instruction Set Compatibility

Table D-2. C2xLP Instructions and C28x Equivalent Instructions (continued)
C2xLP C28x

Instruction Mnemonic Cycles Size Instruction Mnemonic Cycles Size
AND loc16 n+1 16 AND ACC,loc16 n+1 16
AND #16bit,16 2 32 AND ACC,#16bit<<16 1 32
AND #16bit[,0..15] 2 32 AND ACC,loc16 {<< 0..15} 1 32
APAC n+1 16 ADDL ACC,P<<PM n+1 16
B pma 4 32 XB pma,UNC 7 32
B pma,*,ARn 4 32 XB pma,*,ARPn 4 32

B pma,*ind 4 32 NOP XB *ind
pma, UNC 8 32

B pma,*ind,ARn 4 32 NOP XB *ind pma,*,ARPn 5 48
BACC 4 16 XB *AL 7 16
BANZ pma,*ind[,ARn] 4/2 32 XBANZ pma,*ind[,ARAPn] 4/2 32
BANZ pma,*BR0+/*BR0−[,ARn] 4/2 32 Not applicable

BCND pma[,COND] 4/2 32
XB or pma,COND 7/4 32
SB #8bitOff,COND 16

BCND pma,COND1,COND2,..,
CONDn 4/2 32

SB skip,opposite of COND1 7+ 48+
SB skip,opposite of COND2
. .
XB pma,CONDn
skip:

BIT loc16,15−bit n+1 16 TBIT loc16,#bit 1 16
BITT loc16 n+1 16 TBIT loc16,T 1 32
BLDD #src_addr,loc16 n+3 32 MOV loc16,*(0:src_addr) n+2 32
BLDD loc16,#dest_addr n+3 32 MOV *(0:dest_addr),loc16 n+2 32
BLPD #pma,loc16 n+3 32 XPREAD loc16,*(pma) n+2 32
CALA 4 16 XCALL *AL 7 16
CALL pma 4 32 XCALL pma,UNC 7 32
CALL pma,*,ARn 4 32 XCALL pma,*,ARPn 4 32

CALL pma,*ind 4 32
NOP *ind 8 48
XCALL pma,UNC

CALL pma,*ind,ARn 4 32
NOP *ind 5 48
XCALL pma,*,ARPn

CC pma,COND 4/2 32 XCALL pma,COND 7/4 32

CC pma,COND1,..,CONDn 4/2 32

SB skip,opposite of COND1 7+ 48+
skip,opposite of COND2

SB
pma,CONDn

. XCALL
skip:

CLRC INTM n+1 16
CLRC XF/OVM/SXM/TC/C n+1 16 CLRC XF/OVM/SXM/TC/C 2,1 16
CLRC CNF n+1 16 Not applicable
CMPL n+1 16 NOT ACC 1 16
CMPR 0/1/2/3 n+1 16 CMPR 0/1/2/3 1 16
DMOV loc16 n+1 16 DMOV loc16 n+1 16
IDLE 1 16 IDLE 5 16
IN loc16,PA 2(n+1) 32 IN loc16,*(PA) n+2 32
INTR K 4 16 Not applicable

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com C2xLP vs. C28x Mnemonics

525SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C2xLP Instruction Set Compatibility

Table D-2. C2xLP Instructions and C28x Equivalent Instructions (continued)
C2xLP C28x

Instruction Mnemonic Cycles Size Instruction Mnemonic Cycles Size

(1) True/False

LACC loc16[,0] n+1 16 MOV ACC,loc16 [<< 0] 1 16
LACC loc16,1..15 n+1 16 MOV ACC,loc16 << 1..15 1 32
LACC loc16,16 n+1 16 MOV ACC,loc16 << 16 1 16
LACC #16bit,0..15 2 32 MOV ACC,#16bit << 0..15 1 32
LACL loc16 n+1 16 MOVU ACC,loc16 1 16
LACL #8bit 1 16 MOVB ACC,#8bit 1 16
LACT loc16 n+1 16 MOV ACC,loc16 << T 1 32
LAR ARn,loc16 2(n+1) 16 MOVZ ARn,loc16 1 16
LAR ARn,#8bit 2 16 MOVB XARn,#8bit 1 16
LAR ARn,#16bit 2 32 MOVL XARn,#22bit 1 32
LDP loc16 2(n+1) 16 Not applicable
LDP #9bit 2 16 MOVZ DP,#10bit >> 1 1 16
LPH loc16 n+1 16 MOV PH,loc16 1 16
LST #0/1,loc16 2(n+1) 16
LT loc16 n+1 16 MOV T,loc16 1 16
LTA loc16 n+1 16 MOVA T,loc16 n+1 16
LTD loc16 n+1 16 MOVAD T,loc16 1 16
LTP loc16 n+1 16 MOVP T,loc16 1 16
LTS loc16 n+1 16 MOVS T,loc16 n+1 16
MAC pma,loc16 n+3 32 XMAC P,loc16,*(pma) n+2 32
MACD pma,loc16 n+3 32 XMACD P,loc16,*(pma) n+2 32
MAR *ind[,ARn] n+1 16 NOP *ind[,ARPn] n+1 16
MPY loc16 n+1 16 MPY P,T,loc16 1 16
MPY #13bit 1 16 MPY P,@T,#16bit 1 32
MPYA loc16 n+1 16 MPYA P,T,loc16 n+1 16
MPYS loc16 n+1 16 MPYS P,T,loc16 n+1 16
MPYU loc16 n+1 16 MPYU P,T,loc16 1 16
NEG n+1 16 NEG ACC 1 16
NMI 4 16 Not applicable
NOP n+1 16 NOP n+1 16
NORM */*+/*−/*0+/*0− n+1 16 NORM *BR0+/*BR0− n+l 16
NORM ACC,*/*++/*−−/*0++/*0−− n+4 16 Not applicable
OR loc16 n+1 16 OR ACC,loc16 n+1 16
OR #16bit,16 2 32 OR ACC,#16bit<<16 1 32
OR #16bit[,0..15] 2 32 OR ACC,#16bit {<< 0..15} 1 32
OUT loc16,PA 3(n+1) 32 OUT *(PA),loc16 4 32
PAC n+1 16 MOV ACC,P<<PM 1 16
POP n+1 16 MOVU ACC,*−−SP 1 16
POPD loc16 n+1 16 POP loc16 2 16
PSHD loc16 n+1 16 PUSH loc16 2 16
PUSH n+1 16 MOV *SP++,AL n+1 16
RET 4 16 XRETC UNC 7 16
RETC COND 4/2 (1) XRETC COND 7/4 16

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

C2xLP vs. C28x Mnemonics www.ti.com

526 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C2xLP Instruction Set Compatibility

Table D-2. C2xLP Instructions and C28x Equivalent Instructions (continued)
C2xLP C28x

Instruction Mnemonic Cycles Size Instruction Mnemonic Cycles Size

RETC COND1,COND2,..,
CONDn 4/2 16

SB $10,opposite of COND1 7+ 48+
SB $10,opposite of COND2
. .
XRETC CONDn
$10:

ROL n+1 16 ROL ACC n+1 16
ROR n+1 16 ROR ACC n+1 16
RPT loc16 1 16 RPT loc16 1 16
RPT #8bit 1 16 RPT #8bit 1 16
SACH loc16[,0] n+1 16 MOV loc16,AH n+1 16
SACH loc16,1 n+1 16 MOVH loc16,ACC << 1 n+1 16
SACH loc16,2..7 n+1 16 MOVH loc16,ACC << 2..7 n+1 32
SACL loc16[,0] n+1 16 MOV loc16,AL n+1 16
SACL loc16,1 n+1 16 MOV loc16,ACC << 1 n+1 16
SACL loc16,2..7 n+1 16 MOV loc16,ACC << 2..7 n+1 32
SAR ARn,loc16 n+1 16 MOV loc16,ARn 1 16
SBRK #8bit 1 16 SBRK #8bit 1 16
SETC INTM n+1 16 SETC INTM 2 16
SETC XF/OVM/SXM/TC/C n+1 16 SETC XF/OVM/SXM/TC/C 2,1 16
SETC CNF n+1 16 Not applicable
SFL n+1 16 LSL ACC,1 n+1 16
SFR n+1 16 SFR ACC,1 n+1 16
SPAC n+1 16 SUB ACC,P<<PM n+1 16
SPH loc16 n+1 16 MOVH loc16,P n+1 16
SPL loc16 n+1 16 MOV loc16,P n+1 16
SPLK #0x0000,loc16 2 32 MOV loc16,#0 n+1 16
SPLK #16bit,loc16 2 32 MOV loc16,#16bit n+1 32
SPM 0 1 16 SPM 0 1 16
SPM 1 1 16 SPM 1 (or +1) 1 16
SPM 2 1 16 SPM 2 (or +4) 1 16
SPM 3 1 16 SPM 3 (or −6) 1 16
SQRA loc16 n+1 16 SQRA loc16 n+1 32
SQRS loc16 n+1 16 SQRS loc16 n+1 32
SST #0/1,loc16 n+1 16 Not applicable
SUB loc16[,0] n+1 16 SUB ACC,loc16 {<< 0} n+1 16
SUB loc16,1..15 n+1 16 SUB ACC,loc16 << 1..15 n+1 32
SUB loc16,16 n+1 16 SUB ACC,loc16 << 16 n+1 16
SUB #8bit 1 16 SUBB ACC,#8bit 1 16
SUB #16bit[,0..15] 2 32 SUB ACC,#16bit {<< 0..15} 1 32
SUBB loc16 n+1 16 SUBU ACC,loc16 1 16
SUBC loc16 n+1 16 SUBCU ACC,loc16 n+1 16
SUBS loc16 n+1 16 SUBU ACC,loc16 n+1 16
SUBT loc16 n+1 16 SUB ACC,loc16 << T n+1 32
TBLR loc16 n+3 16 XPREAD loc16,*AL n+4 32
TBLW loc16 n+3 16 XPWRITE *AL,loc16 n+4 32
TRAP 4 16 Not applicable

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com Repeatable Instructions

527SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C2xLP Instruction Set Compatibility

Table D-2. C2xLP Instructions and C28x Equivalent Instructions (continued)
C2xLP C28x

Instruction Mnemonic Cycles Size Instruction Mnemonic Cycles Size
XOR loc16 n+1 16 XOR ACC,loc16 n+1 16
XOR #16bit,16 2 32 XOR ACC,#16bit<<16 1 32
XOR #16bit[,0..15] 2 32 XOR ACC,#16bit [<< 0..15] 1 32
ZALR loc16 n+1 16 ZALR ACC,loc16 1 32

D.3 Repeatable Instructions
Not all of the repeatable instructions on the C2xLP are repeatable on the C28x. The ones that were not
made repeatable do not make sense to repeat from a functionality standpoint. Also, some instructions that
were not repeatable on the C2xLP are repeatable on the C28x.

Table D-3 shows which C2xLP operations are repeatable, and which ones are repeatable on the C28x.

Table D-3. Repeatable Instructions for the C2xLP and C28x

C2xLP Instruction C2xLP Repeatable C28x Repeatable
ABS X
ADD mem,shift1 X X
ADDC mem X
ADDS mem X X
ADDT mem X X
AND mem X X
APAC X X
BIT mem,bit_code X
BITT mem X
BLDD #addr,mem X X
BLDD mem,#addr X X
BLPD #pma,mem X X
CLRC CNF/XF/INTM/OVM/SXM/TC/C X
CMPL X
CMPR constant X
DMOV mem X X
IN mem,PA X X
INTR K X
LACC mem[,shift1] X
LACL mem X
LACT mem X
LAR AR,mem X
LDP mem X
LPH mem X
LST #n,mem X
LT mem X
LTA mem X X
LTD mem X
LTP mem X
LTS mem X X
MAC pma,mem X X
MACD pma,mem X X

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

Repeatable Instructions www.ti.com

528 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

C2xLP Instruction Set Compatibility

Table D-3. Repeatable Instructions for the C2xLP and C28x (continued)
C2xLP Instruction C2xLP Repeatable C28x Repeatable
MAR {ind}[,nextARP] X X
MPY mem X
MPY #k X
MPYA mem X X
MPYS mem X X
MPYU mem X
NEG X NOP X X
NORM {ind} X X
OR mem X X
OUT mem,PA X X
PAC X
POP X
POPD mem X
PSHD mem X
PUSH X
ROL X X
ROR X X
SACH mem[,shift] X X
SACL mem[,shift] X X
SAR AR,mem X
SETC CNF/XF/INTM/OVM/SXM/TC/C X
SFL X X
SFR X X
SPAC X X
SPH mem X X
SPL mem X X
SPLK #lk,mem X X
SQRA mem X X
SQRS mem X X
SST #n,mem X
SUB mem[,shift1] X X
SUBB mem X
SUBC mem X X
SUBS mem X X
SUBT mem X X
TBLR mem X X
TBLW mem X X
XOR mem X X
ZALR mem X

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

529SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

Migration from C27x to C28x

Appendix E
SPRU430F–August 2001–Revised April 2015

Migration from C27x to C28x

This appendix highlights the architecture differences between the C27x and the C28x and describes how
to migrate your code from a C27x-based design to a C28x-based design.

Topic ... Page

E.1 Architecture Changes ... 530
E.2 Moving to a C28x Object ... 533
E.3 Migrating to C28x Object Code... 534
E.4 Compiling C28x Source Code .. 536

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

T(16) TL(16)

PH(16) PL(16)

AH(16) AL(16)

XT(32)

P(32)

ST0(16)

ST1(16)

IER(16)

DBGIER(16)

ACC(32) IFR(16)

AR0H(16)

AR1H(16)

AR2H(16)

AR3H(16)

AR4H(16)

AR5H(16)

AR6H(16)

AR7H(16)

DP(16)

SP(16)

6/7bit
offset

AR0(16)

AR1(16)

AR2(16)

AR3(16)

AR4(16)

AR5(16)

AR6(16)

AR7(16)

XAR0(32)

XAR1(32)

XAR2(32)

XAR3(32)

XAR4(32)

XAR5(32)

XAR6(32)

XAR7(32)

PC(22)

RPC(22)

Architecture Changes www.ti.com

530 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

Migration from C27x to C28x

E.1 Architecture Changes
Certain changes to the architecture that are important when migrating from the C27x to the C28x include:
• Changes to registers
• Full context save and restore
• B0/B1 memory map consideration

E.1.1 Changes to Registers
The register modifications from the C27x are shown in Figure E-1. Shaded registers highlight the changes
or enhancements for the C28x.

Figure E-1. C28x Registers

A brief description of the register modifications is given below:

XT(32), TL(16) —The T register is increased to 32-bits and called the XT register. The existing C27x T
register portion represents the upper 16-bits of the new 32-bit register. The additional 16-bits, called
the TL portion, represents the lower 16-bits.

XAR0,..,XAR7(32) —All of the AR registers are stretched to 32-bits. This enables a full 22-bit address.
For addressing operations, only the lower 22-bits of the registers are used, the upper 10-bits are
ignored. For operations between the ACC, all 32-bits are valid (register addressing mode @XARx).
For 16-bit operations to the low 16-bit of the registers (register addressing mode @ARx), the upper
16-bits are ignored.

RPC(22) —This is the return PC register. When a call operation is performed, the return address is saved
in the RPC register and the old value in the RPC is saved on the stack (in two 16-bit operations).
When a return operation is performed, the return address is read from the RPC register and the
value on the stack is written into the RPC register (in two 16-bit operations). The net result is that
return operations are faster (4 instead of 8 cycles)

SP(16) —By default the C28x SP register is initialized to 0x400 after a reset.

ST0 (16) —Shaded items indicate a change or addition from the C27x.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com Architecture Changes

531SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

Migration from C27x to C28x

Table E-1. ST0 Register Bits

Bit(s) Mnemonic Description Reset Value R/W
0 SXM Sign Extension Mode Bit 0 R/W
1 OVM Overflow Mode Bit 0 R/W
2 TC Test Control Bit 0 R/W
3 C Carry Bit 0 R/W
4 Z Zero Condition Bit 0 R/W
5 N Negative Condition Bit 0 R/W
6 V Overflow Condition Bit 0 R/W

9:7 PM Product Shift Mode 0 (+1 shift) R/W
15:10 OVC/OVCU ADC Overflow Counter 0 R/W

PM — Functionality of the Product Shift Mode changes if the AMODE bit in ST1 is set to 1. C27x users will
not modify the AMODE bit and PM will function as they did on the C27x.

OVC/OVCU —The overflow counter is modified so that it behaves differently for signed or unsigned
operations. For signed operations (OVC), it behaves as it does on the C27x (increment for positive
overflow, decrement for negative underflow of a signed number). For unsigned operations (OVCU),
the overflow counter increments for an ADD operation when there is a carry generated and
decrements for a SUB operation when a borrow is generated. Basically, in unsigned mode, the
OVCU behaves like a carry (C) counter and in signed mode the OVC behaves like an overflow (V)
counter.

Table E-2. ST1 Register Bits
Bit(s) Mnemonic Description Reset Value R/W

0 INTM Interrupt Enable Mask Bit 1 (disabled) R/W

1 DBGM Debug Enable Mask Bit 1 (disabled) R/W

2 PAGE0 PAGE0 Direct/Stack Address Mode 0 R/W

3 VMAP Vector Map Bit VMAP input R/W

4 SPA Stack Pointer Align Bit 0 R/W

5 LOOP Loop Instruction Status Bit 0 R

6 EALLOW Emulation Access Enable Bit 0 R/W

7 IDLESTAT IDLE Status Flag Bit 0 R

8 AMODE Address Mode Bit 0 R/W

9 OBJMODE Object Compatibility Mode Bit 0 R/W

10 RESERVED Reserved for future use 0 R

11 M0M1MAP M0 and M1 Mapping Mode Bit 0 R

12 XF XF Status Bit 0 R/W

15:13 ARP Auxiliary Register Pointer 0 R/W

AMODE —This mode selects the appropriate addressing mode decodes for compatibility with the C2xLP
device. For all C27x/C28x based projects leave this bit as 0.

OBJMODE —This mode is used to select between C27x object mode (OBJMODE == 0) and C28x object
mode (OBJMODE == 1) compatibility. This bit is set by the ”C28OBJ” (or ”SETC OBJMODE”)
instructions. This bit is cleared by the ”C27OBJ” (or ”CLRC OBJMODE”) instructions. The pipeline
is flushed when setting or clearing this bit using the given instructions. This bit can be saved and
restored by interrupts and when restoring the ST1 register. This bit is set to 0 on reset.

M0M1MAP —This mode is used to remap block M0 and M1 in program memory space as discussed in
detail in Section E.1.2. This bit is set by the ”C28MAP” (or ”SETC M0M1MAP”) instructions. This bit
is cleared by the ”C27MAP” (or ”CLRC M0M1MAP”) instructions. The pipeline is flushed when
setting or clearing this bit using the given instructions. This bit cannot be restored by interrupts and
when restoring the ST1 register (read only).

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

C27x

Program Space Data Space

B0 B1

B0

00 0000

00 0400

00 07FF

Architecture Changes www.ti.com

532 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

Migration from C27x to C28x

XF — This bit reflects the current state of the XFS output signal. This signal is for C2xLP compatibility and
is not used by C27x users.

E.1.2 Full Context Save and Restore
On both C27x and C28x, the registers in Figure E-2 are automatically saved on the stack on an interrupt
or trap operation and automatically restored on an IRET instruction.

31 16 1 0
T ST0

AH AL
PH PL
AR1 AR0
DP ST1

DBGSTAT IER
PCH PCL

Figure E-2. Full Context Save/Restore

Due to the register changes described in Section E.1.1. C28x additional registers must be saved for a full-
context store. Figure E-3 shows the difference between a C27x and C28x full-context save/restore for an
interrupt or trap.

Figure E-3. Code for a Full Context Save/Restore for C28x vs C27x

If you perform a task-switch operation (stack changes), the RPC register must be manually saved. You
are not to save the RPC register if the stack is not changed.

E.1.3 B0/B1 Memory Map Consideration
Another architecture change to consider is the C27x mapping of blocks B0 and B1. To avoid confusion, on
the C28x these blocks are known as M1 and M0 respectively. On the C27x, block B1 was mapped to only
data space and block B0 was mapped both in program and data space. In addition, block B0 was mapped
to different address ranges in program and in data space. The C27x mapping of these blocks is shown in
Figure E-4.

Figure E-4. Mapping of Memory Blocks B0 and B1 on C27x

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

C27x/C28x
Source Code
(.asm .c .cpp)

CL2000 C28x Object
(.out)–V28 –m27

C27x Source
Code

(.asm .c .cpp)

CL2000 C27x Object
(.out)–V27

M0 M0

M1 M1

C28 at Reset
(M0M1MAP = 1)

Program Space Data Space
00 0000

C27x Compatible Mapping
(M0M1MAP = 0)

Program Space Data Space

M1 M0

00 0000

00 0400

M0

00 07FF

00 0400

M1

00 07FF

M1

www.ti.com Architecture Changes

533SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

Migration from C27x to C28x

On a C28x device at reset, these blocks are mapped uniformly in both program and data space as shown
in Figure E-5. This can cause issues when running C27x object code that relies on the C27x mapping. If
your code relies on this mapping, you can flip-block M0 and M1 in program space only by clearing the
M0M1MAP bit in status register 1 (ST1) to a 0. Executing the "C27MAP" (or "CLRC M0M1MAP")
instruction is the only way to clear this bit. With M0M1MAP == 0, the mapping is compatible with the C27x
B0 and B1 blocks as shown in Figure D-4. Remember that after a reset M0 and M1 revert to the C28x
mapping.

It is strongly recommended that you migrate your code to use the default C28x mapping of these blocks
and not rely on the compatible mapping.

Figure E-5. C27x Compatible Mapping of Blocks M0 and M1

E.1.4 C27x Object Compatibility
At reset, the C28x operates in C27x object mode (OBJMODE == 0). In this mode, the C28x CPU is 100%
object-code compatible and cycle-count compatible with the C27x. In this case, you will compile your code
just as you would for a C27x design as shown in Figure E-6.

Figure E-6. Building a C27x Object File From C27x Source

-v27 Accepts C27x syntax only. Generates C27x object only (assumes OBJMODE = 0).

Once you have taken the mapping of blocks M0 and M1 into account as previously described, you can
simply load the C27x object (.out) code into the C28x and run it. When using the C27x compatible mode,
you are limited to the C27x instruction set. To take advantage of advanced C28x operations, you should
migrate to C28x object code.

When the device is operating in C27x object mode (OBJMODE == 0), the upper bits of the stretched
registers (XAR0(31:16) to XAR5(31:16), XAR6(31:22), XAR7(31:22)) are protected from writes. Hence, if
the registers are set to zero by a reset then the XARn pointers behave like they do on the C27x and
overflow problems are not of concern.

E.2 Moving to a C28x Object
The C28x instruction set is a superset of the C27x instruction set. The syntax of a number of instructions
however has changed slightly due to the modifications in registers as previously described. (For a
summary of syntax changes, see Section E.3.1). To quickly move to C28x object code, the codegen tools
allow you to build a C28x object file with a switch allowing for C27x source syntax:

Figure E-7. Building a C28x Object File From Mixed C27x/C28x Source

-v28-m27 Accepts C28x & C27x syntax. Generates C28x object only (assumes OBJMODE == 1).

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

Moving to a C28x Object www.ti.com

534 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

Migration from C27x to C28x

Prior to running C28x object you must set the mode of the device appropriately (OBJMODE == 1). To do
this, you set the OBJMODE bit in ST1 to 1 after reset. This can be done with a ”C28OBJ” (or ”SETC
OBJMODE”) instruction. Note that before the “C28OBJ” instruction is executed, the disassembly window
in the debugger may display incorrect information. This is because the debugger will decode memory as
C27x opcodes until after you execute the “C28OBJ” instruction.

When running in this mode, the disassembly window in your debugger will show the C28x instruction
syntax for all instructions. For example, the C27x MOV AR0,@SP instruction will look like MOVZ
AR0,@SP, which is the C28x-equivalent instruction.

Now that you are using a C28x object file, you can add C28x operations to your source code.

E.2.1 Caution When Changing OBJMODE
On reset, the XARn registers are forced to 0x0000 0000 and OBJMODE == 0. When operating in C27x
compatible mode (OBJMODE == 0), the upper bits of the XARn registers are protected from writes. Some
things to be aware of when changing OBJMODE:
• When operating in C28x object mode (OBJMODE == 1) overflow can occur to the extended portion of

XARn registers and program execution is not specified. This would be an issue for assembly code that
is reassembled in C28x mode when you relied on the fact that C27x registers were a certain size.

• If the user switches to C28x object mode (OBJMODE == 1), then the upper bits of XARn registers may
be modified. If you then switch back to C27x mode (OBJMODE == 0), the upper bits of XARn registers
may contain nonzero values. You MUST zero out the upper bits of the XARn registers when switching
from OBJMODE == 1 to OBJMODE == 0.

• It is recommended that you not switch modes frequently in your code. Typically, you will select the
appropriate operating mode at boot time and stick to one mode for the whole program.

E.3 Migrating to C28x Object Code
This section describes additional changes to C27x necessary for migrating your C27x code to pure C28x
code.

E.3.1 Instruction Syntax Changes
Syntax changes were necessary for clarity and because of changes in the auxiliary registers stretched
pointers. Table E-3 shows the C27x instructions that changed syntax on the C28x. For all other C27x
instructions, the syntax remains the same. For new C28x instructions, the syntax is documented in
Chapter 6.

Table E-3. Instruction Syntax Change

C27x Syntax C28x Syntax
ADDB ARn,#7bit
ADDB XAR6/7,#7bit

ADDB XARn,#7bit

SUBB ARn,#7bit
SUBB XAR6/7,#7bit

SUBB XARn,#7bit

MOV AR0/../5,loc16 MOVZ AR0/../5,loc16

MOVB AR0/../5,#8bit MOVB XAR0/../5,#8bit

MOV XAR6/7,loc32
MOVL XAR6/7,loc32

MOVL XAR6/7,loc32

MOV loc32,XAR6/7
MOVL loc32, XAR6/7

MOVL loc32,XAR6/7

CALL 22bit
LC 22bit

LC 22bit

CALL *XAR7
LC *XAR7

LC *XAR7

RET
LRET

LRET

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com Migrating to C28x Object Code

535SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

Migration from C27x to C28x

Table E-3. Instruction Syntax Change (continued)
C27x Syntax C28x Syntax

RETE
LRETE

LRETE

MOV ACC,P {MOVP T,@T decode} MOVL ACC,P << PM {MOVP T,@T decode}

ADD ACC,P {MOVA T,@T decode} ADD ACC,P << PM {MOVA T,@T decode}

SUB ACC,P {MOVS T,@T decode} SUBL ACC,P << PM {MOVS T,@T decode}

CMP ACC,P CMPL ACC,P << PM

MOV P,ACC MOVL P,ACC

NORM ACC,ARn++
NORM ACC,XAR6/7++

NORM ACC,XARn++

NORM ACC,ARn--
NORM ACC,XAR6/7--

NORM ACC,XARn--

B 16bitOff {unconditional} B 16bitOff,UNC [2]

SB 8bitOff {unconditional} SB 8bitOff,UNC [2]

For conditional branches on the C28x, the UNC code must always be specified for unconditional tests.
This will help to distinguish between unconditional C2xLP branches (which have the same mnemonic ”B”).

E.3.2 Repeatable Instructions
On the C28x, additional instructions have been made repeatable. The following two tables list those
instructions that are repeatable on the C28x device. These instructions are repeatable in both C27x
compatible mode (OBJMODE = 0) and C28x native mode (OBJMODE = 1). Any instruction that is not
listed, which follows a repeat instruction, will execute only once.

C27x operations that were already repeatable include the following:

ROR ACC
ROL ACC

NORM ACC,XARn++
NORM ACC,XARn--
SUBCU ACC,loc16

MAC P,loc16,0:pma
MOV *(0:addr),loc16
MOV loc16,*(0:addr)
MOV loc16,#16bit
MOV loc16,#0

PREAD loc16,*XAR7
PWRITE *XAR7,loc16

NOP loc16

C27x Operations That Are Made Repeatable On C28x include the following:

MOV loc16,AX
ADD ACC,loc16<<16

ADDU ACC,loc16
SUB ACC,loc16<<16

SUBU ACC,loc16
ADDL ACC,loc32
SFR ACC,1..16
LSL ACC,1..16

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

C28x Source
Code

(.asm .c .cpp)

CL2000 C28x Object
(.out)–V28

Migrating to C28x Object Code www.ti.com

536 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

Migration from C27x to C28x

MOVH loc16,P
MOV loc16,P

MOVA T,loc16
MOVS T,loc16
MPYA PT,loc16
MPYS PT,loc16

E.3.3 Changes to the SUBCU Instruction
The SUBCU instruction changed slightly from the C27x to the C28x. Under the prescribed usage of the
SUBCU operation, the change will yield the same result as the C27x.

The SUBCU instruction operates as follows on the C27x device:
temp(31:0) = ACC - [loc16] << 15
if(temp32 <= 0)

ACC = temp(31:0) >> 1 + 1;
else

ACC = ACC << 1;

To simplify the implementation, the SUBCU operation changed as follows on the C28x:
temp(32:0) = ACC << 1 - [loc16] << 16
if(temp(32:0) >= 0)

ACC = temp(31:0) +1;
else

ACC = ACC << 1;

• The ”temp(32:0)” value is the result of an unsigned 33-bit compare. The carry bit is used to select
between ? or < condition.

• The C flag is affected by the unsigned 33-bit compare operation. The Z, N flags reflect the value in the
ACC after the operation is complete. The operation of the C, N, Z flags should be identical to the C27x
implementation.

• The V flag and overflow counter (OVC) are not affected by the operation. On the C27x the V and OVC
flags are affected.

The V and OVC flags may be affected on the C27x and not on the C28x implementation. The values of
these flags are not usable under prescribed usage of such an operation.

E.4 Compiling C28x Source Code
Once you move your code to C28x native instructions, you will no longer use the −m27 switch to allow for
C27x source as shown in Figure E-8.

Figure E-8. Compiling C28x Source

−v28: Accepts C28x syntax only. Generates C28x object only (assumes OBJMODE = 1)

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

537SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

Glossary

Appendix F
SPRU430F–August 2001–Revised April 2015

Glossary

F.1 Glossary
The following are defined terms used in this document.

16-bit operation — An operation that reads or writes 16 bits.

32-bit operation — An operation that reads or writes 32 bits.

absolute branch — A branch to an address that is permanently assigned to a memory location. See also
offset branch.

ACC — See accumulator (ACC).

access — A term used in this document to mean read from or write to. For example, to access a register
is to read from or write to that register.

accumulator (ACC) — A 32-bit register involved in a majority of the arithmetic and logical calculations
done by the C28x. Some instructions that affect ACC use all 32 bits of the register. Others use one
of the following portions of ACC: AH (bits 31 through 16), AL (bits 15 through 0), AH.MSB (bits 31
through 24), AH.LSB (bits 23 through 16), AL.MSB (bits 15 through 8), and AL.LSB (bits 7 through
0).

address-generation logic — Hardware in the CPU that generates the addresses used to fetch
instructions or data from memory.

address reach — The range of addresses beginning with 00 000016 that can be used by a particular
addressing mode.

address register arithmetic unit (ARAU) — Hardware in the CPU that generates addresses for values
that must be fetched from data memory. The ARAU is also the hardware used to increment or
decrement the stack pointer (SP) and the auxiliary registers (AR0, AR1, AR2, AR3, AR4, AR5,
XAR6, and XAR7).

addressing mode — The method by which an instruction interprets its operands to acquire the data
and/or addresses it needs.

AH — High word of the accumulator. The name given to bits 31 through 16 of the accumulator.

AH.LSB — Least significant byte of AH. The name given to bits 23 through 16 of the accumulator.

AH.MSB — Most significant byte of AH. The name given to bits 31 through 24 of the accumulator.

AL — Low word of the accumulator. The name given to bits 15 through 0 of the accumulator.

AL.LSB — Least significant byte of AL. The name given to bits 7 through 0 of the accumulator.

AL.MSB — Most significant byte of AL. The name given to bits 15 through 8 of the accumulator.

ALU — See arithmetic logic unit (ALU).

analysis logic — A portion of the emulation logic in the core. The analysis logic is responsible for
managing the following debug activities: hardware breakpoints, hardware watchpoints, data logging,
and benchmark/event counting.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

Glossary www.ti.com

538 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

Glossary

approve an interrupt request— Allow an interrupt to be serviced. If the interrupt is maskable, the CPU
approves the request only if it is properly enabled. If the interrupt is nonmaskable, the CPU
approves the request immediately. See also interrupt request and service an interrupt.

ARAU — See address register arithmetic unit (ARAU).

arithmetic logic unit (ALU) — A 32-bit hardware unit in the CPU that performs 2s-complement arithmetic
and Boolean logic operations. The ALU accepts inputs from data from registers, from data memory,
or from the program control logic. The ALU sends results to a register or to data memory.

arithmetic shift — A shift that treats the shifted value as signed. See also logical shift.

ARP — See auxiliary register pointer (ARP).

ARP indirect addressing mode — The indirect addressing mode that uses the current auxiliary register
to point to a location in data space. The current auxiliary register is the auxiliary register pointed to
by the ARP. See also auxiliary register pointer (ARP).

automatic context save — A save of system context (modes and key register values) performed by the
CPU just prior to executing an interrupt service routine. See also context save.

auxiliary register — One of eight registers used as a pointer to a memory location. The register is
operated on by the auxiliary register arithmetic unit (ARAU) and is selected by the auxiliary register
pointer (ARP). See also AR0−AR5, AR6/AR7, and XAR6/XAR7.

auxiliary-register indirect addressing mode — The indirect addressing mode that allows you to use the
name of an auxiliary register in an operand that uses that register as a pointer. See also ARP
indirect addressing mode.

auxillary register pointer (ARP) — A 3-bit field in status register ST1 that selects the current auxiliary
register. When an instruction uses ARP indirect addressing mode, that instruction uses the current
auxiliary register to point to data space. When an instruction specifies auxiliary register n by using
auxiliary-register indirect addressing mode, the ARP is updated, so that it points to auxiliary register
n. See also current auxiliary register.

background code — The body of code that can be halted during debugging because it is not time-
critical.

barrel shifter — Hardware in the CPU that performs all left and right shifts of register or data-space
values.

bit field — One or more register bits that are differentiated from other bits in the same register by a
specific name and function.

bit manipulation — The testing or modifying of individual bits in a register or data-space location.

boundary scan — The use of scan registers on the border of a chip or section of logic to capture the pin
states. By scanning these registers, all pin states can be transmitted through the JTAG port for
analysis.

branch — 1) A forcing of program control to a new address. 2) An instruction that forces program control
to a new address but neither saves a return address (like a call) nor restores a return address (like
a return).

break event — A debug event that causes the CPU to enter the debug-halt state.

breakpoint — A place in a routine specified by a breakpoint instruction or hardware breakpoint, where the
execution of the routine is to be halted and the debug-halt state entered.

C bit — See carry (C) bit.

call — 1) The operation of saving a return address and then forcing program control to a new address. 2)
An instruction that performs such an operation. See also return.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com Glossary

539SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

Glossary

carry (C) bit — A bit in status register ST0 that reflects whether an addition has generated a carry or a
subtraction has generated a borrow.

circular addressing mode — The indirect addressing mode that can be used to implement a circular
buffer.

circular buffer — A block of addresses referenced by a pointer using circular addressing mode, so that
each time the pointer reaches the bottom of the block, the pointer is modified to point back to the
top of the block.

clear — To clear a bit is to write a 0 to it. To clear a register or memory location is to load all its bits with
0s. See also set.

COFF — Common object file format. A binary object file format that promotes modular programming by
supporting the concept of sections, where a section is a relocatable block of code or data that
ultimately occupies a space adjacent to other blocks of code in the memory map.

conditional branch instruction — A branch instruction that may or may not cause a branch, depending
on a specified or predefined condition (for example, the state of a bit).

context restore — A restoring of the previous state of a system (for example, modes and key register
values) prior to returning from a subroutine. See also context save.

context save — A save of the current state of a system (for example, modes and key register values)
prior to executing the main body of a subroutine that requires a different context. See also context
restore.

core — The portion of the C28x that consists of a CPU, a block of emulation circuitry, and a set of signals
for interfacing with memory and peripheral devices.

current auxiliary register — The register selected by the auxiliary register pointer (ARP) in status
register. For example, if ARP = 3, the current auxiliary register is AR3. See also auxiliary registers.

current data page — The data page selected by the data page pointer. For example, if DP = 0, the
current data page is 0. See also data page.

D1 phase — See decode 1 (D1) phase.

D2 phase — See decode 2 (D2) phase.

data logging — Transferring one or more packets of data from CPU registers or memory to an external
host processor.

data log interrupt (DLOGINT) — A maskable interrupt triggered by the onchip emulation logic when a
data logging transfer has been completed.

data page — A 64-word portion of the total 4M words of data space. Each data page has a specific start
address and end address. See also data page pointer (DP) and current data page.

data page pointer (DP) — A 16-bit pointer that identifies which 64-word data page is accessed in DP
direct addressing mode. For example, for as long as DP = 500, instructions that use DP direct
addressing mode will access data page 500.

data-/program-write data bus (DWDB) — The bus that carries data during writes to data space or
program space.

data-read address bus (DRAB) — The bus that carries addresses for reads from data space.

data-read data bus (DRDB) — The bus that carries data during reads from data space.

data-write address bus (DWAB) — The bus that carries addresses for writes to data space.

DBGIER — See debug interrupt enable register (DBGIER).

DBGM bit — See debug enable mask (DBGM) bit.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

Glossary www.ti.com

540 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

Glossary

DBGSTAT — See debug status register (DBGSTAT).

debug-and-test direct memory access (DT−DMA) — An access of a register or memory location to
provide visibility to this location during debugging. The access is performed with variable levels of
intrusiveness by a hardware DT-DMA mechanism inside the core.

debug enable mask (DBGM) bit — A bit in status register ST1 used to enable (DBGM = 0) or disable
(DBGM = 1) debug events such as analysis breakpoints or debug-and-test direct memory accesses
(DT-DMAs).

debug event — A debug execution state that is entered through a break event. In this state the CPU is
halted. See also single-instruction state and run state.

debug-halt state —
debug host — See host processor.

debug interrupt enable register (DBGIER) — The register that determines which of the maskable
interrupts are time-critical when the CPU is halted in real-time mode. If a bit in the DBGIER is 1, the
corresponding interrupt is time-critical/enabled; otherwise, it is disabled. Time-critical interrupts also
must be enabled in the interrupt enable register (IER) to be serviced.

debug status register (DBGSTAT) — A register that holds special debug status information. This
register, which need not be read from or written to, is saved and restored during interrupt servicing,
to preserve the debug context during debugging.

decode an instruction — To identify an instruction and prepare the CPU to perform the operation the
instruction requires.

decode 1 (D1) phase — The third of eight pipeline phases an instruction passes through. In this phase,
the CPU identifies instruction boundaries in the instruction-fetch queue and determines whether the
next instruction to be executed is an illegal instruction. See also pipeline phases.

decode 2 (D2) phase — The fourth of eight pipeline phases an instruction passes through. In this phase,
the CPU accepts an instruction from the instruction-fetch queue and completes the decoding of that
instruction, performing such activities as address generation and pointer modification. See also
pipeline phases.

decrement — To subtract 1 or 2 from a register or memory value. The value subtracted depends on the
circumstance. For example, if you use the operand *−−AR4, the auxiliary register AR4 is
decremented by 1 for a 16-bit operation and by 2 for a 32-bit operation.

device reset — See reset.

direct addressing modes — The addressing modes that access data space as if it were 65 536
separate blocks of 64 words each. DP direct addressing mode uses the data page pointer (DP) to
select a data page from 0 to 65 535. PAGE0 direct addressing mode uses data page 0, regardless
of the value in the DP.

discontinuity — See program-flow discontinuity.

DLOGINT — See data log interrupt (DLOGINT).

DP — See data page pointer (DP).

DP direct addressing mode — A direct addressing mode that uses the data page pointer (DP) to select
a data page from 0 to 65 535. See also PAGE0 direct addressing mode.

DRAB — See data-read address bus (DRAB).

DRDB — See data-read data bus (DRDB).

DT-DMA — See debug-and-test direct memory access (DT-DMA).

DWAB — See data-write address bus (DWAB).

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com Glossary

541SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

Glossary

DWDB — See data-/program-write data bus (DWDB).

E phase — See execute (E) phase.

EALLOW bit — See emulation access enable (EALLOW) bit.

EMU0 and EMU1 pins — Pins known as the TI extensions to the JTAG interface. These pins can be
used as either inputs or outputs and are available to help monitor and control an emulation target
system that is using a JTAG interface.

emulation access enable (EALLOW) bit — A bit in status register ST1 that enables (EALLOW = 1) or
disables (EALLOW = 0) access to the emulation registers. The EALLOW instruction sets the
EALLOW bit, and the EDIS instruction clears the EALLOW bit.

emulation logic — The block of hardware in the core that is responsible controlling emulation activities
such as data logging and switching among debug execution states.

emulation registers — Memory-mapped registers that are available for controlling and monitoring
emulation activities.

enable bit — See interrupt enable bits.

execute an instruction — Take an instruction from the decode 2 phase of the pipeline through the write
phase of the pipeline.

execute (E) phase — The seventh of eight pipeline phases an instruction passes through. In this phase,
the CPU performs all multiplier, shifter, and arithmetic-logic-unit (ALU) operations. See also pipeline
phases.

extended auxiliary registers — See XAR6/XAR7.

F1 phase — See fetch 1 (F1) phase.

F2 phase — See fetch 2 (F2) phase.

FC — See fetch counter (FC).

fetch 1 (F1) phase — The first of eight pipeline phases an instruction passes through. In this phase, the
CPU places on the program-read bus the address of the instruction(s) to be fetched. See also
pipeline phases.

fetch 2 (F2) phase — The second of eight pipeline phases an instruction passes through. In this phase,
the CPU fetches an instruction or instructions from program memory. See also pipeline phases.

fetch counter (FC) — The register that contains the address of the instruction that is being fetched from
program memory.

field — See bit field.

hardware interrupt — An interrupt initiated by a physical signal (for example, from a pin or from the
emulation logic). See also software interrupt.

hardware interrupt priority — A priority ranking used by the CPU to determine the order in which
simultaneously occurring hardware interrupts are serviced.

hardware reset — See reset.

high addresses — Addresses closer to 3F FFFF16 than to 00 000016. See also low addresses.

high bits — See MSB.

high word — The 16 MSBs of a 32-bit value. See also low word.

host processor — The processor running the user interface for a debugger.

IC —

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

Glossary www.ti.com

542 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

Glossary

IDLESTAT (IDLE status) bit —
idle state —
IEEE 1149.1 standard —
IER — See interrupt enable register (IER).

IFR — See interrupt flag register (IFR).

illegal instruction — An unacceptable value read from program memory during an instruction fetch.
Unacceptable values are 000016, FFFF16, or any value that does not match a defined opcode.

illegal-instruction trap — A trap that is serviced when an illegal instruction is decoded.

immediate address — An address that is specified directly in an instruction as a constant.

immediate addressing modes — Addressing modes that accept a constant as an operand.

immediate constant/data — A constant specified directly as an operand of an instruction.

immediate-constant addressing mode — An immediate addressing mode that accepts a constant as an
operand and interprets that constant as data to be stored or processed.

immediate-pointer addressing mode — An immediate addressing mode that accepts a constant as an
operand and interprets that constant as the 16 LSBs of a 22-bit address. The six MSBs of the
address are filled with 0s.

increment — To add 1 or 2 to a register or memory value. The value added depends on the
circumstance. For example, if you use the operand *AR4++, the auxiliary register AR4 is
incremented by 1 for a 16-bit operation and by 2 for a 32-bit operation.

indirect addressing modes — Addressing modes that use pointers to access memory. The available
pointers are auxiliary registers AR0−AR5, extended auxiliary registers XAR6 and XAR7, and the
stack pointer (SP).

instruction boundary — The point where the CPU has finished one instruction and is considering what it
will do next — move on to the next instruction.

instruction counter (IC) — The register that points to the instruction in the decode 1 phase (the
instruction that is to enter the decode 2 phase next). Also, on an interrupt or call operation, the IC
value represents the return address, which is saved to the stack or to auxiliary register XAR7.

instruction-fetch mechanism — The hardware for the fetch 1 and fetch 2 phases of the pipeline. This
hardware is responsible for fetching instructions from program memory and filling an instruction-
fetch queue.

instruction-fetch queue — A queue of four 32-bit registers that receives fetched instructions and holds
them for decoding. When a program-flow discontinuity occurs, the instruction-fetch queue is
emptied.

instruction-not-available condition — The condition that occurs when the decode 2 pipeline hardware
requests an instruction but there are no instructions waiting in the instruction-fetch queue. This
condition causes the decode 2 through write phases of the pipeline to freeze until one or more new
instructions have been fetched.

instruction register — The register that contains the instruction that has reached the decode 2 pipeline
phase.

instruction word — Either an entire 16-bit opcode or one of the halves of a 32-bit opcode.

INT1-INT14 — Fourteen general-purpose interrupts that are triggered by signals at pins of the same
names. These interrupts are maskable and have corresponding bits in the interrupt flag register
(IFR), the interrupt enable register (IER), and the debug interrupt enable register (DBGIER).

interrupt boundary — An instruction boundary where the CPU can insert an interrupt between two
instructions. See also instruction boundary.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com Glossary

543SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

Glossary

interrupt enable bits — Bits responsible for enabling or disabling maskable interrupts. The enable bits
are all the bits in the interrupt enable register (IER), all the bits in the debug interrupt enable
register (DBGIER), and the interrupt global mask bit (INTM in status register ST1).

interrupt enable register (IER) — Each of the maskable interrupts has an interrupt enable bit in this
register. If a bit in the IER is 1, the corresponding interrupt is enabled; otherwise, it is disabled. See
also debug interrupt enable register (DBGIER).

interrupt flag bit — A bit in the interrupt flag register (IFR). If the interrupt flag bit is 1, the corresponding
interrupt has been requested by hardware and is awaiting approval by the CPU.

interrupt flag register (IFR) — The register that contains the interrupt flag bits for the maskable
interrupts. If a bit in the IFR is 1, the corresponding interrupt has been requested by hardware and
is awaiting approval by the CPU.

interrupt global mask (INTM) bit — A bit in status register ST1 that globally enables or disables the
maskable interrupts. If an interrupt is enabled in the interrupt enable register (IER) but not by the
INTM bit, it is not serviced. The only time this bit is ignored is when the CPU is in real-time mode
and is in the debug-halt state; in this situation, the interrupt must be enabled in the IER and in the
DBGIER (debug interrupt enable register).

interrupt priority — See hardware interrupt priority.

interrupt request — A signal or instruction that requests the CPU to execute a particular interrupt service
routine. See also approve an interrupt request and service an interrupt.

interrupt service routine (ISR) — A subroutine that is linked to a specific interrupt by way of an interrupt
vector.

interrupt vector — The start address of an interrupt service routine. After approving an interrupt request,
the CPU fetches the interrupt vector from your interrupt vector table and uses the vector to branch
to the start of the corresponding interrupt service routine.

interrupt vector location — The preset location in program memory where an interrupt vector must
reside.

interrupt vector table — The list of interrupt vectors you assign in program memory.

INTM bit — See interrupt global mask (INTM) bit.

ISR — See interrupt service routine (ISR).

JTAG — Joint Test Action Group. The Joint Test Action Group was formed in 1985 to develop
economical test methodologies for systems designed around complex integrated circuits and
assembled with surface-mount technologies. The group drafted a standard that was subsequently
adopted by IEEE as IEEE Standard 1149.1-1990, “IEEE Standard Test Access Port and Boundary-
Scan Architecture”. See also boundary scan; test access port (TAP).

JTAG port — See test access port (TAP).

latch — Hold a bit at the same value until a given event occurs. For example, when an overflow occurs in
the accumulator, the V bit is set and latched at 1 until it is cleared by a conditional branch
instruction or by a write to status register ST0. An interrupt is latched when its flag bit has been
latched in the interrupt flag register (IFR).

least significant bit (LSB) — The bit in the lowest position of a binary number. For example, the LSB of
a 16-bit register value is bit 0. See also MSB, LSByte, and MSByte.

least significant byte (LSByte) — The byte in the lowest position of a binary value. The LSByte of a
value consists of the eight LSBs. See also MSByte, LSB, and MSB.

location — A space where data can reside. A location may be a CPU register or a space in memory.

logical shift — A shift that treats the shifted value as unsigned. See also arithmetic shift.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

Glossary www.ti.com

544 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

Glossary

LOOP (loop instruction status) bit — A bit in status register ST1 that indicates when a LOOPNZ or
LOOPZ instruction is being executed (LOOP = 1).

low addresses — Addresses closer to 00 000016 than to 3F FFFF16. See also high addresses.

low bits — See LSB.

low word — The 16 LSBs of a 32-bit value. See also high word.

LSB — When used in a syntax of the MOVB instruction, LSB means least significant byte. Otherwise,
LSB means least significant bit. See least significant bit (LSB) and least significant byte (LSByte).

LSByte — See least significant byte (LSByte).

maskable interrupt — An interrupt that can be disabled by software so that the CPU does not service it
until it is enabled by software. See also non-maskable interrupt.

memory interface — The buses and signals responsible for carrying communications between the core
and on-chip memory/peripherals.

memory-mapped register — A register that can be accessed at addresses in data space.

memory wrapper — The hardware around a memory block that identifies access requests and controls
accesses for that memory block.

mirror — A range of addresses that is the same size and is mapped to the same physical memory block
as another range of addresses.

most significant (MSB) — The bit in the highest position of a binary number. For example, the MSB of a
16-bit register value is bit 15. See also LSB, LSByte, and MSByte.

most significant byte (MSByte) — The byte in the highest position of a binary value. The MSByte of a
value consists of the eight MSBs. See also LSByte, LSB, and MSB.

MSB — When used in a syntax of the MOVB instruction, MSB means most significant byte. Otherwise
MSB means most significant bit. See most significant bit (MSB) and most significant byte (MSByte).

MSByte — See most significant byte (MSByte).

multiplicand register (T) — The primary function of this register, also called the T register, is to hold one
of the values to be multiplied during a multiplication. The following shift instructions use the four
LSBs to hold the shift count: ASR (arithmetic shift right), LSL (logical shift left), LSR (logical shift
right), and SFR (shift accumulator right). The T register can also be used as a general-purpose 16-
bit register.

N (negative flag) bit — A bit in status register ST0 that indicates whether the result of a calculation is a
negative number (N = 1). N is set to match the MSB of the result.

nested interrupt — An interrupt that occurs within an interrupt service routine.

NMI — A hardware interrupt that is nonmaskable, like reset (RS), but does not reset the CPU. NMI simply
forces the CPU to execute its interrupt service routine.

nonmaskable interrupt — An interrupt that cannot be blocked by software and is approved by the CPU
immediately. See also maskable interrupt.

offset branch — A branch that uses a specified or generated offset value to jump to an address relative
to the current position of the program counter (PC). See also absolute branch.

opcode — This document uses opcode to mean the complete code for an instruction. Thus, an opcode
includes the binary sequence for the instruction type and the binary sequence and/or constant in
which the operands are encoded.

operand — : This document uses operand to mean one of the values entered after the instruction
mnemonic and separated by commas (or for a shift operand, separated by the symbol <<). For
example, in the CLRC INTM instruction, CLRC is the mnemonic and INTM is the operand.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com Glossary

545SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

Glossary

operation — 1) A defined action; namely, the act of obtaining a result from one or more operands in
accordance with a rule that completely specifies the result of any permitted combination of
operands. 2) The set of such acts specified by a rule, or the rule itself. 3) The act specified by a
single computer instruction. 4) A program step undertaken or executed by a computer; for example,
addition, multiplication, extraction, comparison, shift, transfer, etc. 5) The specific action performed
by a logic element.

OVC — See overflow counter (OVC).

OVM — See overflow mode (OVM) bit.

overflow counter (OVC) — A 6-bit counter in status register ST0 that can be used to track overflows in
the accumulator (ACC). The OVC is enabled only when the overflow mode (OVM) bit in ST0 is 0.
When OVM = 0, the OVC is incremented by 1 for every overflow in the positive direction (too large
a positive number) and decremented by 1 for every overflow in the negative direction (too large a
negative number). The saturate (SAT) instruction modifies ACC to reflect the net overflow
represented in the OVC.

overflow flag (V) — A bit in status register ST0 that indicates when the result of an operation causes an
overflow in the location holding the result (V = 1). If no overflow occurs, V is not modified.

overflow mode (OVM) bit — A bit in the status register ST0 that enables or disables overflow mode.
When overflow mode is on (OVM = 1) and an overflow occurs, the CPU fills the accumulator (ACC)
with a saturation value. When overflow mode is off (OVM = 0), the CPU lets ACC overflow normally
but keeps track of each overflow by incrementing or decrementing by 1 the overflow counter (OVC)
in ST0.

P register — See product register (P).

PAB — See program address bus (PAB).

PAGE0 bit — PAGE0 addressing mode configuration bit. This bit, in status register ST1, selects between
two addressing modes: PAGE0 stack addressing mode (PAGE = 0) and PAGE0 direct addressing
mode (PAGE0 = 1).

PAGE0 direct addressing mode — The direct addressing mode that uses data page 0 regardless of the
value in the data page pointer (DP). This mode is available only when the PAGE0 bit in status
register ST1 is 1. See also DP direct addressing mode and PAGE0 stack addressing mode.

PAGE0 stack addressing mode — The indirect addressing mode that references a value on the stack
by subtracting a 6-bit offset from the current position of the stack pointer (SP). This mode is
available only when the PAGE0 bit in status register ST1 is 0. See also stack-pointer indirect
addressing mode.

PC — See program counter (PC).

pending interrupt — An interrupt that has been requested but is waiting for approval from the CPU. See
also approve an interrupt request.

peripheral-interface logic — Hardware that is responsible for handling communications between a
processor and a peripheral.

PH — The high word (16 MSBs) of the P register.

phases — See pipeline phases.

pipeline — The hardware in the CPU that takes each instruction through eight independent phases for
fetching, decoding, and executing. During any given CPU cycle, there can be up to eight
instructions in the pipeline, each at a different phase of completion. The phases, listed in the order
in which instructions pass through them, are fetch 1, fetch 2, decode 1, decode 2, read 1, read 2,
execute, and write.

pipeline conflict — A situation in which two instructions in the pipeline try to access a register or memory
location out of order, causing improper code operation. The C28x pipeline inserts as many inactive
cycles as needed between conflicting instructions to prevent pipeline conflicts.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

Glossary www.ti.com

546 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

Glossary

pipeline freeze — A halt in pipeline activity in one of the two decoupled portions of the pipeline. Freezes
in the fetch 1 through decode 1 portion of the pipeline are caused by a not-ready signal from
program memory. Freezes in the decode 2 through write portion are caused by lack of instructions
in the instruction-fetch queue or by not-ready signals from memory.

pipeline phases — The eight stages an instruction must pass through to be fetched, decoded, and
executed. The phases, listed in the order in which instructions pass through them, are fetch 1, fetch
2, decode 1, decode 2, read 1, read 2, execute, and write.

pipeline-protection mechanism — The mechanism responsible for identifying potential pipeline conflicts
and preventing them by adding inactive cycles between the conflicting instructions.

PL — The low word (16 LSBs) of the P register.

PM bits — See product shift mode (PM) bits.

PRDB — See program-read data bus (PRDB).

priority — See interrupt priority.

product register (P) — This register, also called the P register, is given the results of most multiplications
done by the CPU. The only other register that can be given the result of a multiplication is the
accumulator (ACC). See also PH and PL.

product shift mode (PM) bits — A 3-bit field in status register ST0 that enables you to select one of
eight product shift modes. The product shift mode determines whether or how the P register value
is shifted before being used by an instruction. You have the choices of a left shift by 1 bit, no shift,
or a right shift by N, where N is a number from 1 to 6.

program address bus (PAB) — The bus that carries addresses for reads and writes from program
space.

program address generation logic — This logic generates the addresses used to fetch instructions or
data from program memory and places each address on the program address bus (PAB).

program control logic — This logic stores a queue of instructions that have been fetched from program
memory by way of the program-read bus (PRDB). It also decodes these instructions and passes
commands and constant data to other parts of the CPU.

program counter (PC) — When the pipeline is full, the 22-bit PC always points to the instruction that is
currently being processed—the instruction that has just reached the decode 2 phase of the pipeline.

program-flow discontinuity — A branching to a nonsequential address caused by a branch, a call, an
interrupt, a return, or the repetition of an instruction.

program-read data bus (PRDB) — The bus that carries instructions or data during reads from program
space.

R1 phase — See read 1 (R1) phase.

R2 phase — See read 2 (R2) phase.

read 1 (R1) phase — The fifth of eight pipeline phases an instruction passes through. In this phase, if
data is to be read from memory, the CPU drives the address(es) on the appropriate address
bus(es). See also pipeline phases.

read 2 (R2) phase — The sixth of eight pipeline phases an instruction passes through. In this phase, data
addressed in the read 1 phase is fetched from memory. See also pipeline phases.

ready signals — When the core requests a read from or write to a memory device or peripheral device,
that device can take more time to finish the data transfer than the core allots by default. Each
device must use one of the core’s ready signals to insert wait states into the data transfer when it
needs more time. Wait-state requests freeze a portion of the pipeline if they are received during the
fetch 1, read 1, or write pipeline phase of an instruction.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com Glossary

547SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

Glossary

real-time mode— An emulation mode that enables you execute certain interrupts (time-critical interrupts),
even when the CPU is halted. See also stop mode.

real-time operating system interrupt (RTOSINT) — A maskable hardware interrupt generated by the
emulation hardware in response to certain debug events. This interrupt should be disabled in the
interrupt enable register (IER) and the debug interrupt enable register (DBGIER) unless there is a
real-time operating system present in your debug system.

reduced instruction set computer (RISC) — A computer whose instruction set and related decode
mechanism are much simpler than those of microprogrammed complex instruction set computers.

register addressing mode — An addressing mode that enables you to reference registers by name.

register conflict — A pipeline conflict that would occur if an instruction read a register value before that
value were changed by a prior instruction. The C28x pipeline inserts as many inactive cycles as
needed between conflicting instructions to prevent register conflicts.

register pair — One of the pairs of CPU register stored to the stack during an automatic context save.

repeat counter (RPTC) — The counter that is loaded by the RPT (repeat) instruction. The number in the
counter is the number of times the instruction qualified by RPT is to be repeated after its initial
execution.

reserved — A term used to describe memory locations or other items that you cannot use or modify.

reset — To return the DSP to a known state; an action initiated by the reset (RS) signal.

return — 1) The operation of forcing program control to a return address. 2) An instruction that performs
such an operation. See also call.

return address — The address at which the CPU resumes processing after executing a subroutine or
interrupt service routine.

RISC — See reduced instruction set computer (RISC).

rotate operation — An operation performed by the ROL (rotate accumulator left) or ROR (rotate
accumulator right) instruction. The operation, which involves a shift by 1 bit, can be seen as the
rotation of a 33-bit value that is the concatenation of the carry bit (C) and the accumulator (ACC).

RPTC — See repeat counter (RPTC).

RTOSINT — See real-time operating system interrupt (RTOSINT).

RUN command — A debugger command used to execute all or a portion of a program. The RUN 1
command causes the debugger to execute a single instruction.

run state — A debug execution state. In this state, the CPU is executing code and servicing interrupts
freely. See also debug-halt state and single-instruction state.

select signal — An output signal from the C28x that can be used to select specific memory or peripheral
devices for particular types of read and write operations.

scan controller — A device that performs JTAG state sequences sent to it by a host processor. These
sequences, in turn, control the operation of a target device.

service an interrupt — The CPU services an interrupt by preparing for and then executing the
corresponding interrupt service routine. See also interrupt request and approve an interrupt request.

set — To set a bit is to write a 1 to it. If a bit is set, it contains 1. See also clear.

sign extend — To fill the unused most significant bits (MSBs) of a value with copies of the value’s sign
bit.

sign-extension mode (SXM) bit — A bit in status register ST0 that enables or suppresses sign
extension. When sign-extension is enabled (SXM = 1), operands of certain instructions are treated
as signed and are sign extended during shifting.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

Glossary www.ti.com

548 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

Glossary

single-instruction state — A debug execution state. In this state, the CPU executes one instruction and
then returns to the debug-halt state. See also debug-halt state and run state.

16-bit operation — An operation that reads or writes 16 bits.

software interrupt — An interrupt initiated by an instruction. See also hardware interrupt.

SP — See stack pointer (SP).

SPA bit — See stack pointer alignment (SPA) bit.

ST0 — See status registers ST0 andST1.

ST1 — See status registers ST0 andST1.

stack — The C28x stack is a software stack implemented by the use of a stack pointer (SP). The SP, a
16-bit CPU register, can be used to reference a value in the first 64K words of data memory
(addresses 00 000016−00 FFFF16).

stack pointer (SP) — A 16-bit CPU register that enables you to use any portion of the first 64K words of
data memory as a software stack. The SP always points to the next empty location in the stack.

stack pointer alignment (SPA) bit — A bit in status register ST1 that indicates whether an ASP
instruction has forced the SP to align to the next even address (SPA = 1).

stack-pointer indirect addressing mode — The indirect addressing mode that references a data-
memory value at the current position of the stack pointer (SP). See also PAGE0 stack addressing
mode.

status register ST0 and ST1 — These CPU registers contain control bits that affect the operation of the
C28x and contain flag bits that reflect the results of operations.

STEP command — A debugger command that causes the debugger to single-step through a program.
The STEP1 command causes the debugger to execute a single instruction.

stop mode — An emulation mode that provides complete control of program execution. When the CPU is
halted in stop mode, all interrupts (including reset and nonmaskable interrupts) are ignored until the
CPU receives a directive to run code again. See also real-time mode.

suppress sign extension — Prevent sign extension from occurring during a shift operation. See also
sign extend.

SXM bit — See sign-extension mode (SXM) bit.

T register — The primary function of this register, also called the multiplicand register, is to hold one of
the values to be multiplied during a multiplication. The following shift instructions use the four LSBs
to hold the shift count: ASR (arithmetic shift right), LSL (logical shift left), LSR (logical shift right),
and SFR (shift accumulator right). The T register can also be used as a general-purpose 16-bit
register.

TAP — See test access port (TAP).

target device/system — The device/system on which the code you have developed is executed.

TC bit — See test/control flag (TC).

test access port (TAP) — A bit in status register ST0 that shows the result of a test performed by the
TBIT (test bit) instruction or the NORM (normalize) instruction.

test/control flag (TC) — A bit in status register ST0 that shows the result of a test performed by the TBIT
(test bit) instruction or the NORM (normalize) instruction.

test-logic-reset — A test and emulation logic condition that occurs when the TRST signal is pulled low or
when the TMS signal is used to advance the JTAG state machine to the TLR state. This logic is a
different type than that used by the CPU, which resets functional logic.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

www.ti.com Glossary

549SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

Glossary

32-bit operation — An operation that reads or writes 32 bits.

TI extension pins — See EMU0 and EMU1 pins.

time-critical interrupt — An interrupt that must be serviced even when background code is halted. For
example, a time-critical interrupt might service a motor controller or a high-speed timer. See also
debug interrupt enable register (DBGIER).

USER1-USER12 interrupts— The interrupt vector table contains twelve locations for user-defined
software interrupts. These interrupts, called USER1−USER12 in this document, can be initiated
only by way of the TRAP instruction.

V bit (overflow flag) — A bit in status register ST0 that indicates when the result of an operation causes
an overflow in the location holding the result (V = 1). If no overflow occurs, V is not modified.

vector — See interrupt vector.

vector location — See interrupt vector location.

vector map (VMAP) bit — A bit in status register ST1 that determines the addresses to which the
interrupt vectors are mapped. When VMAP = 0, the interrupt vectors are mapped to addresses 00
000016−00 003F16 in program memory. When VMAP = 1, the vectors are mapped to addresses 3F
FFC016−3F FFFF16 in program memory.

vector table — See interrupt vector table.

W phase — See write (W) phase.

wait state — A cycle during which the CPU waits for a memory or peripheral device to be ready for a
read or write operation.

watchpoint — A place in a routine where it is to be halted if an address or an address and data
combination match specified compare values. When a watchpoint is reached, the routine is halted
and the CPU enters the debug-halt state.

word — In this document, a word is 16 bits unless specifically stated to be otherwise.

write (W) phase — The last of eight pipeline phases an instruction passes through. In this phase, if a
value or result is to be written to memory, the CPU sends to memory the destination address and
the data to be written. See also pipeline phases.

zero fill — Fill the unused low- and/or high-order bits of a value with 0s.

zero flag (Z) — A bit in status register ST0 that indicates when the result of an operation is 0 (Z = 1).

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

Revision History www.ti.com

550 SPRU430F–August 2001–Revised April 2015
Submit Documentation Feedback

Copyright © 2001–2015, Texas Instruments Incorporated

Revision History

Revision History

Changes from January 30, 2009 to May 30, 2015 ... Page

• Chapter 2: Central Processing Unit ... 20
• Section 2.4: Added a note to further defineBbit 12.. 41
• Chapter 3: CPU Interrupts and Reset ... 52
• Section 3.3.2: Added this second note preceding Figure 3-2.. 56
• Chapter 4: Pipeline ... 67
• Section 4.1: In Decode 2, revised the sentence beginning "Once an instruction reaches...".................................. 68
• Section 4.4.3: Added this new section .. 76
• Chapter 6: C28x Assembly Language Instructions .. 107
• AND IER: Added to the Description, "Any changes take effect before the next instruction is processed" 149
• CLRC Mode: Added to the Description, "Any change affects the next instruction in the pipeline" 175
• DINT: Added to the Description, "Any change affects the next instruction in the pipeline" 185
• EINT: Added to Description, "Any change affects the next instruction in the pipeline" 191
• MOV IER: Added to the Description, "Any changes take effect before the next instruction is processed"................. 258
• mov LOC16: Modified the Repeat text for MOV loc16,#16bit .. 259
• OR IER: Added to the Description, "Any changes take effect before the next instruction is processed"................... 346
• POP XARn:The opcodes have been changed .. 365
• SETC Mode: Added to the Description, "Any change affects the next instruction in the pipeline" 402
• Appendix D: C2xLP Instruction Set Compatibility .. 522
• Section D.1: Added the note at the end of the section .. 523

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale
supplied at the time of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications
Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive
Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications
Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers
DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps
DSP dsp.ti.com Energy and Lighting www.ti.com/energy
Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial
Interface interface.ti.com Medical www.ti.com/medical
Logic logic.ti.com Security www.ti.com/security
Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense
Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video
RFID www.ti-rfid.com
OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com
Wireless Connectivity www.ti.com/wirelessconnectivity

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com/audio
http://www.ti.com/automotive
http://amplifier.ti.com
http://www.ti.com/communications
http://dataconverter.ti.com
http://www.ti.com/computers
http://www.dlp.com
http://www.ti.com/consumer-apps
http://dsp.ti.com
http://www.ti.com/energy
http://www.ti.com/clocks
http://www.ti.com/industrial
http://interface.ti.com
http://www.ti.com/medical
http://logic.ti.com
http://www.ti.com/security
http://power.ti.com
http://www.ti.com/space-avionics-defense
http://microcontroller.ti.com
http://www.ti.com/video
http://www.ti-rfid.com
http://www.ti.com/omap
http://e2e.ti.com
http://www.ti.com/wirelessconnectivity

	Table of Contents
	Preface
	1 Architectural Overview
	1.1  Introduction to the CPU
	1.1.1  Compatibility With Other TMS320 CPUs
	1.1.2  Switching to C28x Mode From Reset

	1.2  Components of the CPU
	1.2.1  Central Processing Unit (CPU)
	1.2.2  Emulation Logic
	1.2.3  Signals

	1.3  Memory Map
	1.3.1  CPU Interrupt Vectors

	1.4  Memory Interface
	1.4.1  Address and Data Buses
	1.4.2  Special Bus Operations
	1.4.3  Alignment of 32-Bit Accesses to Even Addresses

	2 Central Processing Unit
	2.1  CPU Architecture
	2.2  CPU Registers
	2.2.1  Accumulator (ACC, AH, AL)
	2.2.2 Multiplicand Register (XT)
	2.2.3  Product Register (P, PH, PL)
	2.2.4  Data Page Pointer (DP)
	2.2.5  Stack Pointer (SP)
	2.2.6  Auxiliary Registers (XAR0-XAR7, AR0-AR7)
	2.2.7  Program Counter (PC)
	2.2.8  Return Program Counter (RPC)
	2.2.9  Status Registers (ST0, ST1)
	2.2.10  Interrupt-Control Registers (IFR, IER, DBGIER)

	2.3  Status Register ST0
	2.4  Status Register ST1
	2.5  Program Flow
	2.5.1  Interrupts
	2.5.2  Branches, Calls, and Returns
	2.5.3  Repeating a Single Instruction
	2.5.4  Instruction Pipeline

	2.6  Multiply Operations
	2.6.1  16-bit × 16-bit Multiplication
	2.6.2  32-Bit × 32-Bit Multiplication

	2.7  Shift Operations

	3 CPU Interrupts and Reset
	3.1  CPU Interrupts Overview
	3.2  CPU Interrupt Vectors and Priorities
	3.3  Maskable Interrupts: INT1–INT14, DLOGINT, and RTOSINT
	3.3.1  CPU Interrupt Flag Register (IFR)
	3.3.2 CPU Interrupt Enable Register (IER) and CPU Debug Interrupt Enable Register (DBGIER)

	3.4  Standard Operation for Maskable Interrupts
	3.5  Nonmaskable Interrupts
	3.5.1  INTR Instruction
	3.5.2 TRAP Instruction
	3.5.3  Hardware Interrupt NMI

	3.6  Illegal-Instruction Trap
	3.7  Hardware Reset (RS)

	4 Pipeline
	4.1 Pipelining of Instructions
	4.1.1 Decoupled Pipeline Segments
	4.1.2 Instruction-Fetch Mechanism
	4.1.3 Address Counters FC, IC, and PC

	4.2 Visualizing Pipeline Activity
	4.2.1 Example 4-2: Diagraming Pipeline Activity
	4.2.2 Example 4-3 : Simplified Diagram of Pipeline Activity

	4.3 Freezes in Pipeline Activity
	4.3.1 Wait States
	4.3.2 Instruction-Not-Available Condition

	4.4 Pipeline Protection
	4.4.1 Protection During Reads and Writes to the Same Data-Space Location
	4.4.1.1 Example 4-4: Conflict Between a Read From and a Write to Same Memory Location

	4.4.2 Protection Against Register Conflicts
	4.4.2.1 Example 4-5: Register Conflict

	4.4.3 Protection Against Interrupts

	4.5 Avoiding Unprotected Operations
	4.5.1 Unprotected Program-Space Reads and Writes
	4.5.2 An Access to One Location That Affects Another Location
	4.5.3 Write Followed By Read Protection Mode

	5 C28x Addressing Modes
	5.1 Type of Addressing Modes
	5.2 Addressing Modes Select Bit (AMODE)
	5.3 Assembler/Compiler Tracking of AMODE Bit
	5.4 Direct Addressing Modes (DP)
	5.5 Stack Addressing Modes (SP)
	5.6 Indirect Addressing Modes
	5.6.1 C28x Indirect Addressing Modes (XAR0 to XAR7)
	5.6.2 C2xLP Indirect Addressing Modes (ARP, XAR0 to XAR7)
	5.6.3 Circular Indirect Addressing Modes (XAR6, XAR1)

	5.7 Register Addressing Modes
	5.7.1 32-Bit Register Addressing Modes
	5.7.2 16-Bit Register Addressing Modes

	5.8 Data/Program/IO Space Immediate Addressing Modes
	5.9 Program Space Indirect Addressing Modes
	5.10 Byte Addressing Modes
	5.11 Alignment of 32-Bit Operations

	6 C28x Assembly Language Instructions
	6.1 Summary of Instructions
	6.2  C28x Assembly Language Instructions by Function
	6.3 Register Operations

	7 Emulation Features
	7.1 Overview of Emulation Features
	7.2 Debug Interface
	7.3 Debug Terminology
	7.4 Execution Control Modes
	7.4.1 Stop Mode
	7.4.2 Real-Time Mode
	7.4.3 Summary of Stop Mode and Real-Time Mode

	7.5 Aborting Interrupts With the ABORTI Instruction
	7.6 DT-DMA Mechanism
	7.7 Analysis Breakpoints, Watchpoints, and Counter(s)
	7.7.1 Analysis Breakpoints
	7.7.2 Watchpoints
	7.7.3 Benchmark Counter/Event Counter(s)
	7.7.4 Typical Analysis Unit Configurations

	7.8 Data Logging
	7.8.1 Creating a Data Logging Transfer Buffer
	7.8.2 Accessing the Emulation Registers Properly
	7.8.3 Data Log Interrupt (DLOGINT)
	7.8.4 Examples of Data Logging
	7.8.4.1 Example 1: Initialization Code for Data Logging With Word Counter
	7.8.4.2 Example 2: Initialization Code for Data Logging With Word Counter

	7.9 Sharing Analysis Resources
	7.10 Diagnostics and Recovery

	A Register Quick Reference
	A.1 Reset Values of and Instructions for Accessing the Registers
	A.2 Register Figures

	B C2xLP and C28x Architectural Differences
	B.1 Summary of Architecture Differences Between C2xLP and C28x
	B.1.1 Enhancements of the C28x over the C2xLP

	B.2 Registers
	B.2.1 CPU Register Changes
	B.2.2 Data Page (DP) Pointer Changes
	B.2.2.1 C2xLP DP
	B.2.2.2 C28x DP

	B.2.3 Status Register Changes
	B.2.4 Register Reset Conditions

	B.3 Memory Map

	C C2xLP Migration Guidelines
	C.1 Introduction
	C.2 Recommended Migration Flow
	C.3 Mixing C2xLP and C28x Assembly
	C.4 Code Examples
	C.4.1 Boot Code for C28x Operating Initialization
	C.4.2 IER/IFR Code
	C.4.3 Context Save/Restore

	C.5 Reference Tables for C2xLP Code Migration Topics

	D C2xLP Instruction Set Compatibility
	D.1 Condition Tests on Flags
	D.2 C2xLP vs. C28x Mnemonics
	D.3 Repeatable Instructions

	E Migration from C27x to C28x
	E.1 Architecture Changes
	E.1.1 Changes to Registers
	E.1.2 Full Context Save and Restore
	E.1.3 B0/B1 Memory Map Consideration
	E.1.4 C27x Object Compatibility

	E.2 Moving to a C28x Object
	E.2.1 Caution When Changing OBJMODE

	E.3 Migrating to C28x Object Code
	E.3.1 Instruction Syntax Changes
	E.3.2 Repeatable Instructions
	E.3.3 Changes to the SUBCU Instruction

	E.4 Compiling C28x Source Code

	F Glossary
	F.1 Glossary

	Revision History
	Important Notice

