TMS320C28x CPU and Instruction Set

Reference Guide

I3 TeExAas

INSTRUMENTS

Literature Number: SPRU430F
August 2001—Revised April 2015

l '{EXAS
NSTRUMENTS
Contents
5] =T = 10
1 ATCRILECTUTAl OVEIVIBW ..viitieiieiiii it e s s s e e s s e s s e s e s e s e e s e s r e e nr e e e ens 13
11 1 o0 0T ox 1T o I 0 I8 {4 T= 5 = 14
1.1.1 Compatibility With Other TMS320 CPUS ...ciiuiiiiiiiitiriieiiinisisis i s asesaseaas 14
1.1.2 Switching to C28X MOde From RESELuuuuiiiiiiteiiiiiesisiie it s s ssaannresaannreaanns 14
1.2 (2] 2] o Yo 0 =T 01650 10 T= O = 15
1.2.1 Central Processing Unit (CPU) ...uuiiseiisiiiisiiiiissiirisisissasss s sare s s sanssansenas 15
2 418 F= 11T o 10T o 16
B ST =L 16
1.3 LT T Y/ 1= o 16
R 0 A O W 1 1 (=T 1] Y4 =T o (0] 17
1.4 Y= a0 A 1 (=T 0 - T 18
1.4.1 Address and Data BUSES ..uiuueiiueirsiiiuseiiseiiseiassissssisssssssassssssrassssss s sansssnnsrans 18
1.4.2 Special BUS OPEIAtiONS .uuuiuuusetiistssisistesraanse e ssainssssaaisnssaassssstsassestsasnssissssnesins 19
1.4.3 Alignment of 32-Bit AcCesses t0 EVEN AJArESSES ..viuviiiuiiriiriiniirieeiiireriasiassinrsateraasiannens 19
2 Central ProCesSiNg UNit ...ttt e e e e e e e e e e e e e e e e ens 20
2.1 [0 O N (o] 11 =T (1 21
2.2 CPU REQISIEIS wutuustestiseesseanseessantessaanneessaneeseasnnessssnnnesessnnessssnnessesnnnessssnnessesnnessssnnnessns 23
2.2.1 AccUMUIALOr (ACC, AH, AL tirneiiiiiit i et re e e s e s e e e ssaane e saann e s saannessaannnessannnerenn 25
A A /1011] o] o= T o I = LT o TS =] a0) S 26
2.2.3 Product RegiSter (P, PH, PL) uuiiiiiiiiiiii i e it ssinee s aae e s saanne s sannneessnnnnessannnessannnnennnn 26
2.2.4 Data Page PoOINtEr (DP) ..uuiiiuiiisiiiterissisesisss et saas s sn s as s aaneans 27
S TS - 1o S =011 1 =T g 5 N 28
2.2.6 Auxiliary Registers (XARO-XAR7, ARO-ART) uuiiiiiieteiiaintessaannesssanneessannsesssannressssnressssnnees 28
2.2.7 Program COUNET (PC) .uuuuutiuseiutinssiassissssaassssesasssssssastssiss s s sase s ssanssasssanssanness 29
2.2.8 Return Program CouNter (RPC) ..iuuuuieiiiiiniiiieteiraaate st sssaasssaaiasesssansssssansssssannnesins 29
2.2.9 Status RegiSters (ST, STL) tuuteeiieuererraanrersaanneessannresaaanneesasnnessessnnessssnnessesnneessennnessns 29
2.2.10 Interrupt-Control Registers (IFR, IER, DBGIER) ...iiuiiiieiiiiiiiieiiiii i ananens 29
2.3 B = L0 =T 0 1S3 (T S 10T 30
2.4 Y L LI =0 153 1] S 56 S 41
25 L (00 = 10 T (0 44
B2 0t 01T 0 0] £ 44
2.5.2 Branches, Calls, and REUIMS ...iuuiisiiuiiiiiinsiiirsr s aaes 44
2.5.3 Repeating a Single INSIIUCHION .uuuueieeiiisie i aannens 44
2.5.4 INSIrUCHION PIPEIINE 1.ttt st s e s s e e st s n e s ra i n e s s aann s s an e aanas 45
2.6 Y TR LT o LY@ 1= = L[] o = S 45
2.6.1 16-bit x 16-bit MUItIPICALION +.uueeiuseiitersesree s r s s e s s rneaaneans 45
2.6.2 32-Bit X 32-Bit MUItIPIHCAtION .. .etiieiiiii i r e s s e s s s e s rranse s s s anr s s aanneeanns 46
2.7 Y 311 1@ =T = 4o S a7
3 CPU INterrupts and RESEL......cuuiiuiiuiiiiiiiii 52
3.1 L0 U101 (=T (] o] £SO Y= 1= 53
3.2 CPU Interrupt Vectors and PrioMtieSviuiisiiiiiiiiiiiiiiiii s ssssannaes 53
3.3 Maskable Interrupts: INT1-INT14, DLOGINT, and RTOSINT ...uuiiiiiiiieereaineesaainnessaannessaannnesrannnenens 55
3.3.1 CPU Interrupt Flag RegiSter (IFR)uuueiiit et irte s e s ssaae e ssaan e s snanne s saannneess 55
3.3.2 CPU Interrupt Enable Register (IER) and CPU Debug Interrupt Enable Register (DBGIER) 56
2 Contents SPRU430F—August 2001 —Revised April 2015

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

I3 TEXAS
INSTRUMENTS
www.ti.com
3.4 Standard Operation for Maskable INtErruUPLSueiveiiii i s aes 58
3.5 NONMASKADIE INTEITUDES .ttt ettt e e et a e e s s n e st a e e s sannn s s sannn e s sannn e s saannreaannn 62
128 700 A 1N I o 105 1 o 1T o 62
1 T85T0Z2 I = Y o | 11T o o 62
3.5.3 Hardware INterrupt NMI ...t r e s r s e s s e e s sraan e s sannn e s sannnassaannnennn 64
3.6 1= oY ES] 1 8T o o O N o 65
3.7 HArdware RESETE (RS) wuuuutiuteiuutirte ittt srs e eta s e s s s s st s s s s sa st as e sann s resaannannns 65
4 LT 0 T=] 1T =P 67
4.1 Pipelining Of INSTIUCHIONS ...ttt s r s e e s r e s tr s et saa s e s s s annn e s sann e s saanneesnnns 68
4.1.1 Decoupled Pipeling SegMENtS. .. .uut et iieere i seasaeessasnessaaneessasnnessaanneessannressennnnesssnnnes 69
4.1.2 Instruction-Fetch MeChaNISMuuieeiiie s nes 69
4.1.3 Address Counters FC, IC, and Pliiiiiiiiiiiiiiiiiiiiieniitisssiitssnsssessssstesssresssssssssseresnsnses 70
4.2 ViSUANIZING PiPeliNG ACHVITY .uueeiiiie it et e aere s e sanr e e saaane e s aaneesaaannessannnnessannnessannnnsssnnnes 71
4.2.1 Example 4-2: Diagraming Pipeling ACHVItYuvuueiiueireeiieiiiriris s nanes 71
4.2.2 Example 4-3 : Simplified Diagram of Pipeline ACHVILYcvviieiiiiiiiii s ieee s 73
4.3 Freezes in PIpeliNg ACHVILY vu.ueeeiiiieiii i e s it e i e s ssaee s saanne s saananessannnaessannnessannnnessannnessnnn 73
B0t T)] = L= 73
4.3.2 Instruction-Not-Available CoNditionevieiiieiiiii i 74
4.4 T o= 11 L= o £ (=1 1) o P 74
4.4.1 Protection During Reads and Writes to the Same Data-Space LoCationvvvevviriivinnrinniinnns 74
4.4.2 Protection Against Register CONflICSuueiiiii i e e ranes 75
4.4.3 Protection Against N erTUPES .. e s teiee s eeiaeesseineessaanneessanneessaanneessannnessaannessssnneessnnnness 76
4.5 F Yoo 1o IS T qT o] o] (=Tod (=T @] 0= =i {o] o1 76
45.1 Unprotected Program-Space Reads and WIEESvceeeiiiiiisiiiiiieriineirire s esninneeanans 76
4.5.2 An Access to One Location That Affects Another LOCAtioncveviiieinsiriiiiiiniinenaen, 77
4.5.3 Write Followed By Read ProteCtion MOOEuiiiuiiiiiiiieiiirie s srss s nsne s e 77
5 1092423 QAo [0 1 =237] g o 1Y o o [T PP 79
5.1 Type Of ADAreSSING MOOES .. uuueiiieeiiiiie it r s s s s s s aasn s s s n e s aaann e s asannnsssannes 80
5.2 Addressing Modes Select Bit (AMODE)uuuiuuiiisieiseiatesssiaesrsass s arssars e s sanrssnssrans 81
53 Assembler/Compiler Tracking Of AMODE Bitu....uuuvuseiiseiiissiissirsesirseiissisesasisssiarsaaneraeianes 83
5.4 Direct ADdresSing MOOES (DP) .uuuuiuuieiiiitteiniitraraiare s ssiae s taassestaaasssssansressaanrsssannnsssnns 84
55 Stack AdAreSSING MOOES (SP) . uuuuueiietiiteiueinte et ra s s aa e aa s s s reaeeraneans 85
5.6 [o TTg=Tot A7 o[£ =277 g Vo TN 1Y o o =N 86
5.6.1 (C28x Indirect Addressing Modes (XARO 10 XART) 1uuuuriiiiiuiiiiiiiiiiiin i sasss s sannsessannns 86
5.6.2 C2xLP Indirect Addressing Modes (ARP, XARO t0 XART) 1.uuiiuiiiieiiiiiiiieiiiiieeieisinesinnsnnes 88
5.6.3 Circular Indirect Addressing Modes (XARG, XARL)ciiiiiiiiiiiieiiiiin s iaiaressaannssssanresaannnss 97
5.7 Register ADAresSSiNg MOGES ... uuueiiieeiiiiesirite st a e s s s sa e s s asaae s s aaaa e s asannnsssannnesins 100
5.7.1 32-Bit Register ADAreSSiNg MOUESuueiieiiiieiieiiie i s ra s ria e rans 100
5.7.2 16-Bit Register AddreSSing MOUESuueeiiiiiieiiiateeiiit e rraar e e e ssaanre s saannnesaannnesrannes 101
5.8 Data/Program/IO Space Immediate Addressing MOAESueiiiiiieiiiiiii i sranns 103
5.9 Program Space Indirect AddresSing MOOES uuiiiiueiiiriii i s s aaeaaneens 104
5.10 Byte AAAreSSING MOOES . ..t iiieteeaaiat e eaa e e saaaa e s s aan e s saan e et sanne s saannessaannnsssannnassaannnssnnn 105
5.11 Alignment Of 32-Bit OPEratiONS ..ueuiuueseiiusteirintnssainrersisare s saaasrstasnrsssaasestsarsnsssasnnesins 106
6 C28x Assembly Language INSITUCTIONS ...viuiuiiiiii i et s e e e aeaaaas 107
6.1 SUMMArY Of INSEUCHONS 1 uet ittt e et r s e s r s a e ra e s n e ranees 107
6.2 C28x Assembly Language INStructions by FUNCLIONuviieiiiiiii e e r e e n e 114
6.3 LR ET0 R (=T @] o =T - 1o g 1 N 116
7 EMUIALION FEAIUIESvuiiiiiii i e 473
7.1 Overview Of EMUIAtION FEAIUMNES ... uu ettt st r e r e r e ranes 474
7.2 7= 10T T 11 (= = Lo = 474
7.3 [=T o T8 o N =T 120117] 0 2 476
7.4 (oW o T @0 11 0] 1Y o T [476
SPRU430F-August 2001 —-Revised April 2015 Contents 3

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

I3 TEXAS
INSTRUMENTS
www.ti.com
A 0 TS [1/ o 476
7.4.2 ReEAI-TIME MOUE 1.utitiiiiiiiie s r e s e s e s e s aa e e rneaas 477
7.4.3 Summary of Stop Mode and Real-Time MOOE.....uviueiiiiiieiiiii i ssinreaaaas 478
7.5 Aborting Interrupts With the ABORTI INStIUCHION ..vuuuiiusiiiiieiiiiiierins s s s e e rneaas 480
7.6 [I N 1T o =] o 480
7.7 Analysis Breakpoints, Watchpoints, and COUNEI(S) «uuuuuueeirsiueriisiinnsiriisnesiiisesisainsesiannsassaannnssas 482
7.7.1 ANAlYSiS BreakpPOiNtS .uuuueeisteiseiiteste i srs s s ar e et e s 482
A A - 1 (o o To 1 | 482
7.7.3 Benchmark Counter/EVENt COUNTEI(S) vuuuetiuuunerrauntesrainnnessannnessainnrsssasnnsssssnnesisassnesssnnes 483
7.7.4 Typical Analysis Unit CONfIQUIALIONS .. .uuuueerssiiteiisisiee s i sar s sresranrsanes 483
7.8 9 7= 1 7= 1 Yo o o R 484
7.8.1 Creating a Data Logging Transfer BUffer ... s e 484
7.8.2 Accessing the Emulation Registers Properly....c.uivevvieeiiiiiniiii i sessnas e saes 486
7.8.3 Data Log INterrupt (DLOGINT) .. uueeteteesretesaaaneessaaneessannessaansesssannessaannesssannsessannnes 487
7.8.4 Examples Of Data LOGQING «euuuuteerruunrersinnesssinneesaasnsssaissesisasssssaasnsstsmsnetmannnssssmnnnes 487
7.9 Sharing ANalySiS RESOUICES 1.uuuiiuiiitiiitiie s e e s r e s e s e n e rnes 488
4% O I D - To | o [o) X = Vg o I =T oo Y= N 489
Register QUICK REFEIBNCE ... e et e e e e e e e e es 490
A.l Reset Values of and Instructions for Accessing the REQISIErSuueeiiiieiiiiie i isaeeeraanneeriannnes 491
A.2 LRS00 0= 491
C2xLP and C28x Architectural DifferenCeSo aas 498
B.1 Summary of Architecture Differences Between C2XLP and C28Xuvviieriiiiiniriiiinirsiiiinnsisnineiinines 499
B.1.1 Enhancements of the C28X oVer the C2XLPuviuiiiiiiiiiiiii i e eens 499
B.2 =0 RS] 1= £ 499
B.2.1 CPU ReQISter ChanNgeS .uuuiuusseiiiatssiiatseisistessaiasrsssasssssaissssasassstaasanestasnnsssannnessns 501
B.2.2 Data Page (DP) POINtEr ChanQes .uuueeiutirseineiiieerisssssssinsiassiassiainssassrasssnsssannssnnsias 502
B.2.3 Status RegiStEr ChaNQES .uuuuueirustiissiiseiirerseiasisrrasts s rase s raas s aanraanreras 503
B.2.4 Register ReSet CONUItIONS ..uuuuseiiistesiittetritssrsasre s sains s ssaiar s saarasesasaannsssannnessns 506
B.3 1T T Y0 1= o 507
C2XLP Migration GUIAEIINESt et e e e e e e e e a e e s e e e enennens 510
Cci1 8100 o 1T o 511
Cc.2 Recommended Migration FlOW.uieeeeiiiie et i e aaeeessaere s saanne s s sanneesaasnnesaaannessaannnessannnnnsnn 511
C3 Mixing C2XLP and C28X ASSEMIDIY . .uuuiiutiseiiirara s r s ne 513
(O3 @0 To L= =T] 0] =N 514
C.4.1 Boot Code for C28x Operating INitialiZationviieeeeiiii i isie s seie e ssanneessaanneerannnes 514
(O 1 o = oo 515
C.4.3 CONEXt SAVE/RESIONE 1 uistiistiristi ittt it ettt aa et s e e a s raa st aaarasrenas 516
C5 Reference Tables for C2XLP Code Migration TOPICS «evevuuueersesnneesessnnessasnnessssnnmessssnnessssnnsessennnes 517
C2xLP Instruction Set CompatibDilityocoeiii e 522
[200 R @0 g To 11 o W =] €30 o I =T 1N 523
D.2 C2XLP VS. C28X MNEMIOIMICS +1uuteiusttunerssisssesssssssiassssnssassissesisnmiineissetatneaeaiieiinn 523
D.3 Repeatable INSIIUCTIONS 1. . vttt e et e s s s s s e s r e e s a et a s s n s s e s aneans 527
Migration from C27X 10 C28X .u.uuueiieien ettt et e et e e e e e e e e e e e e e e e eaens 529
E.l F Y (o] T (= Tod (1= O g = g o = 530
O R O g = g Vo [T (o B =T 015 (=] £ S 530
E.1.2 Full Context SAve and RESIOMEuiiusiiseiirerseiaersass i sae s e saarsraneias 532
E.1.3 BO/B1 Memory Map CONSIAEIAtIONueeiieeiiiieneisiitesssaaass s saase s saannnsssannressaannessaannness 532
E.1.4 C27x Object ComMPatibDility ..ooueeerriieesiieesiasessssneessasneesssannessaanneesaasnnessasnnesssnnnnensnn 533
E.2 YoV] T I (o J= @722 Q@ o =T o 533
E.2.1 Caution When Changing OBJIMODE.........cuiiiiiieiiiiteiiiitssiaantesaaaarssaaansssssannnssaaannesss 534
E.3 Migrating t0 C28X ObJECT COUE . uuuiiirreetiiiestiatessaantessaanneesaaannesaasnnessaannnesaannessssnnesssnnnnessnn 534
E.3.1 INStruction SYNtax ChanQgES ...uuussiiussiseiiteiseisssrisrrasss s sae s s sanrssnsias 534
Contents SPRU430F—August 2001 —Revised April 2015

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

I3 TEXAS
INSTRUMENTS

www.ti.com
E.3.2 Repeatable INSITUCHIONS ...ttt iastssae st s s s s s s s s sar s s e ra s s an e san s s saaeaannens 535
E.3.3 Changes to the SUBCU INSIUCTION +.uueiuuserseiiseisseiassssisssissssserassssisssassisisssinssaanesaneias 536
E.4 (0] 4] o1 1T @222 5 QST 11 { o3 @ o = 536
F (€1 Lo 1YY= 1 PP PP 537
F.1 LT[0 S77= V2 537
VAT o o T 151 0 PP 550
SPRU430F-August 2001 —-Revised April 2015 Contents 5

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

I3 TEXAS
INSTRUMENTS
www.ti.com
List of Figures

1-1. High-Level Conceptual Diagram Of the CPU ...iieiiiiiiiiiiiiiiii i s rae e 15
1-2. TMS320C28x High-Level MemOry Map «uuuuueeeirueeiiiisesisnssessaissssssassessanssssssannsessannnssssannssssnns 17
2-1. Conceptual Block Diagram Of the CPUiiiiiiieiiiiiiiiiiri s s s s raaeaaneaanns 22
B O <y Q= =T 01 1) (=] = 24
2-3. Individually Accessible Portions of the ACCUMUIAIOriviuueeiiiiieiiii i s aees 25
2-4. Individually Accessible Halves of the XT ReQIStErvuuiiiueiiieiiitiiiiiirii i sanes 26
2-5. Individually Accessible Halves of the P ReQIStEreeiiiiii i e a e 26
ST = Vo T XS0 = = T 1Y/ 0 o 27
2-7. Address Reach of the Stack POINEriieiiiiiiieii i e eens 28
2-8. XARD - XART7 REQISIEIS . .uttiiuuttetntesaaaateesaaaneesaaaanessaanessaassnessaantestsannssssaannessssnneessannssssnns 28
2-9. XARD = XA R 1ttt sttt e e 29
2-10. Conceptual Diagram of Components Involved in 16 X16-Bit MUltipliCationcovvieeiiiiniiiiiienane, 46
2-11. Conceptual Diagram of Components Involved in 32 X 32-Bit Multiplicationccooiiiiiiiiiiiiiiiiians a7
1 47
2 O N 1 B o] 4] 0T 1T 48
S 1@ A 0] T2 F= 0 T 48
2-15. MOVH COMIMEANG 1tttnuttineinunenissssssesssssssesasesasesassssse st saare s taserasssssesasttasneraeiarerinnnns 48
22t G TR I I 90 o 4= 1T 48
2-17. LSL aNnd SFR COMMANUS .t ttuatiisseiussersessssssssassssse st ssse s ssss st s sass st saaresassssasssannssnneins 48
2t R I o o T3 11> 3T 49
TR 8 o o 111 4= g T 49
22 O N = T IR o 111 4= g T 49
A I O | B 0 4] 0 = o 49
R S {7 B 0 0 13- T 49
e N 0 I @0 4] 01T o 50
P NS G B O o] 1 11T T 50
2-25. NORM and SUBCU COMMEANG ... uuttuteiunenanissssss e ssssssssasss s sanssasstsisssanssansssasisnnens 50
B G TS 01 S 0= = o 1 50
A R 1O NV 0] o 11 3= 0 T 51
B < T V1 XY 0] 13- T 51
3-1. Interrupt Flag ReGISIEr (IFR)ueeiiitiiiiiteire et e s s e e s rs e e s san s e s saan s n s ssan e e s aannessaanneeaanns 56
3-2. Interrupt Enable ReQIStEr (IER) ... uuiuueteirittiiiinneissieesssise s ssaase s saissesssaasssssannnessaannrsssannnsssnns 56
3-3. Debug Interrupt Enable Register (DBGIER)uuiiiuiiiiiiiiiiiieiiri s sas s s s snnssn e snees 57
3-4. Standard Operation for CPU Maskable INTEITUDPLS 1.uuuuseiiueiiiseiiteiisiiiriss s raseranesannsaaes 59
3-5. Functional Flow Chart for an Interrupt Initiated by the TRAP INStruCtionccceviiiiiiniiiiiiiiiiieinnns 63
4-1. Relationship Between Pipeline and Address Counters FC, IC, and PCccoiiiiiiiiiiiiiiinienieneans 70
5-1. Circular Buffer With AMODE = 0 ..uuiiiuseiiisiiiiistiie it ss st sae s s s ra s s rasianeans 98
5-2. Circular Buffer With AMODE = 1 .. .uiiiiiiiiiiiiiiiiiii i e raa e raanans 99
7-1. JTAG Header to Interface a Target to the Scan CONrOllErvviieeeiriii i raere s ranneeeaannnes 474
S (] oI [0 To L= T o U o g] £= L= 477
7-3. Real-time Mode EXECULION STALES ..uuiiuriiiseiiitiiiseiiiiisie i i a s saaesanes 478
7-4. Stop Mode Versus Real-Time MOOEuiueirieiiiiiiiiie it aa e anes 479
7-5. Process for Handling @ DT-DIMA REQUEST. ... uueiiitiiiattessaaetessaaaseesaansesaaannssaaannessaannnesaaannesss 481
7-6. ADDRL (at Data-Space Address 00 0838.5) «uuueeruuueetrriunesimmunnesransnesimasnessannresmainnssmmisnremssinnes 484
7-7. ADDRH (at Data-Space Address 00 0839 16) . uuuetuurtrueerueirieerinnirsesinrsassrnssiannerassiainssirannerins 484
7-8. REFL (at Data-Space Address 00 O84A) «.uuueeiiinueeiiatesiaateesaaantessaantesaaaanresaaanresaaannssssannnsss 484
7-9. REFH (at Data-Space Address 00 084B g) . uuueettuuuetirmuunetiansnnsssanntesssanssssainnsessinnnsissinnssisssnnss 485
List of Figures SPRU430F—August 2001 —Revised April 2015

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

I3 TEXAS

INSTRUMENTS

www.ti.com
7-10. Valid Combinations Of ANAlYSIiS RESOUICES ...uuuiiuutiiteiittiiieerississssissars s sars e sasssiassannssns 489
N S = (LS =T 153 (=] 0 O 492
A-2. Status Register STL, BilS 15-8....uuuuiiiiiieiiiiitesiiieiiaie i rri s saanr s saaianssaaannesannnes 493
A-3. Status RegSIter STL, BitS 7-0 .euiuuueeeiiitesiaateeseaantessaanreesaanneesaaannessaannessaannessaannessssnnnessnnnns 494
A-4. Interrupt Flag RegiSter (IFR) ..ttt ittt sr s e s s e s s an e s saa e s s aaann e s saannnesannnns 495
A-5. Interrupt Enable Register (IER)uueiiiii i s s 496
A-6. Debug Interrupt Enable Register (DBGIER) ...uvuuiiieiiiiiiiiiiiiiasisssans s sasssasssasssinssannssnnsins 497
B-1. Register Changes from C2XLP t0 C28X ...uuueiiiueeeiiiiiesiaatessaaannessaanressaanessaaanresaaansessaannsessnns 500
B-2. Direct ADdresSing MOOE MaPPiNg «uuueeeieuueesssuunesirausnessanssessaassessassnessaannsssainnrsssasnnssssinnssisnns 502
B-3. C2XLP Status ReQISIEr STO 1uuuiiuutiiuteiueinntistsrse s saastarssasssasssaassanssansiannens 503
B-4. C28X StatuS REQISIEr STO 1uuutiiuseiiurerseiiseirsriasterse it as s et aasraanssraneins 503
B-5. C28XLP StatUS ReQISIEr ST L .uuuiuutseiiuntesriateersaretaaisnessaaseessaissestaasssssaastestaansnsssssnnnessns 503
B-6. C28X StatUS REGISIEr ST L . uuuuuiiustiuteiueiaesrattrse st tra st staa s saar s et asia s s resaesransans 503
B-7. Memory Map CompariSON (SEE NOLE A)ueiiriteriiieteiaaine s saanessaaanaessaantassaansrssaaanressaannessnns 508
C-1. Flow Chart of Recommended Migration STEPS ...vuueeeiiiutetiiinseisiintesriintresainressainresaainnssssanness 512
N Ol =T 0115 (] £ 530
E-2. FUll CONtEXt SAVE/RESIOIE .1 uttiustiiuterseiaserstsrase s st ta s s s s st s s s e s et s a e s naa s e naneans 532
E-3. Code for a Full Context Save/Restore for C28X VS C27X vuuiivriiiseiiisirisniiissiisiiiinsiisaiins 532
E-4. Mapping of Memory BIOCKS BO @nd BL 0N C27X «.uuuiuueiiuuiinnteiineineenisniasssisssansrinsianssanssannssnns 532
E-5. C27x Compatible Mapping of BIOCKS MO @nd M1cuuueiiiiiiii i aaiee s ssaes s s saane s snannn s ssannaeanns 533
E-6. Building a C27x Object File From C27X SOUIMCE .. .uuueiiuttiiiinreiiainnssssissesisasssssaissssiaasssssannnesias 533
E-7. Building a C28x Object File From MiXxed C27X/C28X SOUICE 1..uuuureriutirssrinrsrssrinsiainsransisinssinrsanes 533
E-8. COMPIIING C28X SOUMCE . uuuuetetiianttetsantessaaneesaaaasesaaanessaasnnessaaanessaannnsssaannasssannnessannnnsssns 536

SPRU430F—August 2001 —-Revised April 2015 List of Figures 7

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

I3 TEXAS
INSTRUMENTS
www.ti.com
List of Tables

O O o431 oY= 1] o1 1 Y20 1Y o o = 14
1-2. Summary of Bus Use During Data-Space and Program-Space ACCESSES ..ivuuureiirinreririnnrerisnnrsssminnnss 18
I S 0 T= ot F= U = TU @ o 1T - L1 0 19
P I O o B B =T 115 (=] g U 0 T 4= /2 23
2-2. Available Operations for Shifting Values in the ACCUMUIALONc.ueiiiiiiieiiiiiiii i reaiaees 25
P22 T 0 T [0 ox S 11 1 1Yo o[27
2-4. Bit Fields of Status RegiStEr (STO) .. uuuuueiuseiruneristirseiisterserassssiss it tarssarsrassasssarrassranans 30
2-5. Instructions That AffeCt OVC/OVCU ...uuiiiiiiiniiiiiiiiiiiisirisi s ar s ssas e raseias 30
2-6. Instructions Affected by the PM BItS ...uuiiuiiiieiiiiiiiiiiri s s s s e nens 32
2-7. Instructions Affected DY V flagoooeii i e 33
2-8. Negative Flag Under Overflow CONAItIONS ...uueeiiiiuiseiiieiesiiitseisisressaianssssinarsssainnssssanssssannnesss 35
2-9. Bits Affected DY the C Bit cueuueeiisiiiiiiiter i e s 36
2-10. Instructions That AffECt the TC Bt ..uueeiiseiieiriiiii i raneaas 39
2-11. Instructions Affected DY SXM ... i 40
2-12. Bit Fields of Status ReQIStEr 1 (STL) vuuueuueuruurinterneiaaterasiassssss st sanrssasssaessanssansssassiannens 41
2 S 01 S 0= = o 1 48
3-1. Interrupt Vectors and PriOrtiES .uuuuueseirsieeissieeisiiesssiae s tsaase s sasse s ssansaessannessaannrsssannnsannns 54
3-2. Requirements for Enabling a Maskable INterrupt ..o s aas 55
3-3. RTOSINT Real-time Operating System INterrupt FIag «...vvueevietiiiieiiiiiiri i raes 56
3-4. Register Pairs Saved and SP PoSitions for CONEXE SAVES ...uviiiiueriiiiiunsiiiieeiriinesiaisssisanssessannnes 60
3-5. Register Pairs Saved and SP PoSitions fOr CONtEXt SAVES ..uvviriiererrainnerraaneerrannnessaannnrssannrerrannnes 64
B T 2= To 1] (=T S AN 1 (=T g L= =] 65
5-1. Addressing Modes for “IOCL6” OF “l0C32”uuuuteiiiutes ittt ssaier e ssaisesssaias s saaansssaansesssannnesss 81
6-1. SUMMArY Of INSIIUCTIONS .. ueite ittt et e e s s s s e e s e s e e s e s s a s s n s s n e s e s s n e eanees 107
6-2. Instruction Set Summary (Organized DY FUNCHON) .uuvuueiiueiiiiiiiiiiini s naaes 114
(G TR =T 1] (=] g @ o =T = 1o 0 116
Lo o = 10 =TT 1Y 0o = 173
7-1. 14-Pin Header Signal DeSCHPLIONS ... uusiiieteiiiiteeesaaeeess e e ssaane s ssaas s ssann e s saannessaannnessannnnssnn 475
7-2. Selecting Device Operating Modes By Using TRST, EMUO, and EMUZL.......ccviiiieiinriernninnennesnesnnnnns 475
7-3. Interrupt Handling Information By Mode and State........ivueiiiiriiniiiiiiiiis i sinnenaes 479
7-4. Start Address and DIMA ReEgISIEIS. . uuuuuttiustiisterseiasseriatrate e st i ranerases 485
ST = 1o B A [[=TSR =T 0] =T £ 486
A T A 4= 1125 S Lo T o= 488
A-1. Reset Values of the Status and Control REQISIEISuuiiiiiiie it saaaneeeanas 491
o I €T =T oL == (] o 499
2T O d I o o Yo [U Tt 1Yo o T 1 1T 504
B-3. C28X Product MOOE Shifter....uuuseiiseiiseiiirii i s s raeaas 504
B-4. Reset Conditions Of INternal REQISIEIS.uuueiiiiiiiiii i i aaanreaaaas 506
B-5. StAtUS REGISIET BitS . uuiuueieeistiseeraterte it r s s e e s et r e s s s s s s s saa s sa e s san e aaanssannans 507
TR = 10 I V1T T Y /= T o 508
C-1. Code to Save Contents Of IMR (IER) And Disabling Lower Priority Interrupts At Beginning Of ISR 515
C-2. Code to DiSable @n INtEITUPT « .. u ettt et r e s e s e s et s s s n s ra e s e e s an e s e e ranes 515
(O T @0 o (=38 (o T = g F= 1] [=I= T I 11 (=T o 0 o N 515
C-4. Code to Clear the IFR REGISIEN . uuuuiiutsiiiitteisitesrii s ss et ss e s s aas st sasne s saannasssannnessas 515
C-5. Full Context Save/ReStOre COMPAIISON w..ueuuuttuseruassaate et ssinetasstaiss e srass e aaarsraetainesanns 516
C-6. C2xLP and C28x Differences in INTEITUPLSuueiiieiiiiee et s st e sraanr e saaaan s saaanne s saannnesaannenss 517
C-7. C2xLP and C28x Differences in StatuUs ReQISIEIS .. .uuueiiiiieiiiiieei i i rsinr s araneess 518
List of Tables SPRU430F—August 2001 —Revised April 2015

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

I3 TEXAS
INSTRUMENTS
www.ti.com
C-8. C2xLP and C28x Differences in MemOry MaPSuueiueiiueerietiinssrineiinnsrissiasesinsrassinssarsrnesans 519
C-9. C2xLP and C28x Differences in INStructions and REQISIErSuuueiiiiiieiiiiie i rraee e rraanreraannes 520
C-10. Code Generation Tools and SyntaxX DifferenNCeSueeiiiiieeiiiiiiiiiiii i raanees 521
D-1. C28X @Nd C2XLP FIAGS +1uuttuuteiustiiuteineiaeesiatssse s sase s sse st ssassaa s saessas s asassannsanessannsns 523
D-2. C2xLP Instructions and C28x Equivalent INSITUCHIONSueiiiieiiii i irr i v iee s rnane s rannneeeas 523
D-3. Repeatable Instructions for the C2XLP and C28X ...uuuvuueeiriiunreiniinneisiissesisisssirassesiannnsimannneias 527
[t O O =T 1] (=] G =11 531
S I8 L= 153 (= 2 £ 531
| T |11 10 Tod 1o S}V] ¢= 0 O =g T = 534
SPRU430F-August 2001 —-Revised April 2015 List of Tables 9

Submit Documentation Feedback

Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

I3 TEXAS
INSTRUMENTS

Preface
SPRU430F-August 2001—-Revised April 2015

Read This First

About This Manual

This manual describes the central processing unit (CPU) and the assembly language instructions of the
TMS320C28x 32-bit fixed-point CPU. It also describes emulation features available on these devices. A
summary of the chapters and appendices follows.

Chapter 1 —Architectural Overview

This chapter introduces the C2800 CPU that is at the heart of each TMS320C28x device. The
chapter includes a memory map and a high-level description of the memory interface that connects
the core with memory and peripheral devices.

Chapter 2 —Central Processing Unit

This chapter describes the architecture, registers, and primary functions of the CPU. The chapter
includes detailed descriptions of the flag and control bits in the most important CPU registers,
status registers STO and ST1.

Chapter 3 —Interrupts and Reset

This chapter describes the interrupts and how they are handled by the CPU. The chapter also
explains the effects of a reset on the CPU and includes discussion of the automatic context save
performed by the CPU prior to servicing an interrupt.

Chapter 4 —Pipeline

This chapter describes the phases and operation of the instruction pipeline. The chapter is primarily
for readers interested in increasing the efficiency of their programs by preventing pipeline delays.

Chapter 5 —Addressing Modes

This chapter explains the modes by which the assembly language instructions accept data and
access register and memory locations. The chapter includes a description of how addressing-mode
information is encoded in op-codes.

Chapter 6 —Assembly Language Instructions

This chapter provides summaries of the instruction set and detailed descriptions (including
examples) for the instructions. The chapter includes an ex- planation of how 32-bit accesses are
aligned to even addresses.

Chapter 7 —Emulation Features
This chapter describes the TMS320C28x emulation features that can be used with only a JTAG
port and two additional emulation pins.

Appendix A —Register Quick Reference

This appendix is a concise central resource for information about the status and control registers of
the CPU. The chapter includes figures that summarize the bit fields of the registers.

Appendix B —C2xLP and C28x Architectureal Differences
This appendix describes the differences in the architecture of the C2xLP and the C28x.

Appendix C —Migration From C2xLP
This appendix explains how to migrate code from the C2xLP to the C28x.

Appendix D —C2xLP Instruction Set Compatibility
This appendix describes the instruction set compatibility with the C2xLP.

10 Read This First SPRU430F-August 2001 —Revised April 2015

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

www.ti.com Notational Conventions

Appendix E —Migration From C27x to C28x
Migration From C27x to C28x

Appendix F —Glossary

This appendix explains abbreviations, acronyms, and special terminology used throughout this
document.

Notational Conventions

This document uses the following conventions:

» The device number TMS320C28x is very often abbreviated as '28x.

» Program examples are shown in a special typeface. Here is a sample line of program code:
PUSH IER

» Portions of an instruction syntax that are in bold should be entered as shown; portions of a syntax that
are in italics are variables indicating information that should be entered. Here is an example of an
instruction syntax:

MOV ARX, *-SP[6bit]

MOV is the instruction mnemonic. This instruction has two operands, indicated by ARx and *-SP[6bit].
Where the variable x appears, you type a value from 0 to 5; where the 6bit appears, you type a 6-bit
constant. The rest of the instruction, including the square brackets, must be entered as shown.

» When braces or brackets enclose an operand, as in {operand}, the operand is optional. If you use an
optional operand, you specify the information within the braces; you do not enter the braces
themselves. In the following syntax, the operand << shift is optional:

MOV ACC, *-SPJ[6bit] {<< shift}
MOV ACC, *-SPJ[6bit] {<< shift}
For example, you could use either of the following instructions:

MOV ACC, *-SP[5]

MOV ACC, *-SP[5]<< 4

* In most cases, hexadecimal numbers are shown with a subscript of 16. For example, the hexadecimal
number 40 would be shown as 40,,. An exception to this rule is a hexadecimal number in a code
example; these hexadecimal numbers have the suffix h. For example, the number 40 in the following
code is a hexadecimal 40.

MOVB ARO,#40h
Similarly, binary numbers usually are shown with a subscript of 2. For example, the binary number 4

would be shown as 0100,. Binary numbers in example code have the suffix b. For example, the
following code uses a binary 4.

MOVB ARO,#0100b
» Bus signals and bits are sometimes represented with the following notations:

Notation Description Example
PRDB(31:0) represents the 32 signals of the

Bus(n:m) Signals n through m of bus program-read data bus (PRDB).

Register(n:m) Bits n through m of register ¥(3:0) represents the 4 least significant bits of the
register.

Register(n) Bit n of register IER(4) represents bit 4 of the interrupt enable

register (IER).

» Concatenated values are represented with the following notation:

Notation Description Example
AR1:ARO is the concatenation of the 16-bit
Xy x concatenated with y registers AR1 and ARO. ARO is the low word. AR1

is the high word.

» If a signal is from an active-low pin, the name of the signal is qualified with an overbar (for example,
INT1). If a signal is from an active-high pin or from hardware inside the the device (in which case, the
polarity is irrelevant), the name of the signal is left unqualified (for example, DLOGINT).

SPRU430F—August 2001 —-Revised April 2015 Read This First 11

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

Related Documentaiton from Texas Instruments www.ti.com

Related Documentaiton from Texas Instruments

The following books describe the TMS320C28x DSP and related support tools. The documents are
available for downloading on the Texas Instruments website (www.ti.com).

TMS320F2801, TMS320F2806, TMS320F2808 Digital Signal Processors — (SPRS230) data sheet
contains the pinout, signal descriptions, as well as electrical and timing specifications for the F280x
devices.

TMS320C28x Assembly Language Tools User’s Guide — (ISPRU513) describes the assembly
language tools (assembler and other tools used to develop assembly language code), assembler
directives, macros, common object file format, and symbolic debugging directives for the
TMS320C28x™ device.

TMS320C28x Optimizing C Compiler User’'s Guide — (SPRU514) describes the TMS320C28x™
C/C++ compiler. This compiler accepts ANSI standard C/C++ source code and produces
TMS320™ DSP assembly language source code for the TMS320C28x device.

TMS320F2810, TMS320F2811, TMS320F2812, TMS320C2810, TMS320C2811, and TMS320C2812
Digital Signal Processors — (SPRS174) data sheet contains the electrical and timing
specifications for these devices, as well as signal descriptions and pinouts for all of the available
packages.

TMS320x28xx, 28xxx DSP Peripherals Reference Guide — (SPRU566) describes all the peripherals
available for TMS320x28xx and TMS320x28xxx devices.

TMS320C28x Floating Point Unit and Instruction Set Reference Guide — (SPRUEOZ2) describes the
CPU architecture, pipeline, instruction set, and interrupts of the C28x floating—point DSP.

12

Read This First SPRU430F—August 2001 —Revised April 2015

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F
http://www.ti.com
http://www.ti.com/lit/pdf/SPRS230
http://www.ti.com/lit/pdf/SPRU513
http://www.ti.com/lit/pdf/SPRU514
http://www.ti.com/lit/pdf/SPRS174
http://www.ti.com/lit/pdf/SPRU566
http://www.ti.com/lit/pdf/SPRUEO2

i Chapter 1

TE S SPRU430F-August 2001—-Revised April 2015

INSTRUMENTS
Architectural Overview

The TMS320C28xTM is one of several fixed-point CPUs in the TMS320 family. The C28x™ is source-
code and object-code compatible with the C27x™. In addition, much of the code written for the C2xLP
CPU can be reassembled to run on a C28x device.

The C2xLP CPU is used in all TMS320F24xx and TMS320C20x devices and their derivatives. This
document refers to C2xLP as a generic name for the CPU used in these devices.

This chapter provides an overview of the architectural structure and components of the C28x CPU.

Topic Page

1.1 INtroduction 10 the CPU ...iuiuieiiiiiiieieii et ettt e e et e e e e a e e e e e e e e a e e enens 14

1.2 Components Of the CPUiuieiiiiiiiiiii ettt e e e e e e e a e e eaens 15

I T Y/ =Y g o Y20 1Y F= T PP 16

O V1T o g o VA [0 T = Lo = PP 18
SPRU430F—August 2001 —-Revised April 2015 Architectural Overview 13

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

Introduction to the CPU www.ti.com

1.1

111

1.1.2

Introduction to the CPU

The CPU is a low-cost 32-bit fixed-point processor. This device draws from the best features of digital
signal processing; reduced instruction set computing (RISC); and microcontroller architectures, firmware,
and tool sets. The CPU features include a modified Harvard architecture and circular addressing. The
RISC features are single-cycle instruction execution, register-to-register operations, and modified Harvard
architecture (usable in Von Neumann mode). The microcontroller features include ease of use through an
intuitive instruction set, byte packing and unpacking, and bit manipulation.

The modified Harvard architecture of the CPU enables instruction and data fetches to be performed in
parallel. The CPU can read instructions and data while it writes data simultaneously to maintain the single-
cycle instruction operation across the pipeline. The CPU does this over six separate address/data buses.

Compatibility With Other TMS320 CPUs

The C28x CPU features compatibility modes that minimize the migration effort from the C27x and C2xLP
CPUs. The operating mode of the device is determined by a combination of the OBJMODE and AMODE
bits in status register 1 (ST1) as shown in Table 1-1. The OBJMODE bit allows you to select between
code compiled for a C28x (OBJMODE == 1) and code compiled for a C27x (OBJMODE == 0). The
AMODE bit allows you to select between C28x/C27x instruction addressing modes (AMODE == 0) and
C2xLP compatible instruction addressing modes (AMODE == 1).

Table 1-1. Compatibility Modes

OBJMODE AMODE
C28x Mode 1 0

C2xLP Source-compatible Mode 1 1
C27x Object-compatible Mode® 0 0

@ The C28x is in C27x-compatible mode at reset.

e (C28x Mode: In C28x mode, you can take advantage of all the C28x native features, addressing
modes, and instructions. To operate in C28x mode from reset, your code must first set the OBJMODE
bit by using the "C280BJ" (or "M SETC OBJMODE"M) instruction. This book assumes you are
operating in C28x mode unless stated otherwise.

* C2xLP Source-Compatible Mode: C2xLP source-compatible mode al- lows you to run C2xLP source
code which has been reassembled using the C28x code-generation tools. For more information on
operating in this mode and migration from a C2xLP CPU, see Appendix C, Appendix D, Appendix E.

e C27x Object-Compatible Mode: At reset, the C28x CPU operates in C27x object-compatible mode. In
this mode, the C28x is 100% object-code and cycle-count compatible with the C27x CPU. For detailed
information on operating in C27x object-compatible mode and migrating from the C27x, see
Appendix F.

Switching to C28x Mode From Reset

At reset, the C28x CPU is in C27x Object-Compatible Mode (OBJMODE == 0, AMODE == 0) and is 100%
compatible with the C27x CPU. To take advan- tage of the enhanced C28x instruction set, you must
instead operate the de- vice in C28x mode. To do this, after a reset your code must first set the OBJ-
MODE bit in ST1 by using the "M C280BJ"M (or "M SETC OBJMODE"M) instruction.

14

Architectural Overview SPRU430F—August 2001 —Revised April 2015

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

www.ti.com Components of the CPU

1.2 Components of the CPU

As shown in Figure 1-1, the CPU contains:

A CPU for generating data- and program-memory addresses; decoding and executing instructions;
performing arithmetic, logical, and shift operations; and controlling data transfers among CPU registers,
data memory, and program memory

Emulation logic for monitoring and controlling various parts and functionalities of the DSP and for
testing device operation

Signals for interfacing with memory and peripherals, clocking and controlling the CPU and the
emulation logic, showing the status of the CPU and the emulation logic, and using interrupts

The CPU does not contain memory, a clock generator, or peripheral devices. For information about
interfacing to these items, see the C28x Peripheral User's Guide (SPRU566) and the data sheet that
corresponds to your DSP.

C28x CPU
N
< Memory-interface signals >
CPU ! |
< Clock and control signals >
< Reset and interrupt signals >
Emulation
logic |
< Emulation signals >

Figure 1-1. High-Level Conceptual Diagram of the CPU

1.2.1 Central Processing Unit (CPU)

The CPU is discussed in more detail in Chapter 2, but following is a list of its major features:

Protected pipeline. The CPU implements an 8-phase pipeline that prevents a write to and a read from
the same location from occurring out of order.

Independent register space. The CPU contains registers that are not mapped to data space. These
registers function as system-control registers, math registers, and data pointers. The system-control
registers are accessed by special instructions. The other registers are accessed by special instructions
or by a special addressing mode (register addressing mode).

Arithmetic logic unit (ALU). The 32-bit ALU performs 2s-complement arithmetic and Boolean logic
operations.

Address register arithmetic unit (ARAU). The ARAU generates data- memory addresses and
increments or decrements pointers in parallel with ALU operations.

Barrel shifter. This shifter performs all left and right shifts of data. It can shift data to the left by up to 16
bits and to the right by up to 16 bits.

Multiplier. The multiplier performs 32-bit x 32-bit 2s-complement multiplication with a 64-bit result. The
multiplication can be performed with two signed numbers, two unsigned numbers, or one signed
number and one unsigned number.

SPRU430F—August 2001 —-Revised April 2015 Architectural Overview 15
Submit Documentation Feedback

Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F
http://www.ti.com/lit/pdf/SPRU566

13 TEXAS

INSTRUMENTS
Components of the CPU www.ti.com
1.2.2 Emulation Logic

The emulation logic includes the following features. For more details about these features, see Chapter 7,

Emulation Features.

» Debug-and-test direct memory access (DT-DMA). A debug host can gain direct access to the content
of registers and memory by taking control of the memory interface during unused cycles of the
instruction pipeline.

» Data logging. The emulation logic enables application-initiated transfers of memory contents between
the C28x and a debug host.

e A counter for performance benchmarking

» Multiple debug events. Any of the following debug events can cause a break in program execution:

— A breakpoint initiated by the ESTOPO or ESTOPL1 instruction

— An access to a specified program-space or data-space location

— Arequest from the debug host or other hardware

When a debug event causes the C28x to enter the debug-halt state, the event is called a break event.

» Real-time mode of operation. When the C28x is in this mode and a break event occurs, the main body
of program code comes to a halt, but time-critical interrupts can still be serviced.

1.2.3 Signals

The CPU has four main types of signals:

» Memory-interface signals. These signals transfer data among the CPU, memory, and peripherals;
indicate program-memory accesses and data-memory accesses; and differentiate between accesses
of different sizes (16-bit or 32-bit).

» Clock and control signals. These provide clocking for the CPU and the emulation logic, and they are
used to control and monitor the CPU.

e Reset and interrupt signals. These are used for generating a hardware reset and interrupts, and for
monitoring the status of interrupts.

» Emulation signals. These signals are used for testing and debugging.

1.3 Memory Map

The C28x uses 32-bit data addresses and 22-bit program addresses. This allows for a total address reach

of 4G words (1 word = 16 bits) in data space and 4M words in program space. Memory blocks on all C28x

designs are uniformly mapped to both program and data space. Figure 1-2 shows a high-level view of how
addresses are allocated in program space and data space.

The memory map in Figure 1-2 has been divided into the following segments:

* On-chip program/data

* Reserved

e CPU interrupt vectors

For specific details about each of the map segments, see the data sheet for your device. See Appendix C

for more information on the C2xLP compatible memory space.

16 Architectural Overview SPRU430F-August 2001 —Revised April 2015

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

www.ti.com Memory Map

1.3.1 CPU Interrupt Vectors

Sixty-four addresses in program space are set aside for a table of 32 CPU interrupt vectors. The CPU
vectors can be mapped to the top or bottom of program space by way of the VMAP bit. For more
information about the CPU vectors, see Section 3.2.

For devices with a peripheral interrupt expansion (PIE) block, the interrupt vectors will reside in the PIE
vector table and this memory can be used as program memory.

Program Daa
0000 | \ettors in RAM MO Vectors in RAM MO *
(VMAP = 0) (VMAP = 0)
Block MO 1 K x 16 Block M0 1 Kx 16
3FF <-SP
400 Block M1 1 K x 16 Block M1 1 Kx 16 (Reset) Lg\;vXGL‘lPK
Compatible
Data Space
TFF
Reserved Reserved gg?:
1000
Memory or Memory or
Peripherals Peripherals
3F 0000 v
4 A000
High 64K
C2xLP
Compatible
Program
Space
< 3F FFFF Vectors (VMAP = 1)
FFFF FFFF

Figure 1-2. TMS320C28x High-Level Memory Map

See the data sheet for your specific device for details of the exact memory map.

SPRU430F—August 2001 —-Revised April 2015 Architectural Overview

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

17

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

Memory Interface www.ti.com

1.4

14.1

Memory Interface

The C28x memory map is accessible outside the CPU by the memory interface, which connects the CPU
logic to memories, peripherals, or other interfaces. The memory interface includes separate buses for
program space and data space. This means an instruction can be fetched from program memory while
data memory is being accessed.

The interface also includes signals that indicate the type of read or write being requested by the CPU.
These signals can select a specified memory block or peripheral for a given bus transaction. In addition to
16-bit and 32-bit accesses, the C28x supports special byte-access instructions which can access the least
significant byte (LSByte) or most significant byte (MSByte) of an addressed word. Strobe signals indicate
when such an access is occurring on a data bus.

Address and Data Buses
The memory interface has three address buses:

PAB —Program address bus. The PAB carries addresses for reads and writes from program space. PAB
is a 22-bit bus.

DRAB —Data-read address bus. The 32-bit DRAB carries addresses for reads from data space.
DWAB —Data-write address bus. The 32-bit DWAB carries addresses for writes to data space.

The memory interface also has three data buses:

PRDB —Program-read data bus.
The PRDB carries instructions or data during reads from program space. PRDB is a 32-bit bus.

DRDB —Data-read data bus. The DRDB carries data during reads from data space. PRDB is a 32-bit
bus.

DWDB — Data-/Program-write data bus. The 32-bit DWDB carries data during writes to data space or
program space.

Table 1-2 summarizes how these buses are used during accesses.

Table 1-2. Summary of Bus Use During Data-Space and Program-Space Accesses

Access Type Address Bus Data Bus

Read from program space PAB PRDB
Read from data space DRAB DRDB
Write to program space PAB DWDB
Write to data space DWAB DWDB

A program-space read and a program-space write cannot happen simultaneously because both use the
PAB. Similarly, a program-space write and a data-space write cannot happen simultaneously because
both use the DWDB. Transactions that use different buses can happen simultaneously. For example, the
CPU can read from program space (using PAB and PRDB), read from data space (using DRAB and
DRDB), and write to data space (using DWAB and DWDB) at the same time.

18

Architectural Overview SPRU430F—August 2001 —Revised April 2015

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

www.ti.com Memory Interface

1.4.2 Special Bus Operations

Typically, PAB and PRDB are used only for reading instructions from program space, and DWDB is used
only for writing data to data space. However, the instructions in Table 1-3 are exceptions to this behavior.
For more details about using these instructions, see Chapter 6, Assembly Language Instructions.

Table 1-3. Special Bus Operations

Instruction Special Bus Operation

PREAD This instruction reads a data value rather than an instruction from program space. It then transfers that
value to data space or a register.

For the read from program space, the CPU places the source address on the program address bus
(PAB), sets the appropriate program space select signals, and reads the data value from the program-
read data bus (PRDB).

PWRITE This instruction writes a data value to program space. The value is read from from data space or a
register.

For the write to program space, the CPU places the destination address on the program address bus
(PAB), sets the appropriate program-space select signals, and writes the data value to the data-
/program-write data bus (DWDB).

MAC As part of their operation, these instructions multiply two data values, one of which is read from program
DMAC space.

QMACL For the read from program space, the CPU places the program-space source address on the program
IMACL address bus (PAB), sets the appropriate program-space select signals, and reads the program data
XMAC value from the program read data bus (PRDB).

XMACD

1.4.3 Alignment of 32-Bit Accesses to Even Addresses

The C28x CPU expects memory wrappers or peripheral-interface logic to align any 32-bit read or write to
an even address. If the address-generation logic generates an odd address, the CPU must begin reading
or writing at the previous even address. This alignment does not affect the address values generated by
the address-generation logic.

Most instruction fetches from program space are performed as 32-bit read operations and are aligned
accordingly. However, alignment of instruction fetches are effectively invisible to a programmer. When
instructions are stored to program space, they do not have to be aligned to even addresses. Instruction
boundaries are decoded within the CPU.

You need to be concerned with alignment when using instructions that perform 32-bit reads from or writes
to data space.

SPRU430F—August 2001 —-Revised April 2015 Architectural Overview 19

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

. Chapter 2
I ’.{‘IE)S(’;A"IEUMENTS SPRU430F—August 2001—Revised April 2015

Central Processing Unit

The central processing unit (CPU) is responsible for controlling the flow of a program and the processing
of instructions. It performs arithmetic, Boolean-logic, multiply, and shift operations. When performing
signed math, the CPU uses 2s-complement notation. This chapter describes the architecture, registers,
and primary functions of the CPU.

Topic Page
% O O U N o 11 = o (U = 21
A O U I =T 1= (= P 23
A T - LU E T = T0 L1 =T S 0 30
S - LU E T = To [=T S I PP 41
2205 T = o To | = o T (o 44
P2 G |V 01 L] o] Y @] o= =1 o PP 45
P A 1 o 1 A @ o 1= = 1 o] 47
20 Central Processing Unit SPRU430F-August 2001 —Revised April 2015

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

www.ti.com CPU Architecture

2.1 CPU Architecture

All C28x devices contain a central processing unit (CPU), emulation logic, and signals for interfacing with
memory and peripherals. Included with these signals are three address buses and three data buses.
Figure 2-1 shows the major blocks and data paths of the C28x CPU. It does not reflect the actual silicon
implementation. The shaded buses are memory-interface buses that are external to the CPU. The
operand bus supplies the values for multiplier, shifter, and ALU operations, and the result bus carries the
results to registers and memory. The main blocks of the CPU are:

Program and data control logic. This logic stores a queue of instructions that have been fetched
from program memory.

Real-Time emulation and visibility

Address register arithmetic unit (ARAU). The ARAU generates addresses for values that must be
fetched from data memory. For a data read, it places the address on the data-read address bus
(DRAB); for a data write, it loads the data-write address bus (DWAB). The ARAU also increments or
decrements the stack pointer (SP) and the auxiliary registers (XARO, XAR1, XAR2, XAR3, XARA4,
XAR5, XAR6, and XAR7).

Atomic arithmetic logic unit (ALU). The 32-bit ALU performs 2s-complement arithmetic and Boolean
logic operations. Before doing its calculations, the ALU accepts data from registers, from data memory,
or from the program control logic. The ALU saves results to a register or to data memory.

Prefetch queue and instruction decode
Address generators for program and data

Fixed-point MPY/ALU. The multiplier performs 32-bit x 32-bit 2s-complement multiplication with a 64-
bit result. In conjunction with the multiplier, the '28xx uses the 32-bit multiplicand register (XT), the 32-
bit product register (P), and the 32-bit accumulator (ACC). The XT register supplies one of the values
to be multiplied. The result of the multiplication can be sent to the P register or to ACC.

Interrupt processing

SPRU430F—August 2001 —-Revised April 2015 Central Processing Unit 21
Submit Documentation Feedback

Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

I3 TEXAS
INSTRUMENTS
CPU Architecture www.ti.com
? Program-read data bus, PRDB(0:31) ({
1% Program address bus, PAB(0:21) 2
A
? Data-read address bus, DRAB(0:31) d L
Program-address Program control
generation logic logic
9 Data-read data bus, DRDB(0:31) §
Data-read buffer register | MUX MUX
Address T
from stack
Immediate
v address v Y
? Operand bus &
A
XAR7 |
Immediate
data
Immediate
data
y
Registers
XARO AH:AL Multiplier,
XAR1 PH:PL barrel s:ifter,
4 XAR2 TTL AU
XAR3 IER
ARAU p| XAR4 DBGIER
XAR5 IFR
XAR6 STO
XAR7 PC
DP RPC
SP
ST1
1 ,
? Result bus (g
| Data-write buffer register |
? Data-/program-write data bus, DWDB(0:31) 8
v
9 Data-write address bus, DWAB(0:31) 4
Figure 2-1. Conceptual Block Diagram of the CPU
22 Central Processing Unit SPRU430F-August 2001 —Revised April 2015

Copyright © 2001-2015, Texas Instruments Incorporated

Submit Documentation Feedback

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

www.ti.com

CPU Registers

2.2 CPU Registers

Table 2-1 lists the main CPU registers and their values after reset. Section 2.2.1through Section 2.2.10
describe the registers in more detail. Figure 2-2 shows the registers.

Table 2-1. CPU Register Summary

Register Size Description Value After Reset

ACC 32 hits Accumulator 0x00000000

AH 16 bits High half of ACC 0x0000

AL 16 bits Low half of ACC 0x0000

XARO 16 bits Auxiliary register O 0x00000000

XAR1 32 hits Auxiliary register 1 0x00000000

XAR2 32 hits Auxiliary register 2 0x00000000

XAR3 32 hits Auxiliary register 3 0x00000000

XAR4 32 hits Auxiliary register 4 0x00000000

XAR5 32 hits Auxiliary register 5 0x00000000

XAR6 32 hits Auxiliary register 6 0x00000000

XAR7 32 hits Auxiliary register 7 0x00000000

ARO 16 bits Low half of XARO 0x0000

AR1 16 bits Low half of XAR1 0x0000

AR2 16 bits Low half of XAR2 0x0000

AR3 16 bits Low half of XAR3 0x0000

AR4 16 bits Low half of XAR4 0x0000

AR5 16 bits Low half of XAR5 0x0000

ARG 16 bits Low half of XAR6 0x0000

AR7 16 bits Low half of XAR7 0x0000

DP 16 bits Data-page pointer 0x0000

IFR 16 bits Interrupt flag register 0x0000

IER 16 bits Interrupt enable register 0x0000 (INT1 to INT14, DLOGINT, RTOSINT
disabled)

DBGIER 16 bits Debug interrupt enable register 0x0000 (INT1 to INT14, DLOGINT, RTOSINT
disabled)

P 32 bits Product register 0x00000000

PH 16 bits High half of P 0x0000

PL 16 bits Low half of P 0x0000

PC 22 hits Program counter 0x3F FFCO

RPC 22 hits Return program counte 0x00000000

SP 16 bits Stack pointer 0x0400

STO 16 bits Status register 0 0x0000

ST1 16 bits Status register 1 0x080B™

XT 32 hits Multiplicand register 0x00000000

T 16 bits High half of XT 0x0000

TL 16 bits Low half of XT 0x0000

@ Reset value shown is for devices without the VMAP signal and MOM1MAP signal pinned out. On these devices both of these
signals are tied high internal to the device.

SPRU430F—August 2001 —-Revised April 2015

Submit Documentation Feedback

Central Processing Unit 23

Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

CPU Registers

13 TEXAS
INSTRUMENTS

www.ti.com

(1) A 6-bit offset is used when operating in C28x mode or C27x object-compatible mode.

T[16] TL[16]
PH[16] PL[16]
AH[16] AL[16]

SP[16]

| oo
AROH[16] ARO[16]
AR1H[16] AR1[16]
AR2H[16] AR2[16]
AR3H[16] AR3[16]
AR4H[16] AR4[16]
ARS5H[16] ARS5[16]
ARGH[16] ARB[16]
ART7H[16] AR7[16]
PC[22]
RPC[22]

STO[16]

ST1[16]

IER[16]

DBGIER[16]
IFR[16]

XT[32]
P[32]

ACC[32]

XARO[32]
XAR1[32]
XAR2[32]
XAR3[32]
XARA4[32]
XARS5[32]
XAR6[32]

XAR7[32]

(2) A 7-bit offset is used when operating in C2xLP source-compatible mode. The least significant bit of the DP is
ignored when operating in this mode.

Figure 2-2. C28x Registers

24

Central Processing Unit

SPRU430F—August 2001 —Revised April 2015

Copyright © 2001-2015, Texas Instruments Incorporated

Submit Documentation Feedback

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

www.ti.com CPU Registers
2.2.1 Accumulator (ACC, AH, AL)

The accumulator (ACC) is the main working register for the device. It is the destination for all ALU
operations except those which operate directly on memory or registers. ACC supports single-cycle move,
add, subtract, and compare operations from 32-bit-wide data memory. It can also accept the 32-bit result
of a multiplication operation.

The halves and quarters of the ACC can also be accessed (see Figure 2-3). ACC can be treated as two
independent 16-bit registers: AH (high 16 bits) and AL (low 16 bits). The bytes within AH and AL can also
be accessed independently. Special byte-move instructions load and store the most significant byte or
least significant byte of AH or AL. This enables efficient byte packing and unpacking.

A

AH e AL >

ACC

(¢— AH.MSB —p4¢— AH.LSB —P»4—— AL MSB —Pp4¢——AL.LSB —Pp

AH = ACC (31:16) AL = ACC (15:0)
AH.MSB = ACC (31:24) AL.MSB = ACC (15:8)
AH.LSB = ACC (23:16) AL.LSB = ACC (7:0)

Figure 2-3. Individually Accessible Portions of the Accumulator

The accumulator has the following associated status bits. For the details on these bits, see Section 2.3.
e Overflow mode bit (OVM)

e Sign-extension mode bit (SXM)

e Test/control flag bit (TC)

» Carry bit (C)

» Zero flag bit (Z)

* Negative flag bit (N)

e Latched overflow flag bit (V)

e Overflow counter bits (OVC)

Table 2-2 shows the ways to shift the content of AH, AL, or ACC.

Table 2-2. Available Operations for Shifting Values in the Accumulator

Register Shift Direction Shift Type Instruction
ACC Left Logical LSL or LSLL
Rotation ROL
Right Arithmetic SFR with SXM =1 or ASRL
Logical SFR with SXM =0 or LSRL
Rotation ROR
AH or AL Left Logical LSL
Right Arithmetic ASR
Logical LSR
SPRU430F—August 2001 —-Revised April 2015 Central Processing Unit 25

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

CPU Registers www.ti.com

2.2.2 Multiplicand Register (XT)

The multiplicand register (XT register) is used primarily to store a 32-bit signed integer value prior to a
32-bit multiply operation.

The lower 16-bit portion of the XT register is referred to as the TL register. This register can be loaded
with a signed 16-bit value that is automatically sign-extended to fill the 32-bit XT register.

The upper 16-bit portion of the XT register is referred to as the T register. The T register is mainly used to
store a 16-bit integer value prior to a 16-bit multiply operation.

The T register is also used to specify the shift value for some shift operations. In this case, only a portion
of the T register is used, depending on the instruction.

For example:

ASR AX, T performs an arithmetic shift right based on the four least significant bits
of T: T(3:0) = 0...15

ASRL ACC, T performs an arithmetic shift right by the five least significant bits of T:
T(4:0) 0...31

For these operations, the most significant bits of T are ignored.

—— T=XT(16:31) >

A

TL = XT(15:0) — |

XT

Figure 2-4. Individually Accessible Halves of the XT Register

2.2.3 Product Register (P, PH, PL)

The product register (P register) is typically used to hold the 32-bit result of a multiplication. It can also be
loaded directly from a 16- or 32-bit data-memory location, a 16-bit constant, the 32-bit ACC, or a 16-bit or
a 32-bit addressable CPU register. The P register can be treated as a 32-bit register or as two
independent 16-bit registers: PH (high 16 bits) and PL (low 16 bits); see Figure 2-5.

l«—— PH =P(31:16) » PL=P(15:0) — |

P

Figure 2-5. Individually Accessible Halves of the P Register

When some instructions access P, PH, or PL, all 32-bits are copied to the ALU- shifter block, where the
barrel shifter may perform a left shift, a right shift, or no shift. The action of the shifter for these instructions
is determined by the product shift mode (PM) bits in status register STO. Table 2-3 shows the possible PM
values and the corresponding product shift modes. When the barrel shifter performs a left shift, the low
order bits are filled with zeros. When the shifter performs a right shift, the P register value is sign
extended. Instructions that use PH or PL as operands ignore the product shift mode.

For a complete list of instructions affected by PM bits, see Table 2-6.

26 Central Processing Unit SPRU430F-August 2001 —Revised April 2015

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

www.ti.com

CPU Registers

Table 2-3. Product Shift Modes

PM Value Product Shift Mode

000, Left shift by 1

001, No shift 7

010, Right shift by 1

011, Right shift by 2

100, Right shift by 3

101, Right shift by 4 (if AMODE = 1, left 4)
110, Right shift by 5

111, Right shift by 6

2.2.4 Data Page Pointer (DP)

In the direct addressing modes, data memory is addressed in blocks of 64 words called data pages. The
lower 4M words of data memory consists of 65 536 data pages labeled 0 through 65 535, as shown in
Figure 2-6. In DP direct addressing mode, the 16-bit data page pointer (DP) holds the current data page
number. You change the data page by loading the DP with a new number. For information about the direct
addressing modes, see Section 5.4.

Data page Offset Data memory

00 0000 0000 0000 00| 00 0000

: : Page 0: 0000 0000-0000 003F
00 0000 0000 0000 00| 11 1111
00 0000 0000 0000 01| 00 0000

: : Page 1: 0000 0040-0000 007F
00 0000 0000 0000 01| 11 1111
00 0000 0000 0000 10| 00 0000

: : Page 2: 0000 0080-0000 00BF

00 0000 0000 0000 10| 11 1111

111111 1111 111111 | 00 0000

1M1 | 11 1

Page 65 535: 003F FFC0-003F FFFF

Figure 2-6. Pages of Data Memory

Data memory above 4M words is not accessible using the DP.

When operating in C2xLP source-compatible mode, a 7-bit offset is used and the least significant bit of the
DP register is ignored. See Appendix C for more details.

SPRU430F—August 2001 —-Revised April 2015
Submit Documentation Feedback

Copyright © 2001-2015, Texas Instruments Incorporated

Central Processing Unit 27

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

CPU Registers www.ti.com

2.2.5 Stack Pointer (SP)

2.2.6

The stack pointer (SP) enables the use of a software stack in data memory. The stack pointer has only 16
bits and can only address the low 64K of data space (see Figure 2-7). When the SP is used, the upper six
bits of the 32-bit address are forced to 0. (For information about addressing modes that use the SP, see
Section 5.5). After reset, SP points to address 00000400 .

Data memory

Range accessible

by way of SP 0000 0000-0000 FFFF

Range not accessible
by way of SP 0001 0000-FFFF FFFF

Figure 2-7. Address Reach of the Stack Pointer

The operation of the stack is as follows:

» The stack grows from low memory to high memory.

* The SP always points to the next empty location in the stack.

» Atreset, the SP is initialized, so that it points to address 0000 0400,;.

* When 32-bit values are saved to the stack, the least significant 16 bits are saved first, and the most
significant 16 bits are saved to the next higher address (little endian format).

» When 32-bit operations read or write a 32-bit value, the C28x CPU expects the memory wrapper or
peripheral-interface logic to align that read or write to an even address. For example, if the SP contains
the odd address 0000 0083,4, a 32-bit read operation reads from addresses 0000 0082,, and 0000

e The SP overflows if its value is increased beyond FFFF16 or decreased below 0000,,. When the SP
increases past FFFF, it counts forward from 0000,,. For example, if SP = FFFE,; and an instruction
adds 3 to the SP, the result is 0001,,. When the SP decreases past 000016, it counts backward from
FFFF,¢. For example, if SP = 0002,5 and an instruction subtracts 4 from SP, the result is FFFE ;.

* When values are being saved to the stack, the SP is not forced to align with even or odd addresses.
Alignment is forced by the memory wrapper or peripheral-interface logic.

Auxiliary Registers (XARO-XAR7, ARO-ART7)

The CPU provides eight 32-bit registers that can be used as pointers to memory or as general-purpose
registers (see Section 5.6). The auxiliary registers are: XARO, XAR1, XAR2, XAR3, XAR4, XAR5, XARS6,
and XAR?7.

Many instructions allow you to access the 16 LSBs of XARO-XAR7. As shown in Figure 2-8, the 16 LSBs
of the auxiliary registers are referred to as ARO-AR7. ARO-AR7 can be used as general purpose registers
for loop control and for efficient 16-bit comparisons.

When accessing AR0-AR7, the upper 16 bits of the register (known as AROH-AR7H) may or may not be
modified, depending on the instruction used (see Chapter 6 for information on the behavior of particular
instructions). AROH-AR7H are accessed only as part of XARO-XAR7 and are not individually accessible.

«—— ARnH = XARn(31:16) —b¢——— ARn = XARn(15:0) ——»

XARN(31:0)

n = number 0 through 7

Figure 2-8. XARO - XAR7 Registers

28

Central Processing Unit SPRU430F—August 2001 —Revised April 2015

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

www.ti.com CPU Registers

For ACC operations, all 32 bits are valid ([@XARnN]). For 16-bit operations, the lower 16 bits are used and
upper 16 bits are ignored ([@ARnN]).

XARO - XAR7 can also be used by some instructions to point to any value in program memory; see
Section 5.6.

Many instructions allow you to access the 16 least significant bits (LSBs) of XARO-XAR7. As shown in
Figure 2-9, 16 LSBs of XARO-XAR7 are known as one auxiliary register of ARO-AR?7.

e—— ARO = XARO(15:0) ——»|

XAR0(32:0)

e——— AR7 = XAR7(15:0) ——»|

XAR7(32:0)

Figure 2-9. XARO - XAR7

2.2.7 Program Counter (PC)

When the pipeline is full, the 22-bit program counter (PC) always points to the instruction that is currently
being processed &€” the instruction that has just reached the decode 2 phase of the pipeline. Once an
instruction reaches this phase of the pipeline, it cannot be flushed from the pipeline by an interrupt. It is
executed before the interrupt is taken. The pipeline is discussed in Chapter 4.

2.2.8 Return Program Counter (RPC)

When a call operation is performed using the LCR instruction, the return address is saved in the RPC
register and the old value in the RPC is saved on the stack (in two 16-bit operations). When a return
operation is performed using the LRETR instruction, the return address is read from the RPC register and
the value on the stack is written into the RPC register (in two 16-bit operations). Other call instructions do
not use the RPC register. For more information, see the instructions in Chapter 6.

2.2.9 Status Registers (STO0, ST1)

The C28x has two status registers, STO and ST1, which contain various flag bits and control bits. These
registers can be stored into and loaded from data memory, enabling the status of the machine to be saved
and restored for subroutines.

The status bits have been organized according to when the bit values are modified in the pipeline. Bits in
STO are modified in the execute phase of the pipeline; bits in ST1 are modified in the decode 2 phase.
(For details about the pipeline, see Chapter 4.) The status bits are described in detail in Section 2.3 and
Section 2.4. Also, STO and ST1 are included in Appendix A.

2.2.10 Interrupt-Control Registers (IFR, IER, DBGIER)

The C28x CPU has three registers dedicated to the control of interrupts:
» Interrupt flag register (IFR)

» Interrupt enable register (IER)

* Debug interrupt enable register (DBGIER)

These registers handle interrupts at the CPU level. Devices with a peripheral interrupt expansion (PIE)
block will have additional interrupt control as part of the PIE module.

SPRU430F—August 2001 —-Revised April 2015 Central Processing Unit 29

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

Status Register STO www.ti.com

The IFR contains flag bits for maskable interrupts (those that can be enabled and disabled with software).
When one of these flags is set, by hardware or software, the corresponding interrupt will be serviced if it is
enabled. You enable or disable a maskable interrupt with its corresponding bit in the IER. The DBGIER
indicates the time-critical interrupts that will be serviced (if enabled) while the DSP is in real-time
emulation mode and the CPU is halted.

The C28x CPU interrupts and the interrupt-control registers are described in detail in Section 3.1. Also, the
IFR, IER, and DBGIER are included in Appendix A.

2.3 Status Register STO

The following figure shows the bit fields of status register (STO0). All of these bit fields are modified in the
execute phase of the pipeline. Detailed descriptions of these bits follow the figure.

Table 2-4. Bit Fields of Status Register (STO)

15 10 9 7 6 5 4 3 2 1 0
ovc/ovcy | PM v [N | z [c | 1c | ow]sxm|
R/W-00 0000 RIW-0 RW-0 R/W-0 RW-0 RW-0 RW-0 RMW-0 R/MW-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

OVC/OVCU (Bits 15-10) — Overflow counter.
The overflow counter behaves differently for signed and unsigned operations.

For signed operations, the overflow counter is a 6-bit signed counter with a range of -32 to 31.
When overflow mode is off (OVM = 0), ACC overflows normally, and OVC keeps track of overflows.
When overflow mode is on (OVM = 1) and an overflow occurs in ACC, the OVC is not affected.
Instead, the CPU automatically fills ACC with a positive or negative saturation value (see the
description for OVM).

When ACC overflows in the positive direction (from 7FFF FFFF* to 8000 0000,), the OVC is
incremented by 1. When ACC overflows in the negative direction (from 8000 0000, to 7FFF
FFFF,¢) the OVC is decremented by 1. The increment or decrement is performed as the overflow
affects the V flag.

For unsigned operations (OVCU), the counter increments for ADD when a Carry is generated and
decrements for a SUB when a Borrow is generated (similar to a carry counter).

If OVC increments past its most positive value, 31, the counter wraps around to -32. If OVC
decrements past its most negative value, -32, the counter wraps around to 31. At reset, OVC is
cleared.

OVC is not affected by overflows in registers other than ACC and is not affected by compare
instructions (CMP and CMPL). The table that follows explains how OVC may be affected by the
saturate accumulator (SAT ACC) instruction.

Table 2-5 lists the instructions affecting OVC/OVCU. See the instruction set in Chapter 6 for a
complete description of each instruction.

Table 2-5. Instructions That Affect OVC/OVCU

Signed Addition Instructions Effect on OVC/OVCU

ADD ACC,loc16 << shift if(OVM == 0) Inc OVC on +ve signed overflow
ADD ACC,#16bit << shift
ADD ACC,locl16 << T
ADD loc16,#16bitSigned
ADDB ACC #8bit
ADDCL ACC,loc32
ADDCU ACC,loc16
ADDL ACC,loc32

ADDL loc32,ACC

ADDU ACC,loc16

30 Central Processing Unit SPRU430F-August 2001 —Revised April 2015

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

www.ti.com

Status Register STO

Table 2-5. Instructions That Affect OVC/OVCU (continued)

Signed Addition Instructions

Effect on OVC/OVCU

DMAC ACC:P,loc32,*XART7/++

INC loc16

MAC P,loc16,*XAR7/++

MAC P,loc16,0:pma

MOVA T,loc16

MOVAD T,loc16

MPYA P,loc16,#16bit

MPYA P,T,loc16

QMACL P,loc32,*XART7/++

QMPYAL P,XT,loc32

SQRA loc16

XMAC P,loc16,*(pma)

XMACD P,loc16,*(pma)

Signed Subtraction Instructions

Effect on OVC/OVCU

DEC loc16 MOVS T,loc16

if(OVM == 0) Dec OVC on -ve signed overflow

Signed Addition Instructions

Effect on OVC/OVCU

MPYS P,T,loc16

QMPYSL P,XT,loc32

SBBU ACC,loc16

SQRS loc16

SUB ACC,#16bit << shift

SUB ACC,loc16 << shift

SUB ACC,locl6 << T

SUBB ACC,#8bit

SUBBL ACC,loc32

SUBL ACC,loc32

SUBL loc32,ACC

SUBRL loc32,ACC

SUBU ACC,locl16

SUBUL ACC,loc32

SUBUL P,loc32

Unsigned Instructions

Effect on OVC/OVCU

ADDUL ACC,loc32

Inc OVC/OVCU on unsigned carry

ADDUL P,loc32

IMPYAL P,XT,loc32

IMACL P,loc32 *XAR7/++

Misc Instructions

Effect on OVC/OVCU

if(OVC > 0) Saturate +ve if(OVC < 0) Saturate -ve

SAT ACC oVe = 0
SAT64 ACC:P

ZAPA ovC =0
ZAP OVC

MOV OVC,loc16

OVC = [loc16(15:10)]

Signed Addition Instructions

Effect on OVC/OVCU

MOVU OVC,locl6

OVC = [loc16(5:0)]

Condition

Operation Performed by SAT ACC Instruction

ovC =0

Leave ACC and OVC unchanged.

SPRU430F—August 2001 —-Revised April 2015
Submit Documentation Feedback

Central Processing Unit

Copyright © 2001-2015, Texas Instruments Incorporated

31

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

Status Register STO www.ti.com

Table 2-5. Instructions That Affect OVC/OVCU (continued)

Signed Addition Instructions Effect on OVC/OVCU

Saturate ACC in the positive direction (fill ACC with
7FFF FFFF16) and clear OVC.

Saturate ACC in the negative direction (fill ACC with
8000 000016) and clear OVC.

ovC >0

OovC <0

PM (Bits 9-7) —Product shift mode bits.

This 3-bit value determines the shift mode for any output operation from the product (P) register.
The shift modes are shown in the following table. The output can be to the ALU or to memory. All
instructions that are affected by the product shift mode will sign extend the P register value during a
right shift operation. At reset, PM is cleared (left shift by 1 bit is the default).

PM is summarized as follows:

000 = Left shift by 1. During the shift the low-order bit is zero filled. At reset this mode is selected.
001 = No shift

010 = Right shift by 1. During the shift the lower bits are lost and the shifted value is sign extended.

011 = Right shift by 2. During the shift the lower bits are lost and the shifted value is sign extended.
100 = Right shift by 3. During the shift the lower bits are lost and the shifted value is sign extended.

101 = Right shift by 4. During the shift the lower bits are lost and the shifted value is sign extended.
Note if AMODE = 1 then 101 is a left shift by 4.

110 = Right shift by 5. During the shift the lower bits are lost and the shifted value is sign extended.
111 = Right shift by 6. During the shift the lower bits are lost and the shifted value is sign extended.

Note: For performing unsigned arithmetic, you must use a product shift of 0 (PM = 001) to avoid
sign extension and generation of incorrect results.

Table 2-6 lists instructions that are affected by the PM bits. See the instruction set in Chapter 6 for
a complete description of each instruction.

Table 2-6. Instructions Affected by the PM Bits

Instruction Effect of PM
CMPL ACC,P << PM flags set on(ACC - P << PM)
DMAC ACC:P,loc32,*XART7/++ ACC = ACC + MSW*MSW << PM P = P + LSW*LSW << PM
IMACL P,loc32,*XAR7/++ P = ([loc32] * Prog[*XAR7/++]) << PM
IMPYAL P,XT,loc32 P = (XT * [loc32]) << PM
IMPYL P,XT,loc32 P = (XT *[loc32]) << PM
IMPYSL P,XT,loc32 ACC = ACC - P unsigned > > P = (XT * [loc32]) << PM
IMPYXUL P,XT,loc32 P = (XT sign * [loc32]uns) << PM
MAC P,loc16,*XAR7/++ ACC = ACC + P <<PM
MAC P,loc16,0:pma ACC =ACC + P << PM
MOV loc16,P [loc16] = low(P << PM)
MOVA T,loc16 ACC =ACC + P << PM
MOVAD T,loc16 ACC =ACC + P << PM
MOVH loc16,P [loc16] = high(P << PM)
MOVP T,loc16 ACC =P << PM
MOVS T,loc16 ACC =ACC-P<<PM
MPYA P,loc16,#16bit ACC =ACC + P << PM
MPYA P,T,loc16 ACC =ACC + P << PM
MPYS P,T,loc16 ACC =ACC-P<<PM
QMACL P,loc32,*XAR7 ACC =ACC + P << PM
QMACL P,loc32,*XAR7++ ACC = ACC + P << PM
QMPYAL P,XT,loc32 ACC =ACC + P << PM
32 Central Processing Unit SPRU430F-August 2001 —Revised April 2015

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

www.ti.com Status Register STO

Table 2-6. Instructions Affected by the PM Bits (continued)

Instruction Effect of PM

QMPYSL P,XT,loc32 ACC =ACC - P << PM
SQRA loc16 ACC =ACC + P << PM
SQRS loc16 ACC =ACC -P << PM
XMAC P,loc16,*(pma) ACC = ACC + P << PM
XMACD P,loc16,*(pma) ACC = ACC + P << PM

V (Bit 6) — Overflow flag.

If the result of an operation causes an overflow in the register holding the result, V is set and
latched. If no overflow occurs, V is not modified. Once V is latched, it remains set until it is cleared
by reset or by a conditional branch instruction that tests V. Such a conditional branch clears V
regardless of whether the tested condition (V =0 or V = 1) is true.

An overflow occurs in ACC (and V is set) if the result of an addition or subtraction does not fit within
the signed numerical range -231 to (+231 - 1), or 8000 0000, to 7FFF FFFF .

An overflow occurs in AH, AL, or another 16-bit register or data-memory location if the result of an
addition or subtraction does not fit within the signed numerical range -2*° to (+2'° - 1), or 8000, to

7FFFy.

The instructions CMP, CMPB and CMPL do not affect the state of the V flag. Table 2-7 lists the
instructions that are affected by V flag. See Chapter 6 for more details on instructions.

V can be summarized as follows:

0 =V has been cleared.

1 = An overflow has been detected, or V has been set.

Table 2-7. Instructions Affected by V flag

ABS ACC

if(ACC == 0x8000 0000) V =1

ABSTC ACC

if(ACC == 0x8000 0000) V =1

ADD ACC, #16bit << shift

V =1 on signed overflow

ADD ACC,loc16 << shift

V =1 on signed overflow

ADD ACC,locl16 << T

V =1 on signed overflow

ADD AX,loc16 V =1 on signed overflow
ADD loc16,#16bitSigned V =1 on signed overflow
ADD loc16,AX V =1 on signed overflow

ADDB ACC #8bit

V =1 on signed overflow

ADDB AX,#8bitSigned

V =1 on signed overflow

ADDCL ACC,loc32

V =1 on signed overflow

ADDCU ACC,locl16

V =1 on signed overflow

ADDL ACC,loc32

V =1 on signed overflow

ADDL loc32,ACC

V =1 on signed overflow

ADDU ACC,loc16

V =1 on signed overflow

ADDUL ACC,loc32

V =1 on signed overflow

ADDUL P,loc32

V =1 on signed overflow

B 16bitOff, COND

V = 0 if tested

BF 16bitOff, COND

V = 0 if tested

DEC locl16

V =1 on signed overflow

DMAC ACC:P,loc33,*XAR77/++

V =1 on signed overflow

IMACL P,loc32,*XAR77/++

V =1 on signed overflow

DMAC ACC:P,loc32,*XAR7/++

V =1 on signed overflow

IMACL P,loc32,*XAR7/++

V =1 on signed overflow

IMPYAL P,XT,loc32

V =1 on signed overflow

SPRU430F—August 2001 —-Revised April 2015
Submit Documentation Feedback

Central Processing Unit 33

Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

Status Register STO

13 TEXAS
INSTRUMENTS

www.ti.com

Table 2-7. Instructions Affected by V flag (continued)

IMPYSL P,XT,loc32

V =1 on signed overflow

INC loc16

V =1 on signed overflow

MAC P,loc16,*XAR7/++

V =1 on signed overflow

MAC P,loc16,0:pma

V =1 on signed overflow

MAX AX,loc16 if((AX - [loc16]) < 0) V =1
MAXL ACC,loc32 if((ACC - [loc32]) < 0) V =1
MIN AX,loc16 if((AX - [loc16]) > 0) V = 1

MINL ACC,loc32

if((ACC - [loc32]) > 0) V = 1

MOV loc16,AX,COND

V =0 if tested

MOVA T,loc16

V =1 on signed overflow

MOVAD T,loc16

V =1 on signed overflow

MOVB loc16,#8bit, COND

V =0 if tested

MOVL loc32,ACC,COND

V =0 if tested

MOVS T,loc16

V =1 on signed overflow

MPYA P,loc16,#16bit

V =1 on signed overflow

MPYA P,T,loc16

V =1 on signed overflow

MPYS P,T,loc16

V =1 on signed overflow

NEG ACC if(ACC == 0x8000 0000) V = 1
NEGAX if(AX == 0x8000) V = 1
NEG64 ACC:P if(ACC:P == 0x80....00) V = 1
NEGTC ACC if(TC == 1)

if(ACC == 0x8000 0000) V = 1

QMACL P,loc32,*XART7/++

V =1 on signed overflow

QMPYAL P,XT,loc32

V =1 on signed overflow

QMPYSL P,XT,loc32

V =1 on signed overflow

SAT ACC

if(OVC==0)V=0else V=1

SAT64 ACC:P

if(OA€VC == 0)V=0else V=1

SB 8bitOff, COND

V =0 if tested

SBBU ACC,loc16

V =1 on signed overflow

SQRA loc16

V =1 on signed overflow

SQRS loc16

V =1 on signed overflow

SUB ACC,#16bit << shift

V =1 on signed overflow

SUB ACC,loc16 << shift

V =1 on signed overflow

SUB ACC,locl6 << T

V =1 on signed overflow

SUB AX,loc16 V =1 on signed overflow
SUB loc16,AX V =1 on signed overflow
SUBB ACC,#8bit V =1 on signed overflow

SUBBL ACC,loc32

V =1 on signed overflow

SUBL ACC,loc32

V =1 on signed overflow

SUBL loc32,ACC

V =1 on signed overflow

SUBR loc16,AX

V =1 on signed overflow

SUBRL loc32,ACC

V =1 on signed overflow

SUBU ACC,locl16

V =1 on signed overflow

SUBUL ACC,loc32

V =1 on signed overflow

SUBUL P,loc32

V =1 on signed overflow

XB pma,COND

V =0 if tested

XCALL pma,COND

V =0 if tested

XMAC P,loc16,*(pma)

V =1 on signed

34 Central Processing Unit

SPRU430F—August 2001 —Revised April 2015

Copyright © 2001-2015, Texas Instruments Incorporated

Submit Documentation Feedback

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS

INSTRUMENTS
www.ti.com Status Register STO
Table 2-7. Instructions Affected by V flag (continued)
XMACD P,loc16,*(pma) V =1 on signed overflow
XRETC COND V =0 if tested

N (Bit 5) — Negative flag.

During certain operations, N is set if the result of the operation is a negative number or cleared if
the result is a positive number. At reset, N is cleared.

Results in ACC are tested for the negative condition. Bit 31 of ACC is the sign bit. If bit 31 is a 0,
ACC is positive; if bit 31 is a 1, ACC is negative. N is set if a result in ACC is negative or cleared if
a result is positive.

Results in AH, AL, and other 16-bit registers or data-memory locations are also tested for the
negative condition. In these cases bit 15 of the value is the sign bit (1 indicates negative,

0 indicates positive). N is set if the value is negative or cleared if the value is positive.

The TEST ACC instruction sets N if the value in ACC is negative. Otherwise the instruction clears
N.

As shown in Table 2-8, under overflow conditions, the way the N flag is set for compare operations
is different from the way it is set for addition or subtraction operations. For addition or subtraction
operations, the N flag is set to match the most significant bit of the truncated result. For compare
operations, the N flag assumes infinite precision. This applies to operations whose result is loaded
to ACC, AH, AL, another register, or a data-memory location.

Table 2-8. Negative Flag Under Overflow Conditions

A® B®W (A -B) Subtraction Compare®
Pos Neg Neg (due to overflow in positive direction) N=1 N=0
Neg Pos Pos (due to overflow in negative direction) N=0 N=1

@ For 32-bit data: Pos = Positive nummber from 0000 0000,¢ to 7FFF FFFF,;. Neg=Negative number from 8000-0000,; to FFFF-
FFFF . For 16-bit data: Pos = Positive number from 0000, to 7FFF,5. Neg = Negative number from 8000, to FFFF .

@ The compare instructions are CMP, CMPB, CMPL, MIN, MAX, MINL, and MAXL.

N can be summarized as follows:

0 = The tested number is positive, or N has been cleared.
1 = The tested number is negative, or N has been set.

Z (Bit 4) — Zero flag.

Z is set if the result of certain operations is 0 or is cleared if the result is nonzero. This applies to
results that are loaded into ACC, AH, AL, another register, or a data-memory location. At reset, Z is
cleared.

The TEST ACC instruction sets Z if the value in ACC is 0. Otherwise, it clears Z.
Z can be summarized as follows:

0 = The tested number is nonzero, or Z has been cleared.

1 = The tested number is 0, or Z has been set.

C (Bit 3) — Carry bit.
This bit indicates when an addition or increment generates a carry or when a subtraction, compare,

or decrement generates a borrow. It is also affected by rotate operations on ACC and barrel shifts
on ACC, AH, and AL.

During additions/increments, C is set if the addition generates a carry; otherwise C is cleared.
There is one exception: If you are using the ADD instruction with a shift of 16, the ADD instruction
can set C but cannot clear C.

During subtractions/decrements/compares, C is cleared if the subtraction generates a carry;
otherwise C is set. There is one exception: if you are using the SUB instruction with a shift of 16,
the SUB instruction can clear C but cannot set C.

SPRU430F-August 2001 —-Revised April 2015 Central Processing Unit 35

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

Status Register STO

13 TEXAS
INSTRUMENTS

www.ti.com

This bit can be individually set and cleared by the SETC C instruction and CLRC C instruction,

respectively. At reset, C is cleared.
C can be summarized as follows:

0 = A subtraction generated a borrow, an addition did not generate a carry, or C has been cleared.
Exception: An ADD instruction with a shift of 16 cannot clear C.

1 = An addition generated a carry, a subtraction did not generate a borrow, or C has been set.
Exception: A SUB instruction with a shift of 16 cannot set C.

Table 2-9 lists the bits that are affected by the C bit. For more information on instructions, see

Chapter 6.
Table 2-9. Bits Affected by the C Bit

Instruction Affect of or Affect on C
ABS ACC C=0
ABSTC ACC C=0
ADD ACC,#16bit << shift C=1loncarryelseC=0
ADD ACC,loc16 << shift if(shift == 16)

C =1 on carry

if(shift != 16)

C=1loncarryelseC=0

ADD ACC,loc16 << shift

C=1loncarryelseC=0

ADD ACC,locl16 << T

C=1loncarryelseC=0

ADD AX,loc16 C=1loncarryelseC=0
ADD loc16,#16bitSigned C=1loncarryelseC=0
ADD loc16,AX C=1loncarryelseC=0

ADDB ACC,#8bit

C=1loncarryelseC=0

ADDB AX,#8hitSigned

C=1loncarryelseC=0

ADDCL ACC,loc32

ACC = ACC + [loc32] + C
C=1loncarryelseC=0

ADDCU ACC,locl16

ACC = ACC + [loc16] + C
C=1loncarryelseC=0

ADDL ACC,loc32

C=1loncarryelseC=0

ADDL loc32,ACC

C=1loncarryelseC=0

ADDU ACC,loc16

C=1loncarryelseC=0

ADDUL ACC,loc32

C=1loncarryelseC=0

ADDUL P,loc32

C=1loncarryelseC=0

ASR AX,1..16

C = AX(bit(shift-1))

ASR AX,T

ifT==0)C=0¢else C=

AX(bit(T-1))

ASR64 ACC:P,1..16

C = P(bit(shift-1))

ASR64 ACC:P, T

ifT==0)C=0¢else C=

P(bit(T-1))

ASRL ACC, T

ifMT==0)C=0¢else C=

ACC(bit(T-1))

B 16bitOff, COND

C bit used as test condition

BF 16bitOff, COND

C bit used as test condition

CLRCC

C=0

CMP AX,locl16

C=0onborrowelse C=1

CMP loc16,#16bitSigned

for([loc16] - 16hitSigned) C =0

on borrow else C =1

CMPB AX,#8bit

C=0onborrowelse C=1

CMPL ACC,loc32

for(ACC - [loc32]) C = 0 on borrow

elseC=1

36

Central Processing Unit

SPRU430F—August 2001 —Revised April 2015

Copyright © 2001-2015, Texas Instruments Incorporated

Submit Documentation Feedback

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS

INSTRUMENTS
www.ti.com Status Register STO
Table 2-9. Bits Affected by the C Bit (continued)

Instruction Affect of or Affect on C

CMPL ACC,P << PM for(ACC - P << PM)C =0o0n
borrow else C = 1

DEC loc16+ C=0onborrowelseC=1

DMAC ACC:P,loc32,*XAR7/++ C=1loncarryelseC=0

IMACL P,loc32,*XAR7/++ C=1loncarryelseC=0

IMPYAL P,XT,loc32 C=1loncarryelseC=0

IMPYSL P,XT,loc32 C=0onborrowelseC=1

INC locl16 C=1loncarryelseC=0

LSL ACC,1..16 C = ACC(bit(32-shift))

LSL ACC, T if(MT==0)C=0else C=
ACC(bit(32-T))

LSL AX,1..16 C = AX(bit(16-shift))

LSL AX,T if(T==0)C=0else C=
AX(bit(16-T))

LSL64 ACC:P,1..16 C = ACC(bit(32-shift))

LSL64 ACC:P,T if(T==0)C=0else C=
ACC(bit(32-T))

LSLL ACC,T if(T==0)C=0elseC=
ACC(bit(32-T))

LSR AX,1..16 C = AX(bit(shift-1))

LSR AX, T if(T==0)C=0else C=
AX(bit(T-1))

LSR64 ACC:P,1..16 C = P(bit(shift-1))

LSR64 ACC:P,T if(T==0)C=0else C=
P(bit(T-1))

LSRL ACC,T if(T==0)C=0elseC=
ACC(bit(T-1))

MAC P,loc16,*XAR7/++ C=1loncarryelseC=0

MAC P,loc16,0:pma C=1oncarryelseC=0

MAX AX,loc16 for(AX - [loc16]) C = 0 on borrow
elseC=1

MAXL ACC,loc32 for(ACC - [loc32]) C = 0 on borrow
elseC=1

MIN AX,loc16 for(AX - [loc16]) C = 0 on borrow
elseC=1

MINL ACC,loc32 for(ACC - [loc32]) C = 0 on borrow
elseC=1

MOV loc16,AX,COND C bit used as test condition

MOVA T,loc16 C=1loncarryelseC=0

MOVAD T,loc16 C=1loncarryelseC=0

MOVB loc16,#8bit, COND C bit used as test condition

MOVL loc32,ACC,COND C bit used as test condition

MOVS T,loc16 C=0onborrowelseC=1

MPYA P,loc16,#16bit C=1loncarryelseC=0

MPYA P,T,loc16 C=1loncarryelseC=0

MPYS P,T,loc16 C=0onborrowelseC=1

NEG ACC if(ACC==0)C=1elseC=0

SPRU430F—August 2001 —-Revised April 2015 Central Processing Unit 37

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

Status Register STO www.ti.com

Table 2-9. Bits Affected by the C Bit (continued)

Instruction Affect of or Affect on C

NEG AX if(AX==0)C=1elseC=0
NEG64 ACC:P if(ACC:P==0)C=1elseC=0
NEGTC ACC if(TC==1)if(ACC==0)C=1

elseC=0

QMACL P,loc32,*XART7/++

C=1loncarryelseC=0

QMPYAL P,XT,loc32

C=1loncarryelseC=0

QMPYSL P,XT,loc32

C=0onborrowelse C=1

ROL ACC C <- (ACC << 1) <- C(before)
ROR ACC C(before) -(ACC >1) -C

SAT ACC C=0

SAT64 ACC:P C=0

SB 8bitOff, COND

C bit used as test condition

SBBU ACC,loc16

ACC = ACC - ([loc16] + ~C) C = 0 on

borrow else C=1

SETCC c=1

SFR ACC,1..16 C = ACC(bit(shift-1))

SFR ACC,T if(T==0)C=0else C=
ACC(bit(T-1))

SQRA loc16 C=1oncarryelseC=0

SQRS loc16 C=0onborrowelse C=1

SUB ACC,#16bit << shift

C=0onborrowelse C=1

SUB ACC,loc16 << shift

if(shift == 16) C = 0 on borrow

if(shift 1= 16) C = 0 on borrow

elseC=1

SUB ACC,locl6 << T

C=0onborrowelse C=1

SUB AX,loc16 C=0onborrowelse C=1
SUB loc16,AX C=0onbhorrowelse C=1
SUBB ACC #8bit C=0onborrowelse C=1

SUBBL ACC,loc32

ACC = ACC - ([loc32] + ~C) C = 0 on

borrow else C=1

SUBCU ACC,loc16

for(ACC - [loc16]<<15) C = 0

on borrow else C =1

SUBCUL ACC,loc32

for(ACC<<1 + P(31) - [loc32]) C =0

on borrow else C =1

SUBL ACC,loc32

C=0onbhborrowelse C=1

SUBL loc32,ACC

C=0onborrowelse C=1

SUBR loc16,AX

C=0onborrowelse C=1

SUBRL loc32,ACC

C=0onborrowelse C=1

SUBU ACC,locl16

C=0onbhborrowelse C=1

SUBUL ACC,loc32

C=0onbhorrowelse C=1

SUBUL P,loc32

C=0onborrowelse C=1

XB pma,COND

C bit used as test condition

XCALL pma,COND

C bit used as test condition

XMAC P,loc16,*(pma)

C=1loncarryelseC=0

XMACD P,loc16,*(pma)

C=1loncarryelseC=0

XRETC COND

C bit used as test condition

38 Central Processing Unit

SPRU430F—August 2001 —Revised April 2015

Copyright © 2001-2015, Texas Instruments Incorporated

Submit Documentation Feedback

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

www.ti.com

Status Register STO

TC (Bit 2) — Test/control flag.

This bit shows the result of a test performed by either the TBIT (test bit) instruction or the NORM
(normalize) instruction.

The TBIT instruction tests a specified bit. When TBIT is executed, the TC bit is set if the tested bit
is 1 or cleared if the tested bit is 0.

When a NORM instruction is executed, TC is modified as follows: If ACC holds 0, TC is set. If ACC
does not hold 0, the CPU calculates the exclusive-OR of ACC bits 31 and 30, and then loads TC
with the result.

This bit can be individually set and cleared by the SETC TC instruction and CLRC TC instruction,
respectively. At reset, TC is cleared.

Table 2-10 lists the instructions that affect the TC bit. See the instruction set in Chapter 6 for a
complete description of each instruction.

Table 2-10. Instructions That Affect the TC Bit

Instruction

Affect on the TC bit

ABSTC ACC

if(ACC<0)TC=TC"1

B 16bitOff, COND

TC bit used as test condition

BF 16bitOff, COND

TC bit used as test condition

CLRC TC

TC=0

CMPR 0/1/2/3

TC=0

0: if(AR(ARP) == AR0) TC = 1
1: if(AR(ARP) < AR0) TC = 1
2: if(AR(ARP) > AR0) TC = 1
3: if(AR(ARP) != ARO) TC = 1

CSB ACC

TC =N flag

MOV loc16,AX,COND

TC bit used as test condition

MOVB loc16,#8bit, COND

TC bit used as test condition

MOVL loc32,ACC,COND

TC bit used as test condition

NEGTC ACC

TC bit used as test condition

NORM ACC,XARN++/-- if(ACC |= 0)

NORM ACC,*ind TC = ACC(31) * ACC(30)
else
TC=1

SB 8bitOff, COND

TC bit used as test condition

SBF 8bitOff, TC/NTC

TC bit used as test condition

SETC TC TC=1
TBIT loc16, #bit TC = [loc16(bit)]
TBIT loc16,T TC = [loc16(15-T)]

TCLR loc16,#bit

TC = [loc16(bit)]

TSET loc16,#bit

TC = [loc16(bit)]

XB pma,COND TC bit used as test condition
XCALL pma,COND TC bit used as test condition
XRETC COND TC bit used as test condition

OVM (Bit 1) — Overflow mode bit.

When ACC accepts the result of an addition or subtraction and the result causes an overflow, OVM
determines how the CPU handles the overflow as follows:

0 = Results overflow normally in ACC. The OVC reflects the overflow

1 = ACC is filled with either its most positive or most negative value as follows:
If ACC overflows in the positive direction (from 7FFF FFFF,; to 8000 0000,¢), ACC is then filled with

7FFF FFFFy.

If ACC overflows in the negative direction (from 8000 0000,, to 7FFF FFFF,;), ACC is then filled

with 8000 0000,

SPRU430F—August 2001 —-Revised April 2015

Submit Documentation Feedback

Copyright © 2001-2015, Texas Instruments Incorporated

Central Processing Unit 39

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

Status Register STO

13 TEXAS
INSTRUMENTS

www.ti.com

This bit can be individually set and cleared by the SETC OVM instruction and CLRC OVM
instruction, respectively. At reset, OVM is cleared.

SXM (Bit 0) — Sign-extension mode bit.

SXM affects the MOV, ADD, and SUB instructions that use a 16-bit value in an operation on the 32-
bit accumulator. When the 16-bit value is loaded into (MOV), added to (ADD), or subtracted from
(SUB) the accumulator, SXM determines whether the 16-bit value is sign extended during the

operation as follows:

0 = Sign extension is suppressed. (The 16-bit value is treated as unsigned.)

1 = Sign extension is enabled. (The 16-bit value is treated as signed.)

For example:

ADD ACC, locl6 << shift
0, do not sign extend locl6 before adding to the 32-bit ACC.
1, sign extend locl6 before adding to the 32-bit ACC.

it SXM
if SXM

SXM also determines whether the accumulator is sign extended when it is shifted right by the SFR
instruction. SXM does not affect instructions that shift the product register value; all right shifts of
the product register value use sign extension.

This bit can be individually set and cleared by the SETC SXM instruction and CLRC SXM
instruction, respectively. At reset, SXM is cleared. Table 2-11 lists the instructions that are affected
by SXM. See Chapter 6 for more details on instructions.

Table 2-11. Instructions Affected by SXM

Instruction

Description

ADD ACC,#16bit << shift

Affected By SXM

ADD ACC,loc16 << shift

Affected By SXM

ADD ACC,locl16 << T

Affected By SXM

CLRC SXM

SXM =0

MOV ACC #16bit << shift

Affected By SXM

MOV ACC,loc16 << shift

Affected By SXM

MOV ACC,locl6 << T

Affected By SXM

SETC SXM SXM =1
SFR ACC,1..16 Affected By SXM
SFR ACC,T Affected By SXM

SUB ACC,#16bit << shift

Affected By SXM

SUB ACC,loc16 << shift

Affected By SXM

SUB ACC,locl6 << T

Affected By SXM

40

Central Processing Unit

SPRU430F—August 2001 —Revised April 2015

Copyright © 2001-2015, Texas Instruments Incorporated

Submit Documentation Feedback

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

www.ti.com Status Register ST1

2.4 Status Register ST1

The following figure shows the bit fields of status register ST1. All of these bit fields are modified in the
decode 2 phase of the pipeline. Detailed descriptions of these bits follow the figure.

Table 2-12. Bit Fields of Status Register 1 (ST1)

15 13 12 11 10 9 8
\ ARP | XF | MOMIMAP | Reserved | OBJMODE | AMODE |
R/W-000 RIW-0 RIW-1 RIW-0 RIW-0 RIW-0
7 6 5 4 3 2 1 0
| IDLESTAT EALLOW Loor | sPA | vvaP | PAGEO | DBGM | INTM |
R-0 R/W-0 R-0 RIW-0 RIW-1 RIW-0 RIW-1 RIW-1

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

ARP (Bits 15-13) — Auxiliary register pointer.
This 3-hit field points to the current auxiliary register. This is one of the 32-bit auxiliary registers
(XARO-XAR7). The mapping of ARP values to auxiliary registers is as follows:

000 = XARQO (selected at reset)

001 = XAR1
010 = XAR2
011 = XAR3
100 = XAR4
101 = XAR5
110 = XARG6
111 = XARY

XF (Bit 12) —XF status bit.

This bit reflects the current state of the XFS output signal, which is compatible to the C2XLP CPU.
This bit is set by the "M SETC XF"M instruction. This bit is cleared by the "M CLRC XF'M
instruction. The pipeline is not flushed when setting or clearing this bit using the given instructions.
This bit can be saved and restored by interrupts and when restoring the ST1 register. This bit is set
to O on reset.

NOTE: Use of the XFS signal requires an external pin that is only present on TMS320x2801x
devices.

MOM1MAP (Bit 11) —MO and M1 mapping mode bit.

The MOM1MAP bit should always remain set to 1 in the C28x object mode. This is the default value
at reset. The MOM1MAP bit may be set low when operating in C27x-compatible mode. The effect of
this bit, when low, is to swap the location of blocks MO and M1 only in program space and to set
the stack pointer default reset value to 0x000. C28x mode users should never set this bit to 0.

Reserved (Bit 10) —Reserved.
This bit is reserved. Writes to this bit have no effect.

OBJMODE (Bit 9) — Object compatibility mode bit.

This mode is used to select between C27x object mode (OBIJMODE == 0) and C28x object mode
(OBJMODE == 1) compatibility. This bit is set by the "M C280BJ"M (or "M SETC OBJMODE"M)
instructions. This bit is cleared by the "M C270BJ"M (or "M CLRC OBJMODE"M) instructions. The
pipeline is flushed when setting or clearing this bit using the given instructions. This bit is saved and
restored by interrupts and when restoring the ST1 register. This bit is set to 0 on reset.

AMODE (Bit 8) — Address mode bit.

SPRU430F—August 2001 —-Revised April 2015 Central Processing Unit 41

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

Status Register ST1 www.ti.com

This mode, in conjunction with the PAGEO mode bit, is used to select the appropriate addressing
mode decodes. This bit is set by the "LPADDR"M ("M SETC AMODE"M) instructions. This bit is
cleared by the "M C28ADDR"M (or "M CLRC AMODE"M) instructions. The pipeline is not flushed
when setting or clearing this bit using the given instructions. This bit is saved and restored by
interrupts and when restoring the ST1 register. This bit is set to 0 on reset.

Note: Setting PAGEO = AMODE = 1 will generate an illegal instruction trap ONLY for instructions
that decode a memory or register addressing mode field (loc16 or loc32).

IDLESTAT (Bit 7) — IDLE status bit.

This read-only bit is set when the IDLE instruction is executed. It is cleared by any one of the
following events:

* Aninterrupt is serviced.
* Aninterrupt is not serviced but takes the CPU out of the IDLE state.

» Avalid instruction enters the instruction register (the register that holds the instruction currently
being decoded).

* A device reset occurs.

When the CPU services an interrupt, the current value of IDLESTAT is saved on the stack (when
ST1 is saved on the stack), and then IDLESTAT is cleared. Upon return from the interrupt,
IDLESTAT is not restored from the stack.

EALLOW (Bit 6) — Emulation access enable bit.

This bit, when set, enables access to emulation and other protected registers. Set this bit by using
the EALLOW instruction and clear this bit by using the EDIS instruction. See the data sheet for a
particular device to determine the registers that are protected.

When the CPU services an interrupt, the current value of EALLOW is saved on the stack (when
ST1 is saved on the stack), and then EALLOW is cleared. Therefore, at the start of an interrupt
service routine (ISR), access to protected registers is disabled. If the ISR must access protected
registers, it must include an EALLOW instruction. At the end of the ISR, EALLOW can be restored
by the IRET instruction.

LOOP (Bit 5)— Loop instruction status bit.

LOORP is set when a loop instruction (LOOPNZ or LOOPZ) reaches the decode 2 phase of the
pipeline. The loop instruction does not end until a specified condition is met. When the condition is
met, LOOP is cleared. LOOP is a read-only bit; it is not affected by any instruction except a loop
instruction.

When the CPU services an interrupt, the current value of LOOP is saved on the stack (when ST1 is
saved on the stack), and then LOOP is cleared. Upon return from the interrupt, LOOP is not
restored from the stack.

SPA (Bit 4) — Stack pointer alignment bit.

SPA indicates whether the CPU has previously aligned the stack pointer to an even address by the
ASP instruction:

» 0: The stack pointer has not been aligned to an even address.
» 1: The stack pointer has been aligned to an even address.

When the ASP (align stack pointer) instruction is executed, if the stack pointer (SP) points to an
odd address, SP is incremented by 1 so that it points to an even address, and SPA is set. If SP
already points to an even address, SP is not changed, but SPA is cleared. When the NASP
(unalign stack pointer) instruction is executed, if SPA is 1, SP is decremented by 1 and SPA is
cleared. If SPA is 0, SP is not changed.

At reset, SPA is cleared.

VMAP (Bit 3) — Vector map bit.

VMAP determines whether the CPU interrupt vectors (including the reset vector) are mapped to the
lowest or highest addresses in program memory:

» 0: CPU interrupt vectors are mapped to the bottom of program memory, addresses 00 0000,,-00
003F .

42 Central Processing Unit SPRU430F-August 2001 —Revised April 2015

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS

INSTRUMENTS

www.ti.com

Status Register ST1

» 1: CPU interrupt vectors are mapped to the top of program memory, addresses 3F FFC0,4-3F
FFFF .

On C28x designs, the VMAP signal is tied high internally, forcing the VMAP bit to be set high on a
reset.

This bit can be individually set and cleared by the SETC VMAP instruction and CLRC VMAP
instruction, respectively.

PAGEO (Bit 2) — PAGEO addressing mode configuration bit.

PAGEO selects between two mutually-exclusive addressing modes: PAGEO direct addressing mode
and PAGEDO stack addressing mode. Selection of the modes is as follows:

» 0: PAGEO stack addressing mode
» 1: PAGEO direct addressing mode

Note: lllegal Instruction Trap Setting PAGEO = AMODE = 1 will generate an illegal instruction
trap.

PAGEQO = 1 is included for compatibility with the C27x. the recommended operating mode for C28x
is PAGEO = 0.

This bit can be individually set and cleared by the SETC PAGEO instruction and

CLRC PAGEQ instruction, respectively. At reset, the PAGEO bit is cleared (PAGEO stack
addressing mode is selected).

For details about the above addressing modes, see Chapter 5, Addressing Modes.

DBGM (Bit 1) — Debug enable mask bit.

When DBGM is set, the emulator cannot accesss memory or registers in real time. The debugger
cannot update its windows.

In the real-time emulation mode, if DBGM = 1, the CPU ignores halt requests or hardware
breakpoints until DBGM is cleared. DBGM does not prevent the CPU from halting at a software
breakpoint. One effect of this may be seen in real-time emulation mode.

If you single-step an instruction in real time emulation mode and that instruction sets DBGM, the
CPU continues to execute instructions until DBGM is cleared.

When you give the Tl debugger the REALTIME command (to enter real-time mode), DBGM is
forced to 0. Having DBGM = 0 ensures that debug and test direct memory accesses (DT-DMAS)
are allowed; memory and register values can be passed to the host processor for updating
debugger windows.

Before the CPU executes an interrupt service routine (ISR), it sets DBGM. When DBGM = 1, halt
requests from the host processor and hardware breakpoints are ignored. If you want to single-step
through or set breakpoints in a non-time-critical ISR, you must add a CLRC DBGM instruction at
the beginning of the ISR.

DBGM is primarily used in emulation to block debug events in time-critical portions of program
code. DBGM enables or disables debug events as follows:

e 0: Debug events are enabled.
» 1: Debug events are disabled.

When the CPU services an interrupt, the current value of DBGM is saved on the stack (when ST1
is saved on the stack), and then DBGM is set. Upon return from the interrupt, DBGM is restored
from the stack.

This bit can be individually set and cleared by the SETC DBGM instruction and CLRC DBGM
instruction, respectively. DBGM is also set automatically during interrupt operations. At reset,
DBGM is set. Executing the ABORTI (abort interrupt) instruction also sets DBGM.

INTM (Bit 0) —Interrupt global mask bit.

This bit globally enables or disables all maskable CPU interrupts (those that can be blocked by
software):

» 0: Maskable interrupts are globally enabled. To be acknowledged by the CPU, a maskable
interrupt must also be locally enabled by the interrupt enable register (IER).

SPRU430F—August 2001 —-Revised April 2015 Central Processing Unit 43
Submit Documentation Feedback

Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

Program Flow www.ti.com

2.5

251

25.2

253

» 1: Maskable interrupts are globally disabled. Even if a maskable interrupt is locally enabled by
the IER, it is not acknowledged by the CPU.

INTM has no effect on the nonmaskable interrupts, including a hardware reset or the hardware
interrupt NMI. In addition, when the CPU is halted in real-time emulation mode, an interrupt enabled
by the IER and the DBGIER will be serviced even if INTM is set to disable maskable interrupts.

When the CPU services an interrupt, the current value of INTM is saved on the stack (when ST1 is
saved on the stack), and then INTM is set. Upon return from the interrupt, INTM is restored from
the stack.

This bit can be individually set and cleared by the SETC INTM instruction and CLRC INTM
instruction, respectively. At reset, INTM is set. The value in INTM does not cause modification to
the interrupt flag register (IFR), the interrupt enable register (IER), or the debug interrupt enable
register (DBGIER).

Program Flow

The program control logic and program-address generation logic work together to provide proper program
flow. Normally, the flow of a program is sequential: the CPU executes instructions at consecutive program-
memory addresses. At times, a discontinuity is required; that is, a program must branch to a
nonsequential address and then execute instructions sequentially at that new location. For this purpose,
the '28x supports interrupts, branches, calls, returns, and repeats.

Proper program flow also requires smooth flow at the instruction level. To meet this need, the '28x has a
protected pipeline and an instruction-fetch mechanism that attempts to keep the pipeline full.

Interrupts

Interrupts are hardware or software-driven events that cause the CPU to suspend its current program
sequence and execute a subroutine called an interrupt service routine. Interrupts are described in detail in
Section 3.1.

Branches, Calls, and Returns

Branches, calls, and returns break the sequential flow of instructions by transferring control to another
location in program memory. A branch only transfers control to the new location. A call also saves the
return address (the address of the instruction following the call). Called subroutines or interrupt service
routines are each concluded with a return instruction, which takes the return address from the stack or
from XAR7 or RPC and places it into the program counter (PC).

The following branch instructions are conditional: B, BANZ, BAR, BF, SB, SBF, XBANZ, XCALL, and
XRETC. They are executed only if a certain specified or predefined condition is met. For detailed
descriptions of these instructions, see Chapter 6.

Repeating a Single Instruction

The repeat (RPT) instruction allows the execution of a single instruction (N + 1) times, where N is
specified as an operand of the RPT instruction. The instruction is executed once and then repeated N
times. When RPT is executed, the repeat counter (RPTC) is loaded with N. RPTC is then decremented
every time the repeated instruction is executed, until RPTC equals 0. For a description of RPT and a list of
repeatable instructions, see Chapter 6.

44

Central Processing Unit SPRU430F—August 2001 —Revised April 2015

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

I

WWW.1i

TEXAS
INSTRUMENTS

i.com Program Flow

254

2.6

26.1

Instruction Pipeline

Each instruction passes through eight independent phases that form an instruction pipeline. At any given
time, up to eight instructions may be active, each in a different phase of completion. Not all reads and
writes happen in the same phases, but a pipeline-protection mechanism stalls instructions as needed to
ensure that reads and writes to the same location happen in the order in which they are programmed.

To maximize pipeline efficiency, an instruction-fetch mechanism attempts to keep the pipeline full. Its role
is to fill an instruction-fetch queue, which holds instructions in preparation for decoding and execution. The
instruction-fetch mechanism fetches 32-bits at a time from program memory; it fetches one 32-bit
instruction or two 16-bit instructions.

The instruction-fetch mechanism uses three program-address counters: the program counter (PC), the
instruction counter (IC), and the fetch counter (FC). When the pipeline is full the PC will always point to
the instruction in its decode 2 pipeline phase. The IC points to the next instruction to be processed. When
the PC points to a 1-word instruction, IC = (PC+1); when the PC points to a 2-word instruction, IC =
(PC+2). The value in the FC is the address from which the next fetch is to be made.

The pipeline and the instruction-fetch mechanism are described in more detail in Chapter 4.

Multiply Operations

The C28x features a hardware multiplier that can perform 16-bit x 16-bit or 32-bit x 32-bit fixed-point
multiplication. This functionality is enhanced by 16-bit x 16-bit multiply and accumulate (MAC), 32 x 32
MAC, and 16-bit x 16-bit dual MAC (DMAC) instructions. This section describes the components involved
in each type of multiplication.

16-bit x 16-bit Multiplication

The C28x multiplier can perform a 16-bit x 16-bit multiplication to produce a signed or unsigned 32-bit
product. Figure 2-10 shows the CPU components involved in this multiplication.

The multiplier accepts two 16-bit inputs:

* One input is from the upper 16 bits of the multiplicand register (T). Most 16 x 16 multiplication
instructions require that you load T from a datamemory location or a register before you execute the
instruction. However, the MAC and some versions of the MPY and MPYA instructions load T for you
before the multiplication.

» The other input is from one of the following:
— A data-memory location or a register (depending on which you specify in the multiply instruction).

— An instruction opcode. Some C28x multiply instructions allow you to include a constant as an
operation.

After the value has been multiplied by the second value, the 32-bit result is stored in one of two places,
depending on the particular multiply instruction: the 32-bit product register (P) or the 32-bit accumulator
(ACC).

One special 16-bit x 16-bit multiplication instruction takes two 32-bit input values as its operands. This
instruction is the 16 x 16 DMAC instruction, which performs dual 16 x 16 MAC operations in one
instruction. In this case, the ACC contains the result of multiplying and adding the upper word of the 32-bit
operands. The P register contains the result of multiplying and adding the results of the lower word of the
32-bit operands.

SPRU430F—August 2001 —-Revised April 2015 Central Processing Unit 45
Submit Documentation Feedback

Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

Multiply Operations www.ti.com

From data memory or a register From data memory or a register
From an instruction opcode

16 16 T~16

L | A\Mux

16 16
Multiplier

AT

32 32

I P | I ACC |

Figure 2-10. Conceptual Diagram of Components Involved in 16 X16-Bit Multiplication

2.6.2 32-Bit x 32-Bit Multiplication

The C28x multiplier can also perform 32-bit by 32-bit multiplication. Figure 2-11 shows the CPU
components involved n this multiplication. In this case, the multiplier accepts two 32-bit inputs:

* The first input is from one of the following:

— A program memory location. Some C28x 32 x 32 multiply MAC-type instructions such as IMACL
and QMACL take one data value directly from memory using the program-address bus.

— The 32-bit multiplicand register (XT). Most 32 x 32-bit multiplication instructions require that you
load XT from data memory or a register before you execute the instruction.

» A data-memory location or a register (depending on which you specify in the multiply instruction).
After the two values have ben multiplied, 32 bits of the 64-bit result are stored in the product register (P).

You can control which half is stored (upper 32 bits or lower 32 Bits) and whether the multiplication is
signed or unsigned by the instruction used.

If you need support for larger data values, the 32 X 32 multiplication instructions can be combined to
implement 32 x 32 = 64-hit or 64 x 64 = 128-bit math.

46

Central Processing Unit SPRU430F—August 2001 —Revised April 2015

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

I

TEXAS
INSTRUMENTS

www.ti.com Shift Operations

From data memory
32 or register

From
program
memory
32 32
\ A 4 From data
\ MUX / memory or register
32 32
Multiplier
Upper 32 Lower 32
A
\ Muy
32

—L ¢]

Figure 2-11. Conceptual Diagram of Components Involved in 32 X 32-Bit Multiplication

2.7 Shift Operations
The shifter holds 64 bits and accepts either a 16-bit, 32-bit, or 64-bit input value. When the input value has
16 bits, the value is loaded into the 16 least significant bits (LSBs) of the shifter. When the input value has
32 hits, the value is loaded into the 32 LSBs of the shifter. Depending on the instruction that uses the
shifter, the output of the shifter may be all of its 64 bits or just its 16 LSBs.
When a value is shifted right by an amount N, the N LSBs of the value are lost and the bits to the left of
the value are filled with all Os or all 1s. If sign extension is specified, the bits to the left are filled with
copies of the sign bit. If sign extension is not specified, the bits to the left are filled with 0s, or zero filled.
When a value is shifted left by an amount N, the bits to the right of the shifted value are zero filled. If the
value has 16 bits and sign extension is specified, the bits to the left are filled with copies of the sign bit. If
the value has 16 bits and sign extension is not specified, the bits to the left are zero filled. If the value has
32 hits, the N MSBs of the value are lost, and sign extension is irrelevant.
The figure below lists the instructions that use the shifter and provides an illustration of the corresponding
shifter operation. The table uses the following graphical symbols:
. This symbol represents the 32-bit shifter. The text
| Shift left | inside the box indicates the direction of the shift.
Izl This symbol indicates zero filling.
This symbol indicates sign extending.
Sign
SXM This symbol indicates that the MSBs of the shifter
- depend on the sign-extension mode bit (SXM). If
SXM = 0, the MSBs are zero filled after the shift. If
SXM = 1, the MSBs are filled with the sign of the
shifted value.
This symbol indicates the carry bit (C).
Figure 2-12.
SPRU430F—August 2001 —-Revised April 2015 Central Processing Unit 47

Submit Documentation Feedback

Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

Shift Operations

13 TEXAS
INSTRUMENTS

www.ti.com

Table 2-13. Shift Operations

Operation Type

lllustration

Left shift of 16-bit value for ACC operation
Syntaxes: ADD ACC, loc16 << 0...16

ADD ACC, # 16Bit << 0...15

ADD ACC, locl6 <<T

SUB ACC, loc16 << 0...16

SUB ACC, # 16Bit << 0 ...15

SUB ACC, locl6<< T

MOV ACC, loc16 << 0...16

MOV ACC, # 16Bit << 0...15

MOV ACC, locl6, << T

16-bit value to 16 LSBs
SXM

|
| orsign || Shift l|eft |<_E|

32 bits to ALU
Figure 2-13. ADD Command

Store 16 LSBs of left-shifted ACC
Syntax:
MOV loc16, ACC << 1...8

ACC

|
Discard +—| shift |efti |<—|E|

16 LSBs to ALU
Figure 2-14. MOV Command

Store 16 MSBs of left-shifted ACC.

Syntax:

MOVH loc16, ACC << 1...8

Note: This instruction performs a single right shift by (16- shift1),
where shiftl is a value from O to 8.

ACC

|

| Shift right

|—> Discard

16 LSBs to ALU
Figure 2-15. MOVH Command

Logical left shift of ACC. The last bit to be shifted out fills the
carry bit (C)

Syntaxes:

LSL ACC, 1...16

LSL ACC, T (shift = T(3:0))

LSL ACC, T (shift = T(4:0))

Note: If T(3:0) = 0 or T(4:0) = 0, indicating a shift of 0, C is
cleared.

ACC
Last l
bit out
hift lef |<—|
Discard Shift left
other bits l

32 bits to ACC
Figure 2-16. LSL Command

Logical left shift of AH or AL. The last AH/AL to 16 LSBs bit to
be shifted out fills the carry bit (C).

Syntaxes:

LSLAX, 1...16

LSL A X, T (shift = T(3:0)) Note: If T(3:0) = 0, indicating a shift of
0, C is cleared.

Right shift of ACC. If SXM = 0, a logical shift is performed. If
SXM = 1, an arithmetic shift is performed. The last bit to be
shifted out fills the carry bit (C).

Syntaxes:

SFR ACC, 1...16

SFRACC, T

Note: If T(3:0) = 0, indicating a shift of 0, C is cleared.

AH/AL to 16 LSBs
Last c
bit out
| —| Shift left |<—|E|

16 LSBs to AH/AL

ACC
SXM l c Last
bit out
| 0/Sign |—>| Shift right
l Discard
other bits

32 bits to ACC
Figure 2-17. LSL and SFR Commands

48 Central Processing Unit

SPRU430F—August 2001 —Revised April 2015
Submit Documentation Feedback

Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS

INSTRUMENTS
www.ti.com Shift Operations
Table 2-13. Shift Operations (continued)
Operation Type lllustration
AH/AL to 16 LSBs
Logical right shift of AH or AL. The last bit to be shifted out fills l c Last
the carry bit (C). p— bit out
Syntaxes: . Izl_’l il Discard
LSR A X, shift ' v other bits
LSR A X, T (shift = T(3:0)) ARLACC, T (shift = T(4:0)
Note: If T(4:0) = 0, indicating a shift of 0, C is cleared. 16 LSBs to AH/AL
Figure 2-18. LSR Command
AH/AL to 16 LSBs
Arithmetic right shift of AH or AL. The last bit to be shifted out c| Last
fills the carry bit (C). - — bit out
Syntaxes: | Sign |—>| Shift right e
ASR A X, shift l other bits
ASRAX, T
Note: If T(4:0) = 0, indicating a shift of 0, C is cleared. 16 LSBs to AH/AL
Figure 2-19. ASR Command
ACC
Rotate ACC left by 1 bit. Bit 31 of ACC fills the carry bit (C). C Rotate left
fills bit 0 of ACC.
Syntax:
ROL ACC v
32 bits to ACC
Figure 2-20. ROL Command
ACC
Rotate ACC right by 1 bit. Bit 0 of ACC fills the carry bit (C). C Rotate right
fills bit 31 of ACC.
Syntax:
ROR ACC v
32 bits to ACC
Figure 2-21. ROR Command
ACC:P
Last
) : . . it out
Logical right shift of ACC:P. IEI Shift right bit ou
Syntaxes Discard
LSR64 ACC:P, 1...16 l other bits
LSR64, ACC:P, T shift = T(5:0) 64 bits to ACC:P
Figure 2-22. LSR64 Command

SPRU430F—August 2001 —-Revised April 2015 Central Processing Unit 49
Submit Documentation Feedback

Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS

INSTRUMENTS
Shift Operations www.ti.com
Table 2-13. Shift Operations (continued)
Operation Type lllustration
ACC:P
Last l
Logical left shift of ACC:P. bit out [,
Syntaxes: Discard Shift left |<_| :
LSL64 ACC:P, 1...16 other bits l

LSL64 ACC:P, T shift = T(5:0)

64 bits to ACC:P
Figure 2-23. LSL64 Command

Arithmetic right shift of ACC:P.
Syntaxes:

ASR64 ACC:P, 1...16

ASR64, ACC:P, T shift = T(5:0)

ACC:P
Last
C| bit out
| Sign |—>| Shift right
Discard
l other bits
64 bits to ACC:P

Figure 2-24. ASR64 Command

Syntaxes: NORM ACC, aux++
NORM ACC, aux- -
SUBCU ACC, loc

Conditional shift of ACC by 1 bit.

ACC

Discard <—| Shift left |<—|E|

32 bits to ACC
Figure 2-25. NORM and SUBCU Command

Shift of P as per PM bits.
Syntaxes:

ADD ACC, P

SUB ACC, P CMP ACC, P
MAC P, loc, 0: pmem
MOV ACC, P

MOVA T, loc

MOVP T, loc

MOVS T, loc

MPYA P, loc, # 16BitSigned
MPYA P, T, loc

MPYS P, T, loc

For PM = 0: P

'
Discard 4—| Shii left |<—|E|

32 bits to ALU

For PM = 1: No shift
For PM from 2-7: P

| Sign |—>| Shift right |—> Discard

32 bits to ALU
Figure 2-26. Shift Operations

50 Central Processing Unit

SPRU430F—August 2001 —Revised April 2015
Submit Documentation Feedback

Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS

INSTRUMENTS
www.ti.com Shift Operations

Table 2-13. Shift Operations (continued)

Operation Type lllustration
For PM = 0: i
Discard <—| Shift left |<—|E|
16 LSBs to ALU

Store 16 LSBs of shifted P. P is shifted as per the PM bits. The For PM = 1: No shift
16 LSBs of shifter are stored.
Syntax:
MOV locl6, P For PM from 2-7: P

| Sign |—>| Shift right |—> Discard
v

16 LSBs to ALU
Figure 2-27. MOV Command

For PM = 0: P

1) Discard 4—| Shift left |<—|E|

2) | Shift right by 16 |—>Discard

.

16 LSBs to ALU

Store 16 MSBs of shifted P. P is shifted as per the PM bits. The

result is shifted right by 16 so that its 16 MSBs are in the For PM For PM = 1: No shift

= 0: P 16 LSBs of the shifter. 16 LSBs of shifter are stored.

Syntax:

MOVH loc16, P For PM from 2-7: i
1) [sion |—>| Shift right |—> Discard
2) | Shift right by 16 |—> Discard

.

16 LSBs to ALU
Figure 2-28. MOV Command

SPRU430F—August 2001 —-Revised April 2015 Central Processing Unit 51

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

. Chapter 3
I ’.{‘IE)S(’;A"IEUMENTS SPRU430F—August 2001—Revised April 2015

CPU Interrupts and Reset
This chapter describes the available CPU interrupts and how they are handled by the CPU. It also

explains how to control those interrupts that can be controlled through software. Finally, it describes how a
hardware reset affects the CPU.

Topic Page
3.1 CPU INLEITUPLS OVEIVIEW ...eieieneniuinieieeeeaenee et e e eeneasese e e eaeaenreseaeeenenreanaeeenenns 53
3.2 CPU Interrupt Vectors and Prioritiescoeiuiieiiiiiiiiieieiee et e e e e e eaee e 53
3.3 Maskable Interrupts: INT1-INT14, DLOGINT, and RTOSINTccccieiuiiiiieiiieininianenens 55
3.4 Standard Operation for Maskable INterrupPtS ...ccvevrieiiiiiiiii e e e 58
3.5 NonmMaskable INTerrUPLS .uiuiiiiiiiii e et e et e e e s e e e e annas 62
1 G 11 =T = 1 =3 o 0 o3 4 o I = 1 P 65
3.7 Hardware RESEL (RS) ..uuieiiiiiuiuieit ittt et et e ettt e e eneere s e e e enentnreaeenenennens 65
52 CPU Interrupts and Reset SPRU430F-August 2001 —Revised April 2015

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

I

TEXAS
INSTRUMENTS

www.ti.com CPU Interrupts Overview

3.1

3.2

CPU Interrupts Overview

Interrupts are hardware- or software-driven signals that cause the C28x CPU to suspend its current
program sequence and execute a subroutine. Typically, interrupts are generated by peripherals or
hardware devices that need to give data to or take data from the C28x (for example, A/D and D/A
converters and other processors). Interrupts can also signal that a particular event has taken place (for
example, a timer has finished counting).

On the C28x, interrupts can be triggered by software (the INTR, OR IFR, or TRAP instruction) or by
hardware (a pin, an external peripheral, or on-chip peripheral/logic). If hardware interrupts are triggered at
the same time, the C28x services them according to a set priority ranking.

Some 28x devices include a peripheral interrupt expansion (PIE) module that multiplexes interrupts from a
number of peripherals into a single CPU interrupt. The PIE module provides additional control before an
interrupt reaches the C28x CPU. See the TMS320C8x System and Interrupts Reference Guide
(SPRUOQ78) for more details.

At the CPU level, each of the C28x interrupts, whether hardware or software, can be placed in one of the
following two categories:

» Maskable interrupts. These are interrupts that can be blocked (masked) or enabled (unmasked)
through software.

* Nonmaskable interrupts. These interrupts cannot be blocked. The C28x will immediately approve this
type of interrupt and branch to the corresponding subroutine. All software-initiated interrupts are in this
category.

The C28x handles interrupts in four main phases:

1. Receive the interrupt request. Suspension of the current program sequence must be requested by a
software interrupt (from program code) or a hardware interrupt (from a pin or an on-chip device).

2. Approve the interrupt. The C28x must approve the interrupt request. If the interrupt is maskable,
certain conditions must be met in order for the C28x to approve it. For nonmaskable hardware
interrupts and for software interrupts, approval is immediate.

3. Prepare for the interrupt service routine and save register values. The main tasks performed in
this phase are:

« Complete execution of the current instruction and flush from the pipeline any instructions that have
not reached the decode 2 phase.

< Automatically save most of the current program context by saving the following registers to the
stack: STO, T, AL, AH, PL, PH, ARO, AR1, DP, ST1, DBGSTAT, PC, and IER.

« Fetch the interrupt vector and load it into the program counter (PC). For devices with a PIE
module, the vector fetched will depend on the setting of the PIE enable and flag registers.

4. Execute the interrupt service routine. The C28x branches to its corresponding subroutine called an
interrupt service routine (ISR). The C28x branches to the address (vector) you store at a
predetermined vector location and executes the ISR you have written.

CPU Interrupt Vectors and Priorities

The C28x supports 32 CPU interrupt vectors, including the reset vector. Each vector is a 22-bit address
that is the start address for the corresponding interrupt service routine (ISR). Each vector is stored in 32
bits at two consecutive addresses. The location at the lower address holds the 16 least significant bits
(LSBs) of the vector. The location at the higher address holds the 6 most significant bits (MSBSs) right-
justified. When an interrupt is approved, the 22-bit vector is fetched, and the 10 MSBs at the higher
address are ignored.

The C28x supports 32 CPU interrupt vectors, including the reset vector. Each vector is a 22-bit address
that is the start address for the corresponding interrupt service routine (ISR). Each vector is stored in 32
bits at two consecutive addresses. The location at the lower address holds the 16 least significant bits
(LSBs) of the vector. The location at the higher address holds the 6 most significant bits (MSBSs) right-
justified. When an interrupt is approved, the 22-bit vector is fetched, and the 10 MSBs at the higher
address are ignored.

For devices with a PIE module, this table is re-mapped and expanded into the PIE vector table.

SPRU430F-August 2001 —-Revised April 2015 CPU Interrupts and Reset 53
Submit Documentation Feedback

Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F
http://www.ti.com/lit/pdf/SPRU078

CPU Interrupt Vectors and Priorities

I

TEXAS
INSTRUMENTS

www.ti.com

Table 3-1 lists the available CPU interrupt vectors and their locations. The addresses are shown in

hexadecimal form. The table also shows the priority of each of the hardware interrupts.

Table 3-1. Interrupt Vectors and Priorities

Vector Absolute Address (hexadecimal) Hardware Description

VMAP =0 VMAP = 1M Priority
RESET 00 0000 3F FFCO 1 (highest) Reset
INT1 00 0002 3F FFC2 5 Maskable Interrupt 1
INT2 00 0004 3F FFC4 6 Maskable interrupt 2
INT3 00 0006 3F FFC6 7 Maskable interrupt 3
INT4 00 0008 3F FFC8 8 Maskable interrupt 4
INT5 00 000A 3F FFCA 9 Maskable interrupt 5
INT6 00 000C 3F FFCC 10 Maskable interrupt 6
INT7 00 000E 3F FFCE 11 Maskable interrupt 7
INT8 00 0010 3F FFDO 12 Maskable interrupt 8
INT9 00 0012 3F FFD2 13 Maskable interrupt 9
INT10 00 0014 3F FFD4 14 Maskable interrupt 10
INT11 00 0016 3F FFD6 15 Maskable interrupt 11
INT12 00 0018 3F FFD8 16 Maskable interrupt 12
INT13 00 001A 3F FFDA 17 Maskable interrupt 13
INT14 00 001C 3F FFDC 18 Maskable interrupt 14
DLOGINT® 00 001E 3F FFDE 19 (lowest) Maskable data log interrupt
RTOSINT @ 00 0020 3F FFEO 4 Maskable real-time operating system interrupt
Reserved 00 0022 3F FFE2 2 Reserved
NMI 00 0024 3F FFE4 3 Nonmaskable interrupt
ILLEGAL 00 0026 3F FFE6 lllegal-instruction trap
USER1 00 0028 3F FFE8 User-defined software interrupt
USER2 00 002A 3F FFEA User defined software interrupt
USER3 00 002C 3F FFEC User-defined software interrupt
USER4 00 002E 3F FFEE User-defined software interrupt
USER5 00 0030 3F FFFO User-defined software interrupt
USER6 00 0032 3F FFF2 User-defined software interrupt
USER7 00 0034 3F FFF4 User-defined software interrupt
USERS8 00 0036 3F FFF6 User-defined software interrupt
USER9 00 0038 3F FFF8 User-defined software interrupt
USER10 00 003A 3F FFFA User-defined software interrupt
USER11 00 003C 3F FFFC User-defined software interrupt
USER12 00 003E 3F FFFE User-defined software interrupt

@ For C28x catalog devices, VMAP = 1 at reset.
@ Interrupts DLOGINT and RTOSINT are generated by the emulation logic internal to the CPU.

The vector table can be mapped to the top or bottom of program space, depending on the value of the
vector map bit (VMAP) in status register ST1. If the VMAP bit is 0, the vectors are mapped beginning at
address 00 000016. If the VMAP bit is 1, the vectors are mapped beginning at address 3F FFC016.
Table 3-1 lists the absolute addresses for VMAP = 0 and VMAP = 1.

The VMAP bit can be set by the SETC VMAP instruction and cleared by the CLRC VMAP instruction. The

reset value of VMAP is 1.

54

CPU Interrupts and Reset

SPRU430F—August 2001 —Revised April 2015

Copyright © 2001-2015, Texas Instruments Incorporated

Submit Documentation Feedback

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS

INSTRUMENTS

www.ti.com Maskable Interrupts: INT1-INT14, DLOGINT, and RTOSINT

3.3

3.3.1

Maskable Interrupts: INT1-INT14, DLOGINT, and RTOSINT

INT1-INT14 are 14 general-purpose interrupts. DLOGINT (the data log interrupt) and RTOSINT (the real-
time operating system interrupt) are available for emulation purposes. These interrupts are supported by
three dedicated registers: the CPU interrupt flag register (IFR), the CPU interrupt enable register (IER),
and the CPU debug interrupt enable register (DBGIER).

The 16-bit IFR contains flag bits that indicate which of the corresponding interrupts are pending (waiting
for approval from the CPU). The external input lines INT1-INT14 are sampled at every CPU clock cycle. If
an interrupt signal is recognized, the corresponding bit in the IFR is set and latched. For DLOGINT or
RTOSINT, a signal sent by the CPU on-chip analysis logic causes the corresponding flag bit to be set and
latched. You can set one or more of the IFR bits at the same time by using the OR IFR instruction. More
details about the IFR are given in Section 3.3.1. The on-chip analysis resources are introduced in

Chapter 7.

The interrupt enable register (IER) and the debug interrupt enable register (DBGIER) each contain bits for
individually enabling or disabling the maskable interrupts. To enable one of the interrupts in the IER, you
set the corresponding bit in the IER; to enable the same interrupt in the DBGIER, you set the
corresponding bit in the DBGIER. The DBGIER indicates which interrupts can be serviced when the CPU
is in the real-time emulation mode. The IER and the DBGIER are discussed more in Section 3.3.2. Real-
time mode is discussed in Section 7.4.2.

The maskable interrupts also share bit 0 in status register ST1. This bit, the interrupt global mask bit
(INTM), is used to globally enable or globally disable these interrupts. When INTM = 0, these interrupts
are globally enabled. When INTM = 1, these interrupts are globally disabled. You can set and clear INTM
with the SETC INTM and CLRC INTM instructions, respectively. ST1 is described in Section 2.4.

After a flag has been latched in the IFR, the corresponding interrupt is not serviced until it is appropriately
enabled by two of the following: the IER, the DBGIER, and the INTM bit. As shown in Table 3-2, the
requirements for enabling the maskable interrupts depend on the interrupt-handling process used. In the
standard process, which occurs in most circumstances, the DBGIER is ignored. When the C28x is in real-
time emulation mode and the CPU is halted, a different process is used. In this special case, the DBGIER
is used and the INTM bit is ignored. (If the DSP is in real-time mode and the CPU is running, the standard
interrupt-handling process applies.)

Once an interrupt has been requested and properly enabled, the CPU prepares for and then executes the
corresponding interrupt service routine. For a detailed description of this process, see Section 3.4.

Table 3-2. Requirements for Enabling a Maskable Interrupt

Interrupt-Handling Process Interrupt Enabled If ...

Standard INTM = 0 and bit in IER is 1

DSP in real-time mode and CPU halted Bit in IER is 1 and bit in DBGIER is 1

As an example of varying interrupt-enable requirements, suppose you want interrupt INT5 enabled. This
corresponds to bit 4 in the IER and bit 4 in the DBGIER. Usually, INT5 is enabled if INTM = 0 and
IER(4) = 1. In real-time emulation mode with the CPU halted, INT5 is enabled if IER(4) = 1 and
DBGIER(4) = 1.

CPU Interrupt Flag Register (IFR)

Figure 3-1 shows the IFR. If a maskable interrupt is pending (waiting for approval from the CPU), the
corresponding IFR bit is 1; otherwise, the IFR bit is 0. To identify pending interrupts, use the PUSH IFR
instruction and then test the value on the stack. Use the OR IFR instruction to set IFR bits, and use the
AND IFR instruction to clear pending interrupts. When a hardware interrupt is serviced, or when an INTR
instruction is executed, the corresponding IFR bit is cleared. All pending interrupts are cleared by the AND
IFR, #0 instruction or by a hardware reset.

NOTE: When an interrupt is requested by the TRAP instruction, if the corresponding IFR bit is set,
the CPU does not clear it automatically. If an application requires that the IFR bit be cleared,
the bit must be cleared in the interrupt service routine.

SPRU430F-August 2001 —-Revised April 2015 CPU Interrupts and Reset 55
Submit Documentation Feedback

Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS

INSTRUMENTS
Maskable Interrupts: INT1-INT14, DLOGINT, and RTOSINT www.ti.com
15 14 13 12 11 10 9 8
| RTOSINT | DLOGINT | INT14 | INT13 | INT12 | INT11 | INT10 | INT9 |
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
7 6 5 4 3 2 1 0
| INT8 | INT7 | INT6 | INT5 | INT4 | INT3 | INT2 | INT1 |
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 RW-0 R/W-0
Note: R = Read access; W = Write access; value following dash (=) is value after reset.
Figure 3-1. Interrupt Flag Register (IFR)
Bits 15 and 14 of the IFR correspond to the interrupts RTOSINT and DLOGINT:
Table 3-3. RTOSINT Real-time Operating System Interrupt Flag
RTOSINT Real-time operating system interrupt flag
Bit 15 RTOSINT =0 RTOSINT is not pending.
RTOSINT =1 RTOSINT is pending.
DLOGINT Data log interrupt flag
Bit 14 DLOGINT =0 DLOGINT is not pending.
DLOGINT =1 DLOGINT is pending.

For bits INT1-INT14, the following general description applies:

INTX Interrupt x flag (x = 1, 2, 3, ..., or 14)
Bit (x-1) INTx =0 INTX is not pending.
INTx =1 INTx is pending.

3.3.2 CPU Interrupt Enable Register (IER) and CPU Debug Interrupt Enable Register
(DBGIER)

Figure 3-2 shows the IER. To enable an interrupt, set its corresponding bit to 1. To disable an interrupt,
clear its corresponding bit to 0. Two syntaxes of the MOV instruction allow you to read from the IER and
write to the IER. In addition, the OR IER instruction enables you to set IER bits, and the AND IER
instruction enables you to clear IER bits. When a hardware interrupt is serviced, or when an INTR
instruction is executed, the corresponding IER bit is cleared. At reset, all the IER bits are cleared to 0O,
disabling all the corresponding interrupts.

NOTE: When an interrupt is requested by the TRAP instruction, if the corresponding IER bit is set,
the CPU does not clear it automatically. If an application requires that the IER bit be cleared,
the bit must be cleared in the interrupt service routine.

NOTE: Ifan IFR b itis set in the same cycle that the corresponding IER bit is cleared, the interrupt
will not be serviced until the IER bit is set again.

15 14 13 12 11 10 9 8
| rrosnt | ooant [ntia [otz [otz | ot | owmo | ot |
RIW-0 RW-0 RW-0 _RW-0 RW-0 RWO RWO _ RW-O
7 6 5 4 3 2 1 0
[wre | w7z | wre | owts [owme [owms | owm2 | owm |
RIW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

Note: R = Read access; W = Write access; value following dash (=) is value after reset.

Figure 3-2. Interrupt Enable Register (IER)

56 CPU Interrupts and Reset SPRU430F-August 2001 —Revised April 2015
Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

www.ti.com Maskable Interrupts: INT1-INT14, DLOGINT, and RTOSINT

NOTE: When using the AND IER and OR IER instructions, make sure that they do not modify the
state of bit 15 (RTOSINT) unless a real-time operating system is present.

Bits 15 and 14 of the IER enable or disable the interrupts RTOSINT and

DLOGINT:

RTOSINT Real-time operating system interrupt enable bit

Bit 15 RTOSINT =0 RTOSINT is disabled.
RTOSINT =1 RTOSINT is enabled.

DLOGINT Data log interrupt enable bit

Bit 14 DLOGINT =0 DLOGINT is disabled.
DLOGINT =1 DLOGINT is enabled.

For bits INT1-INT14, the following general description applies:

INTX Interrupt x enable bit (x =1, 2, 3, ..., or 14)
Bit (x-1) INTx=0 INTX is disabled.
INTx =1 INTx is enabled.

Figure 3-3 shows the DBGIER, which is used only when the CPU is halted in real-time emulation mode.
An interrupt enabled in the DBGIER is defined as a time-critical interrupt. When the CPU is halted in real-
time mode, the only interrupts that are serviced are time-critical interrupts that are also enabled in the IER.
If the CPU is running in real-time emulation mode, the standard interrupt-handling process is used and the
DBGIER is ignored.

As with the IER, you can read the DBGIER to identify enabled or disabled interrupts and write to the
DBGIER to enable or disable interrupts. To enable an interrupt, set its corresponding bit to 1. To disable
an interrupt, set its corresponding bit to 0. Use the PUSH DBGIER instruction to read from the DBGIER
and the POP DBGIER instruction to write to the DBGIER. At reset, all the DBGIER bits are set to 0.

15 14 13 12 1 10 9 8
| RTOSINT | DLOGINT | INT14 | INT13 | INT12 | INT11 | INT10 | INT9 |
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
7 6 5 4 3 2 1 0
| INT8 | INT7 | INT6 | INTS | INT4 | INT3 | INT2 | INT1 |
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

Note: R = Read access; W = Write access; value following dash (=) is value after reset.

Figure 3-3. Debug Interrupt Enable Register (DBGIER)

SPRU430F—August 2001 —-Revised April 2015 CPU Interrupts and Reset 57

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

Standard Operation for Maskable Interrupts

13 TEXAS
INSTRUMENTS

www.ti.com

3.4

Bits 15 and 14 of the DBGIER enable or disable the interrupts RTOSINT and DLOGINT:

RTOSINT Real-time operating system interrupt debug enable bit

Bit 15 RTOSINT =0 RTOSINT is disabled.
RTOSINT =1 RTOSINT is enabled.

DLOGINT Data log interrupt debug enable bit

Bit 14 DLOGINT =0 DLOGINT is disabled.
DLOGINT =1 DLOGINT is enabled.

For bits INT1-INT14, the following general description applies:

INTX Interrupt x debug enable bit (x =1, 2, 3, ..., or 14)
Bit (x-1) INTx =0 INTx is disabled.
INTx =1 INTX is enabled.

Standard Operation for Maskable Interrupts

The flow chart in Figure 3-4 shows the standard process for handling interrupts. Section 7.4.2 contains

information on handling interrupts when the DSP is in real-time mode and the CPU is halted. When more
than one interrupt is requested at the same time, the C28x services them one after another according to
their set priority ranking. See the priorities in Table 3-1.

Figure 3-4 is not meant to be an exact representation of how an interrupt is handled. It is a conceptual
model of the important events.

58

CPU Interrupts and Reset

Copyright © 2001-2015, Texas Instruments Incorporated

SPRU430F—August 2001 —Revised April 2015

Submit Documentation Feedback

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

www.ti.com Standard Operation for Maskable Interrupts

v
Set corresponding IFR flag bit. |

(Interrupt request sent to CPU)

Interrupt enabled in
IER?

Interrupt enabled by
INTM bit?

| Clear corresponding IFR bit. |

v

| Empty pipeline. |

| Increment and temporarily store PC. |

| Fetch interrupt vector. |

v

| Increment SP by 1. | This sequence
T protected from interrupts

| Perform automatic context save. |

v

| Clear corresponding IER bit. |

v

Set INTM and DBGM. Clear LOOP,
EALLOW, and IDLESTAT.

v

| Load PC with fetched vector. |

| Execute interrupt service routine. |

N|
v

C Program continues)

Figure 3-4. Standard Operation for CPU Maskable Interrupts

What following list explains the steps shown in Table 3-5:

1. Interrupt request sent to CPU. One of the following events occurs:
¢ One of the pins INT1-INT14 is driven low by an external event, peripheral or PIE interrupt request..
e The CPU emulation logic sends to the CPU a signal for DLOGINT or RTOSINT.

e One of the interrupts INT1-INT14, DLOGINT, and RTOSINT is initiated by way of the OR IFR
instruction.

2. Set corresponding IFR flag bit. When the CPU detects a valid interrupt in step 1, it sets and latches
the corresponding flag in the interrupt flag register (IFR). This flag stays latched even if the interrupt is
not approved by the CPU in step 3. The IFR is explained in detail in Section 3.3.1.

SPRU430F-August 2001 —-Revised April 2015 CPU Interrupts and Reset 59

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

Standard Operation for Maskable Interrupts www.ti.com

3.

Is the interrupt enabled in IER? Is the interrupt enabled by INTM bit? The CPU approves the
interrupt only if the following conditions are true:

e The corresponding bit in the IER is 1.

« The INTM bit in ST1 is 0. Once an interrupt has been enabled and then approved by the CPU, no
other interrupts can be serviced until the CPU has begun executing the interrupt service routine for
the approved interrupt (step 13). The IER is described in Section 3.3.2. ST1 is described in
Section 2.4.

Clear corresponding IFR bit. Immediately after the interrupt is approved, its IFR bit is cleared. If the
interrupt signal is kept low, the IFR register bit will be set again. However, the interrupt is not
immediately serviced again. The CPU blocks new hardware interrupts until the interrupt service routine
(ISR) begins. In addition, the IER bit is cleared (in step 10) before the ISR begins; therefore, an
interrupt from the same source cannot disturb the ISR until the IER bit is set again by the ISR.

Empty the pipeline. The CPU completes any instructions that have reached or passed their decode 2
phase in the instruction pipeline. Any instructions that have not reached this phase are flushed from
the pipeline.

Increment and temporarily store PC. The PC is incremented by 1 or 2, depending on the size of the
current instruction. The result is the return address, which is temporarily saved in an internal hold
register. During the automatic context save (step 9), the return address is pushed onto the stack.

Fetch interrupt vector. The PC is filled with the address of the appropriate interrupt vector, and the
vector is fetched from that location. To determine which vector address has been assigned to each of
the interrupts, see Section 3.2, Interrupt Vectors or, if your device uses a PIE module, see the System
and Interrupts Reference Guide for your specific device.

Increment SP by 1. The stack pointer (SP) is incremented by 1 in preparation for the automatic
context save (step 9). During the automatic context save, the CPU performs 32-bit accesses, and the
CPU expects 32-bit accesses to be aligned to even addresses by the memory wrapper. Incrementing
SP by 1 ensures that the first 32-bit access does not overwrite the previous stack value.

Perform automatic context save. A number of register values are saved automatically to the stack.
These registers are saved in pairs; each pair is saved in a single 32-bit operation. At the end of each
32-bit save operation, the SP is incremented by 2. Table 3-4 shows the register pairs and the order in
which they are saved. The CPU expects all 32-bit saves to be even-word aligned by the memory
wrapper. As shown in the table, the SP is not affected by this alignment.

Table 3-4. Register Pairs Saved and SP Positions for Context Saves

Save Operation @ | Register Pairs Bit 0 of Storage Address SP Starts at Odd Address SP Starts at Even Address

1 SP position before step 8 1

1st

STO 0 0 SP position before step 8

T 1

2nd

AL

AH

3rd

pL @

PH

4th

ARO

AR1

5th

DP

6th

IER

DBGSTAT @

7th

Return address (low half)

Return address (high half)

1
0
1
0
1
0
1
ST1 0
1
0
1
0
1
0

SP position after save

0
1
0
1
0
1
1
1
0
1
0
1
0
1

1 SP position after save

1)
()
[©)

All registers are saved as pairs, as shown.
The P register is saved with 0 shift (CPU ignores current state of the product shift mode bits, PM, in status register 0).
The DBGSTAT register contains special emulation information.

60 CPUIn

terrupts and Reset SPRU430F—August 2001 —Revised April 2015
Submit Documentation Feedback

Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

www.ti.com

Standard Operation for Maskable Interrupts

1.

Clear corresponding IER bit. After the IER register is saved on the stack in step 9, the CPU clears
the IER bit that corresponds to the interrupt being handled. This prevents reentry into the same
interrupt. If you want to nest occurrences of the interrupt, have the ISR set that IER bit again.

Set INTM and DBGM. Clear LOOP, EALLOW, and IDLESTAT. All these bits are in status register
ST1. By setting INTM to 1, the CPU prevents maskable interrupts from disturbing the ISR. If you wish
to nest interrupts, have the ISR clear the INTM bit. By setting DBGM to 1, the CPU prevents debug
events from disturbing time-critical code in the ISR. If you do not want debug events blocked, have the
ISR clear DBGM. The CPU clears LOOP, EALLOW, and IDLESTAT so that the ISR operates within a
new context.

Load PC with fetched vector. The PC is loaded with the interrupt vector that was fetched in step 7.
The vector forces program control to the ISR.

Execute interrupt service routine. Here is where the CPU executes the program code you have
prepared to handle the interrupt. A typical ISR is shown in Example 3-1.

Although a number of register values are saved automatically in step 10, if the ISR uses other
registers, you may need to save the contents of these registers at the beginning of the ISR. These
values must then be restored before the return from the ISR. The ISR in Example 3-1 saves and
restores auxiliary registers AR1H:AROH, XAR2-XAR7, and the temporary register XT.

If you want the ISR to inform a peripheral that the interrupt is being serviced, you can use the IACK
instruction to send an interrupt acknowledge signal. The IACK instruction accepts a 16-bit constant as
an operand. For a detailed description of the IACK instruction, see Chapter 6, C28x Assembly
Language Instructions.

Program continues. If the interrupt is not approved by the CPU, the interrupt is ignored, and the
program continues uninterrupted. If the interrupt is approved, its interrupt service routine is executed
and the program continues where it left off (at the return address).

Example 3-1. Typical ISR

C28x Full Context Save/Restore

INTX: ; 8 cycles
PUSH AR1H:AROH ; 32-bit
PUSH XAR2 ; 32-bit
PUSH XAR3 ; 32-bit
PUSH XAR4 ; 32-bit
PUSH XAR5 ; 32-bit
PUSH XAR6 ; 32-bit
PUSH XAR7 ; 32-bit
PUSH XT ; 32-bit
; +8 = 16 cycles
POP XT
POP XAR7
POP XAR6
POP XAR5
POP XAR4
POP XAR3
POP XAR2
POP XAR1H:AROH
IRET
; 16 cycles

SPRU430F—August 2001 —-Revised April 2015 CPU Interrupts and Reset 61

Submit Documentation Feedback

Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

Nonmaskable Interrupts www.ti.com

3.5

3.5.1

3.5.2

Nonmaskable Interrupts

Nonmaskable interrupts cannot be blocked by any of the enable bits (the INTM bit, the DBGM bit, and
enable bits in the IFR, IER, or DBGIER). The C28x immediately approves this type of interrupt and
branches to the corresponding interrupt service routine. There is one exception to this rule: When the CPU
is halted in stop mode (an emulation mode), no interrupts are serviced. Stop mode is described in

Section 7.4.1.

The C28x nonmaskable interrupts include:

» Software interrupts (the INTR and TRAP instructions).
» Hardware interrupt NMI

* lllegal-instruction trap

» Hardware reset interrupt (RS)

The software interrupt instructions and NMI are described in this section. The illegal-instruction trap and
reset are described in Section 3.6 and Section 3.7, respectively.

INTR Instruction

You can use the INTR instruction to initiate one of the following interrupts by name: INT1-INT14,
DLOGINT, RTOSINT and NMI. For example, you can execute the interrupt service routine for INT1 by
using the following instruction:

INTR INT1

Once an interrupt is initiated by the INTR instruction, how it is handled depends on which interrupt is

specified:

e INT1-INT14, DLOGINT, and RTOSINT. These maskable interrupts have corresponding flag bits in the
IFR. When a request for one of these interrupts is received at an external pin, the corresponding IFR
bit is set and the interrupt must be enabled to be serviced. In contrast, when one of these interrupts is
initiated by the INTR instruction, the IFR flag is not set, and the interrupt is serviced regardless of the
value of any enable bits. However, in other respects, the INTR instruction and the hardware request
are the same. For example, both clear the IFR bit that corresponds to the requested interrupt. For
more details, see Section 3.4.

* NMI. Because this interrupt is nonmaskable, a hardware request at a pin and a software request with
the INTR instruction lead to the same events. These events are identical to those that take place
during a TRAP instruction (see Section 3.5.2).

Chapter 6, C28x Assembly Language Instructions, contains a detailed description of the INTR instruction.

TRAP Instruction

You can use the TRAP instruction to initiate any interrupt, including one of the user-defined software
interrupts (see USER1-USER12 in Table 3-1. The TRAP instruction refers to one of the 32 interrupts by a
number from 0 to 31. For example, you can execute the interrupt service routine for INT1 by using the
following instruction: TRAP #1

Regardless of whether the interrupt has bits set in the IFR and IER, neither the IFR nor the IER is affected
by this instruction. Figure 3-5 shows a functional flow chart for an interrupt initiated by the TRAP
instruction. For more details about the TRAP instruction, see Chapter 6, C28x Assembly Language
Instructions

NOTE: The TRAP #0 instruction does not initiate a full reset. It only forces execution of the interrupt
service routine that corresponds to the RESET interrupt vector.

62

CPU Interrupts and Reset SPRU430F—August 2001 —Revised April 2015

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

www.ti.com Nonmaskable Interrupts

INTM bit, IFR, IER, and (TRAP instruction fetched)
DBGIER ignored and
not affected ‘

| Empty the pipeline. |

| Increment and temporarily store PC. |

| Fetch interrupt vector. |

v
| Increment SP by 1. | This sequence
‘ protected from

| Perform automatic context save. | interrupts

v

Set INTM and DBGM. Clear LOOP,
EALLOW, and IDLESTAT.

v

| Load PC with fetched vector. |

!

| Execute interrupt service routine. |

C Program continues)

Figure 3-5. Functional Flow Chart for an Interrupt Initiated by the TRAP Instruction

The following lists explains the steps shown in Figure 3-5:

1.

TRAP instruction fetched. The CPU fetches the TRAP instruction from program memory. The
desired interrupt vector has been specified as an operand and is now encoded in the instruction word.
At this stage, no other interrupts can be serviced until the CPU begins executing the interrupt service
routine (step 9).

Empty the pipeline. The CPU completes any instructions that have reached or passed the decode 2
phase of the pipeline. Any instructions that have not reached this phase are flushed from the pipeline.

Increment and temporarily store PC. The PC is incremented by 1. This value is the return address,
which is temporarily saved in an internal hold register. During the automatic context save (step 6), the
return address is pushed onto the stack.

Fetch interrupt vector. The PC is set to point to the appropriate vector location (based on the VMAP
bit and the interrupt), and the vector located at the PC address is loaded into the PC. (To determine
which vector address has been assigned to each of the interrupts, see Section 3.2, Interrupt Vectors.)

Increment SP by 1. The stack pointer (SP) is incremented by 1 in preparation for the automatic
context save (step 6). During the automatic context save, the CPU performs 32-bit accesses, which
are aligned to even addresses. Incrementing SP by 1 ensures that the first 32-bit access will not
overwrite the previous stack value.

Perform automatic context save. A number of register values are saved automatically to the stack.
These registers are saved in pairs; each pair is saved in a single 32-bit operation. At the end of each
32-bit operation, the SP is incremented by 2. Table 3-3 shows the register pairs and the order in which
they are saved. All 32-bit saves are even-word aligned. As shown in the table, the SP is not affected
by this alignment.

SPRU430F-August 2001 —-Revised April 2015 CPU Interrupts and Reset 63
Submit Documentation Feedback

Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

Nonmaskable Interrupts

13 TEXAS
INSTRUMENTS

www.ti.com

Table 3-5. Register Pairs Saved and SP Positions for Context Saves

Save Operation®

Register Pairs

Bit O of Storage Address SP Starts at Odd
Address

SP Starts at Even Address

1st

STO

0

0 < SP position before step 5

T

2nd

AL

AH

3rd

PL @

PH

4th

ARO

AR1

5th

ST1

DP

6th

IER

DBGSTAT @

7th

Return address (low half)

Return address (high half)

SP position after save

Rr|lo|lr|lOo|Rr|lO|rR|O|lrR|O|R|O|R|O|F

1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

SP position after save

@ All registers are saved as pairs, as shown.
@ The P register is saved with 0 shift (CPU ignores current state of the product shift mode bits, PM, in status register 0).
©® The DBGSTAT register contains special emulation information.

1. Set INTM and DBGM. Clear LOOP, EALLOW, and IDLESTAT. All these bits are in status register
ST1 (described in Section 2.4). By setting INTM to 1, the CPU prevents maskable interrupts from
disturbing the ISR. If you wish to nest interrupts, have the ISR clear the INTM bit. By setting DBGM to
1, the CPU prevents debug events from disturbing time critical code in the ISR. If you do not want
debug events blocked, have the ISR clear DBGM.
The CPU clears LOOP, EALLOW, and IDLESTAT so that the ISR operates within a new context.

2. Load PC with fetched vector. The PC is loaded with the interrupt vector that was fetched in step 4.
The vector forces program control to the ISR.

3. Execute interrupt service routine. The CPU executes the program code you have prepared to
handle the interrupt. You may wish to have the interrupt service routine (ISR) save register values in
addition to those saved in step 6. A typical ISR is shown in Example 3-1.
If you want the ISR to inform external hardware that the interrupt is being serviced, you can use the
IACK instruction to send an interrupt acknowledge signal. The IACK instruction accepts a 16-bit
constant as an operand and drives this 16-bit value on the 16 least significant lines of the data-write
bus, DWDB(15:0). For a detailed description of the IACK instruction, see Chapter 6, C28x Assembly
Language Instructions .

4. Program continues. After the interrupt service routine is completed, the program continues where it
left off (at the return address).

3.5.3 Hardware Interrupt NMI

An interrupt can be requested by way the NMI input pin, which must be driven low to initiate the interrupt.
Although NMI cannot be masked, there are some debug execution states in which NMI is not serviced
(see Section 7.4, Execution Control Modes). For more details on real-time mode, see Section 7.4.2. Once
a valid request is detected on the NMI pin, the CPU handles the interrupt in the same manner as shown
for the TRAP instruction (see Section 3.5.2).

64 CPU Interrupts and Reset

SPRU430F—August 2001 —Revised April 2015

Copyright © 2001-2015, Texas Instruments Incorporated

Submit Documentation Feedback

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

I3 TEXAS
INSTRUMENTS
www.ti.com lllegal-Instruction Trap
3.6 lllegal-Instruction Trap
Any one of the following events causes an illegal-instruction trap:
* An invalid instruction is decoded (this includes invalid addressing modes).
» The opcode value 000016 is decoded. This opcode corresponds to the ITRAPO instruction.
» The opcode value FFFF16 is decoded. This opcode corresponds to the ITRAP1 instruction.
» A 32-bit operation attempts to use the [@SP] register addressing mode.
» Address mode setting AMODE=1 and PAGEO=1
An illegal-instruction trap cannot be blocked, not even during emulation. Once initiated, an illegal-
instruction trap operates the same as a TRAP #19 instruction. The handling of an interrupt initiated by the
TRAP instruction is described in Section 3.5.2. As part of its operation, the illegal-instruction trap saves
the return address on the stack. Thus, you can detect the offending address by examining this saved
value. For more information about the TRAP instruction, see Chapter 6, C28x Assembly Language
Instructions.
3.7 Hardware Reset (RS)
When asserted, the reset input signal (RS) places the CPU into a known state. As part of a hardware
reset, all current operations are aborted, the pipeline is flushed, and the CPU registers are reset as shown
in Table 3-5. Then the RESET interrupt vector is fetched and the corresponding interrupt service routine is
executed. For the reset condition of signals, see the data sheet for your particular C28x DSP. Also see the
your data sheet for specific information on the process for resetting your DSP. Although RS cannot be
masked, there are some debug execution states in which RS is not serviced (see Section 7.4, Execution
Control Modes).
Table 3-6. Registers After Reset
Register Bit(s) Value After Reset Comments
ACC all 0000 0000,
XARO all 0000 0000,
XAR1 all 0000 0000,
XAR2 all 0000 0000,
XAR3 all 0000 0000,
XAR4 all 0000 0000,
XAR5 all 0000 0000,
XAR6 all 0000 0000,
XAR7 all 0000 000044
DP all 0000, DP points to data page 0.
IFR 16 bits 000044 There are no pending interrupts. All interrupts pending at the time of reset
have been cleared.
IER 16 bits 000044 Maskable interrupts are disabled in the IER.
DBGIER all 000044 Maskable interrupts are disabled in the DBGIER.
P all 0000 0000,
PC all 3F FFCO44 PC is loaded with the reset interrupt vector at program-space address 00
0000, or 3F FFCOy.
RPC all 00004,
SP all SP = 0x400 SP points to address 0400.
STO 0: SXM 0 Sign extension is suppressed.
1: OVM 0 Overflow mode is off.
2:TC 0
3C 0
4: 7 0
5:N 0
SPRU430F-August 2001 —-Revised April 2015 CPU Interrupts and Reset 65

Submit Documentation Feedback

Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

Hardware Reset (RS)

13 TEXAS
INSTRUMENTS

www.ti.com

Table 3-6. Registers After Reset (continued)

Register Bit(s) Value After Reset Comments
6:V 0
7-9: PM 000, The product shift mode is set to left-shift-by-1.
10-15: OvC |00 0000 ,
ST1 0: INTM 1 Maskable interrupts are globally disabled. They cannot be serviced unless
the C28x is in real-time mode with the CPU halted.
1: DBGM 1 Emulation accesses and events are disabled.
2: PAGEO 0 PAGEQO stack addressing mode is enabled. PAGEO direct addressing
mode is disabled.
3: VMAP 1 The interrupt vectors are mapped to program-memory addresses 3F
FFCO,6-3F FFFF .
4: SPA 0
5: LOOP 0
6: EALLOW |0 Access to emulation registers is disabled.
7: IDLESTAT |0
8: AMODE 0 C27x/C28x addressing mode
9: OBJMODE |0 C27x object mode
10: Reserved |0
11: 1
MOM1MAP
12: XF 0 XFS output signal is low
13-15: ARP 000, ARP points to ARO.
XT all 0000 0000 3,

66

CPU Interrupts and Reset

SPRU430F—August 2001 —Revised April 2015
Submit Documentation Feedback

Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

INSTRUMENTS

i3 TEXAS Chapter

SPRU430F-August 2001—-Revised April 2015

4

Pipeline

This chapter explains the operation of the C28x instruction pipeline. The pipeline contains hardware that
prevents reads and writes at the same register or data-memory location from happening out of order.
However, you can increase the efficiency of your programs if you take into account the operation of the
pipeline. In addition, you should be aware of two types of pipeline conflicts the pipeline does not protect
against and how you can avoid them (see Section 4.4).

For more information about the instructions shown in examples throughout this chapter, see C28x
Assembly Language Instructions.

Topic Page

4.1 Pipelining Of INSTIUCTIONS ..uiuieieiiiie ittt st e e e s e et e e a s e e eneaes 68

4.2 Visualizing Pipeling ACHIVITY ...eueuieiieiit ettt et et e e e e e e e eeeeees 71

4.3 Freezes in Pipeling ACTIVITY tuiuiiiiiiiiii ettt e e e e e e e aas 73

O 1 o 1= [T L= o o) (= Toa 10 o 74

4.5 Avoiding Unprotected OPerationNsSccueueeieeieinen e eeaeeenenre e an e e eaeenenrnnes 76
SPRU430F—August 2001 —-Revised April 2015 Pipeline 67

Submit Documentation Feedback

Copyright © 2001-2015, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

Pipelinin

g of Instructions

13 TEXAS
INSTRUMENTS

www.ti.com

4.1 Pipelining of Instructions

When executing a program, the C28x CPU performs these basic operations:
Fetches instructions from program memory

Decodes instructions

Reads data values from memory or from CPU registers

Executes instructions

Writes results to memory or to CPU registers

For efficiency, the C28x performs these operations in eight independent phases. Reads from memory are
designed to be pipelined in two stages, which correspond to the two pipeline phases used by the CPU for
each memory-read operation. At any time, there can be up to eight instructions being carried out, each in
a different phase of completion. Following are descriptions of the eight phases in the order they occur. The
address and data buses mentioned in these descriptions are introduced in the Memory Interface chapter,
Address and Data Buses section.

Fetch 1 (F1)
Fetch 2 (F2)

Decode 1 (D1)

Decode 2 (D2)

Read 1 (R1)
Read 2 (R2)

Execute (E)

Write (W)

In the fetch 1 (F1) phase, the CPU drives a program-memory ad- dress on the 22-bit
program address bus, PAB(21:0).

In the fetch 2 (F2) phase, the CPU reads from program memory by way of the program-
read data bus, PRDB (31:0), and loads the instruction(s) into an instruction-fetch queue.

The C28x supports both 32-bit and 16-bit instructions and an instruction can be aligned
to an even or odd address. The decode 1 (D1) hardware identifies instruction
boundaries in the instruction-fetch queue and determines the size of the next instruction
to be executed. It also determines whether the instruction is a legal instruction.

The decode 2 (D2) hardware requests an instruction from the instruction-fetch queue.
The requested instruction is loaded into the instruction register, where decoding is
completed. Once an instruction reaches the D2 phase, it runs to completion before any
interrupts are taken. In this pipeline phase, the following tasks are performed:

e [f data is to be read from memory, the CPU generates the source address or
addresses.

e [f data is to be written to memory, the CPU generates the destination address.

e The address register arithmetic unit (ARAU) performs any required modifications to
the stack pointer (SP) or to an auxiliary register and/or the auxiliary register pointer
(ARP).

e [f a program-flow discontinuity (such as a branch or an illegal-instruction trap) is
required, it is taken.

If data is to be read from memory, the read 1 (R1) hardware drives the address(es) on
the appropriate address bus(es).

If data was addressed in the R1 phase, the read 2 (R2) hardware fetches that data by
way of the appropriate data bus(es).

In the execute (E) phase, the CPU performs all multiplier, shifter, and ALU operations.
This includes all the prime arithmetic and logic operations involving the accumulator and
product register. For operations that involve reading a value, modifying it, and writing it
back to the original location, the modification (typically an arithmetic or a logical
operation) is performed during the E phase of the pipeline. Any CPU register values
used by the multiplier, shifter, and ALU are read from the registers at the beginning of
the E phase. A result that is to be written to a CPU register is written to the register at
the end of the E phase.

If a transferred value or result is to be written to memory, the write occurs in the write
(W) phase. The CPU drives the destination address, the appropriate write strobes, and
the data to be written. The actual storing, which takes at least one more clock cycle, is
handled by memory wrappers or peripheral interface logic and is not visible as a part of
the CPU pipeline.

68 Pipeline

SPRU430F—August 2001 —Revised April 2015

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS

INSTRUMENTS

www.ti.com Pipelining of Instructions

41.1

4.1.2

Although every instruction passes through the eight phases, not every phase is active for a given
instruction. Some instructions complete their operations in the decode 2 phase, others in the execute
phase, and still others in the write phase. For example, instructions that do not read from memory perform
no operations in the read phases, and instructions that do not write to memory perform no operation in the
write phase.

Because different instructions perform modifications to memory and registers during different phases of
their completion, an unprotected pipeline could lead to reads and writes at the same location happening
out of the intended order. The CPU automatically adds inactive cycles to ensure that these reads and
writes happen as intended. For more details about pipeline protection, see Section 4.3.

Decoupled Pipeline Segments

The fetch 1 through decode 1 (F1-D1) hardware acts independently of the decode 2 through write
(D2-W) hardware. This allows the CPU to continue fetching instructions when the D2-W phases are
halted. It also allows fetched instructions to continue through their D2-W phases when fetching of new
instructions is delayed. Events that cause portions of the pipeline to halt are described in Section 4.2.2.

Instructions in their fetch 1, fetch 2, and decode 1 phases are discarded if an interrupt or other program-
flow discontinuity occurs. An instruction that reaches its decode 2 phase always runs to completion before
any program-flow discontinuity is taken.

Instruction-Fetch Mechanism

Certain branch instructions perform prefetching. The first few instructions of the branch destination will be
fetched but not allowed to reach D2 until it is known whether the discontinuity will be taken. The
instruction-fetch mechanism is the hardware for the F1 and F2 pipeline phases. During the F1 phase, the
mechanism drives an address on the program address bus (PAB). During the F2 phase, it reads from the
program-read data bus (PRDB). While an instruction is read from program memory in the F2 phase, the
address for the next fetch is placed on the program address bus (during the next F1 phase).

The instruction-fetch mechanism contains an instruction-fetch queue of four 32-bit registers. During the F2
phase, the fetched instruction is added to the queue, which behaves like a first-in, first-out (FIFO) buffer.
The first instruction in the queue is the first to be executed. The instruction-fetch mechanism performs 32-
bit fetches until the queue is full. When a program-flow discontinuity (such as a branch or an interrupt)
occurs, the queue is emptied. When the instruction at the bottom of the queue reaches its D2 phase, that
instruction is passed to the instruction register for further decoding.

SPRU430F-August 2001 —-Revised April 2015 Pipeline 69
Submit Documentation Feedback

Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

Pipelining of Instructions www.ti.com

4.1.3 Address Counters FC, IC, and PC

Three program-address counters are involved in the fetching and execution of instructions:

Fetch counter (FC). The fetch counter contains the address that is driven on the program address bus
(PAB) in the F1 pipeline phase. The CPU continually increments the FC until the queue is full or the
queue is emptied by a program-flow discontinuity. Generally, the FC holds an even address and is
incremented by 2, to accommodate 32-bit fetches. The only exception to this is when the code after a
discontinuity begins at an odd address. In this case, the FC holds the odd address. After performing
al6-bit fetch at the odd address, the CPU increments the FC by 1 and resumes 32-bit fetching at even
addresses

Instruction counter (IC). After the D1 hardware determines the instruction size (16-bit or 32-bit), it fills
the instruction counter (IC) with the address of the next instruction to undergo D2 decoding. On an
interrupt or call operation, the IC value represents the return address, which is saved to the stack, to
auxiliary register XAR7, or to RPC.

Program counter (PC). When a new address is loaded into the IC, the previous IC value is loaded
into the PC. The program counter (PC) always contains the address of the instruction that has reached
its D2 phase.

Figure 4-1 shows the relationship between the pipeline and the address counters. Instruction 1 has
reached its D2 phase (it has been passed to the instruction register). The PC points to the address from

which instruction 1 was taken (00 0050,). Instruction 2 has reached its D1 phase and will be executed

next (assuming no program-flow discontinuity flushes the instruction-fetch queue). The IC points to the
address from which instruction 2 was taken (00 0051,,). Instruction 3 is in its F2 phase. It has been

transferred to the instruction-fetch queue but has not been decoded. Instructions 4 and 5 are each in their

F1 phase. The FC address (00 0054,¢) is being driven on the PAB. During the next 32-bit fetch,
Instructions 4 and 5 will be transferred from addresses 00 0054, and 00 00554 to the queue.

Program memory (32 bits wide)

IC —=| 00 005144 Instruction 2 Instruction 1 00 005015| a |C
00 005345 Instruction 3 D0 005245
00 005544 Instruction 5 Instruction 4 0o 005415| &— FC
00 0057 4¢ Instruction 7 Instruction 6 00 005645
00 005945 Instruction & 00 008845
00 005B,; Instruction 9 00 005A5
00 005D Instruction 11 Instruction 10 00 005C 5

Instruction-fetch gueue (32 bits wide)

F1: Instructions 4 and 5

F2: Instruction 3 Instruction 3
DA Instruction 2 Instruction 2 ‘
Instruction register (32 bits wide)
D2: Instruction 1 | | Instruction1 |

Figure 4-1. Relationship Between Pipeline and Address Counters FC, IC, and PC

70

Pipeline SPRU430F—August 2001 —Revised April 2015

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

I

TEXAS
INSTRUMENTS

www.ti.com Visualizing Pipeline Activity

The remainder of this document refers almost exclusively to the PC. The FC and the IC are visible in only
limited ways. For example, when a call is executed or an interrupt is initiated, the IC value is saved to the
stack or to auxiliary register XAR7.

4.2 Visualizing Pipeline Activity
Consider Example 4-2, which lists eight instructions, 1118, and shows a diagram of the pipeline activity
for those instructions. The F1 column shows addresses and the F2 column shows the instruction opcodes
read at those addresses. During an instruction fetch, 32 bits are read, 16 bits from the specified address
and 16 bits from the following address. The D1 column shows instructions being isolated in the instruction-
fetch queue, and the D2 column indicates address generation and modification of address registers. The
Instruction column shows the instructions that have reached the D2 phase. The R1 column shows
addresses, and the R2 column shows the data values being read from those addresses. In the E column,
the diagram shows results being written to the low half of the accumulator (AL). In the W column, address
and a data values are driven simultaneously on the appropriate memory buses. For example, in the last
active W phase of the diagram, the address 00 020516 is driven on the data-write address bus (DWAB),
and the data value 123416 is driven on the data-write data bus (DWDB).
The highlighted blocks in Section 4.2.1 indicate the path taken by the instruction ADD AL,*ARO++. That
path can be summarized as follows:
Phase Activity Shown
F1 Drive address 00 004216 on the program address bus (PAB).
F2 Read the opcodes F347 and F348 from addresses 00 0042,, and 00 0043,, respectively .
D1 Isolate F348 in the instruction-fetch queue.
D2 Use XARO = 0066, to generate source address 0000 0066,5 and then increment XARO to 0067 .
R1 Drive address 00 0066, on the data-read data bus (DRDB).
R2 Read the data value 1 from address 0000 0066.
E Add 1 to content of AL (1230,¢) and store result (1231,4) to AL.
w No activity
4.2.1 Example 4-2: Diagraming Pipeline Activity
Address Opcode Instruction Initial Values
00 0040 F345 11: MOV DP,#VarA ; DP = page that has VarA. VarA address=00 0203
00 0041 F346 12: MOV AL,@VarA ; Move content of VarA to AL. VarA=1230
00 0042 F347 13: MOVB ARO,#VarB ; ARO points to VarB. VarB address=00 0066
00 0043 F348 14: ADD AL,*XARO++ ; Add content of VarB to VarB=0001
; AL, and add 1 to XARO. (varB + 1)=0003
00 0044 F349 15: MOV @varC,AL ; Replace content of VarC (varB + 2)=0005
; with content of AL. VarC address=00 0204
00 0045 F34A 16: ADD AL,*XARO++ ; Add content of (VarB + 1) VarD address=00 0205
; to AL, and add 1 to XARO.
00 0046 F34B 17: MOV @varD,AL ; Replace content of VarD
; with content of AL.
00 0047 F34C 18: ADD AL,*XARO ; Add content of (VarB + 2)
; to AL.
SPRU430F—August 2001 —-Revised April 2015 Pipeline 71
Submit Documentation Feedback

Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

Visualizing Pipeline Activity

13 TEXAS
INSTRUMENTS

www.ti.com

F1 F2 D1 Instruction D2 R1 R2 E W
00 0040
00 0042 F345
F348:F347 F346 11: MOV DP#VarA DP = 8
00 0044 F347 12: MOV AL,@VarA Generate -
VarA address
F34A: F349 = F348 13: MOVBXARO,#Var XARO = 66 00 0203 -
B
00 0046 F349 14: ADD AL,*XARO+ XARO = 67 - 1230 -
+
F34C:F34B | F34A 15 MOV @VarC,AL Generate 00 0066 - AL=1230 -
VarC address
F34B 16: ADD AL,*XARO+ XARO = 68 - 0001 - -
+
F34C = 17: MOV @VarD,AL Generate 00 0067 - AL=1231 -
VarD address
18: ADD AL,*XARO XARO = 68 - 0003 - =
00 0068 - AL=1234 ' 00 0204
1231
0005 - -
AL=1239 ' 00 0205
1234

NOTE: The opcodes shown in the F2 and D1 columns were chosen for illustrative purposes; they are not the

actual opcodes of the instructions shown.

The pipeline activity in Section 4.2.1 can also be represented by the simplified diagram in Section 4.2.2.
This type of diagram is useful if your focus is on the path of each instruction rather than on specific
pipeline events. In cycle 8, the pipeline is full: there is an instruction in every pipeline phase. Also, the
effective execution time for each of these instructions is one cycle. Some instructions finish their activity at
the D2 phase, some at the E phase, and some at the W phase. However, if you choose one phase as a
reference, you can see that each instruction is in that phase for one cycle.

72

Pipeline

SPRU430F—August 2001 —Revised April 2015
Submit Documentation Feedback

Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS

INSTRUMENTS
www.ti.com Visualizing Pipeline Activity
4.2.2 Example 4-3 : Simplified Diagram of Pipeline Activity
F1 F2 D1 D2 R1 R2 E W Cycle
Il 1
12 Il i
I3 12 Il 3
I4 I3 I2 Il 4
I5 I4 I3 I2 Il 5
I6 I5 I4 I3 I2 Il 6
17 I6 I5 I4 I3 I2 Il 7
I8 17 16 I5 I4 I3 12 Il g
I8 17 I6 I5 I4 I3 12]
I8 17 IG I5 I4 I3 10
I8 17 IG I5 I4 11
I8 17 I6 I5 12
I8 17 I6 13
I8 17 14
I8 15

4.3

43.1

Freezes in Pipeline Activity

This section describes the two causes for freezes in pipeline activity:
* Wait states
* An instruction-not-available condition

Wait States

When the CPU requests a read from or write to a memory device or peripheral device, that device may
take more time to finish the data transfer than the CPU allots by default. Each device must use one of the
CPU ready signals to insert wait states into the data transfer when it needs more time. The CPU has three
independent sets of ready signals: one set for reads from and writes to program space, a second set for
reads from data space, and a third set for writes to data space. Wait-state requests freeze a portion of the
pipeline if they are received during the F1, R1, or W phase of an instruction:

» Wait states in the F1 phase. The instruction-fetch mechanism halts until the wait states are
completed. This halt effectively freezes activity for instructions in their F1, F2, and D1 phases.
However, because the F1-D1 hardware and the D2-W hardware are decoupled, instructions that are
in their D2-W phases continue to execute.

» Wait states in the R1 phase. All D2-W activities of the pipeline freeze. This is necessary because
subsequent instructions can depend on the data-read taking place. Instruction fetching continues until
the instruction-fetch queue is full or a wait-state request is received during an F1 phase.

e Wait states in the W phase. All D2-W activity in the pipeline freezes. This is necessary because
subsequent instructions may depend on the write operation happening first. Instruction fetching
continues until the instruction-fetch queue is full or a wait-state request is received during an F1 phase.

SPRU430F—August 2001 —-Revised April 2015 Pipeline 73
Submit Documentation Feedback

Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

Freezes in Pipeline Activity www.ti.com

4.3.2

4.4

441

Instruction-Not-Available Condition

The D2 hardware requests an instruction from the instruction-fetch queue. If a new instruction has been
fetched and has completed its D1 phase, the instruction is loaded into the instruction register for more
decoding. However, if a new instruction is not waiting in the queue, an instruction-not-available condition
exists. Activity in the F1-D1 hardware continues. However, the activity in the D2-W hardware ceases until
a new instruction is available.

One time that an instruction-not-available condition will occur is when the first instruction after a
discontinuity is at an odd address and has 32 bits. A discontinuity is a break in sequential program flow,
generally caused by a branch, a call, a return, or an interrupt. When a discontinuity occurs, the instruction-
fetch queue is emptied, and the CPU branches to a specified address. If the specified address is an odd
address, a 16-bit fetch is performed at the odd address, followed by 32-bit fetches at subsequent even
addresses. Thus, if the first instruction after a discontinuity is at an odd address and has 32 bits, two
fetches are required to get the entire instruction. The D2-W hardware ceases until the instruction is ready
to enter the D2 phase.

To avoid the delay where possible, you can begin each block of code with one or two (preferably two)
16-bit instructions:
FunctionA:

16-bit instruction ; First instruction

16-bit instruction ; Second instruction

32-bit instruction ; 32-bit instructions can start here

If you choose to use a 32-bit instruction as the first instruction of a function or subroutine, you can prevent
a pipeline delay only by making sure the instruction begins at an even address.

Pipeline Protection

Instructions are being executed in parallel in the pipeline, and different instructions perform modifications
to memory and registers during different phases of completion. In an unprotected pipeline, this could lead
to pipeline conflicts — reads and writes at the same location happening out of the intended order.
However, the C28x pipeline has a mechanism that automatically protects against pipeline conflicts. There
are two types of pipeline conflicts that can occur on the C28x:

e Conflicts during reads and writes to the same data-space location
» Register conflicts

The pipeline prevents these conflicts by adding inactive cycles between instructions that would cause the
conflicts. Sections 4.6.1 and Section 4.6.2 explain the circumstances under which these pipeline-
protection cycles are added and tells how to avoid them, so that you can reduce the number of inactive
cycles in your programs.

Protection During Reads and Writes to the Same Data-Space Location

Consider two instructions, A and B. Instruction A writes a value to a memory location during its W phase.
Instruction B must read that value from the same location during its R1 and R2 phases. Because the
instructions are being executed in parallel, it is possible that the R1 phase of instruction B could occur
before the W phase of instruction A. Without pipeline protection, instruction B could read too early and
fetch the wrong value. The C28x pipeline prevents that read by holding instruction B in its D2 phase until
instruction A is finished writing.

Section 4.4.1.1 shows a conflict between two instructions that are accessing the same data-memory
location. The pipeline activity shown is for an unprotected pipeline. For convenience, the F1-D1 phases
are not shown. I1 writes to VarA during cycle 5. Data memory completes the store in cycle 6. 12 should not
read the data-memory location any sooner than cycle 7. However, 12 performs the read during cycle 4
(three cycles too early). To prevent this kind of conflict, the pipeline-protection mechanism would hold 12 in
the D2 phase for 3 cycles. During these pipeline-protection cycles, no new operations occur.

74

Pipeline SPRU430F—August 2001 —Revised April 2015

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

I3 TEXAS
INSTRUMENTS
www.ti.com Pipeline Protection
4.41.1 Example 4-4: Conflict Between a Read From and a Write to Same Memory Location
11: MOV @VarA,AL ; Write AL to data-memory location
12: MOV AH,@VarA ; Read same location, store value in AH
DZ Ki RZ E w Cycle
Il 1
I2 Il 2
I2 Il 2
IZ2 I1 4
IZ Il =1
I2 &
I2 7
IZ2 2

You can reduce or eliminate these types of pipeline-protection cycles if you can take other instructions in
your program and insert them between the instructions that conflict. Of course, the inserted instructions
must not cause conflicts of their own or cause improper execution of the instructions that follow them. For
example, the code in Section 4.4.1.1 could be improved by moving a CLRC instruction to the position
between the MOV instructions (assume that the instructions following CLRC SXM operate correctly with
SXM = 0):

11: MOV @varA,AL ; Write AL to data-memory location

CLRC SXM ; SXM = 0 (sign extension off)

12: MOV AH,@VarA ; Read same location, store value in AH

Inserting the CLRC instruction between 11 and 12 reduces the number of pipeline-protection cycles to two.

Inserting two more instructions would remove the need for pipeline protection. As a general rule, if a read

operation occurs within three instructions from a write operation to the same memory location, the pipeline
protection mechanism adds at least one inactive cycle.

4.4.2 Protection Against Register Conflicts
All reads from and writes to CPU registers occur in either the D2 phase or the E phase of an instruction. A
register conflict arises when an instruction attempts to read and/or modify the content of a register (in the
D2 phase) before a previous instruction has written to that register (in the E phase).
The pipeline-protection mechanism resolves register conflicts by holding the later instruction in its D2
phase for as many cycles as needed (one to three). You do not have to consider register conflicts unless
you wish to achieve maximum pipeline efficiency. If you choose to reduce the number of pipeline-
protection cycles, you can identify the pipeline phases in which registers are accessed and try to move
conflicting instructions away from each other.
Generally, a register conflict involves one of the address registers:
» 16-bit auxiliary registers ARO-AR7
o 32-bit auxiliary registers XARO-XAR7
» 16-bit data page pointer (DP)
e 16-bit stack pointer (SP)
Example 4-5 shows a register conflict involving auxiliary register XARO. The pipeline activity shown is for
an unprotected pipeline, and for convenience, the F1-D1 phases are not shown. 11 writes to XARO at the
end of cycle 4. 12 should not attempt to read XARO until cycle 5. However, 12 reads XARO (to generate an
address) during cycle 2. To prevent this conflict, the pipeline-protection mechanism would hold 12 in the
D2 phase for three cycles. During these cycles, no new operations occur.

SPRU430F—August 2001 —-Revised April 2015 Pipeline 75

Submit Documentation Feedback

Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

Pipeline Protection www.ti.com

4421 Example 4-5: Register Conflict

11: MOVB ARO,@7 ; Load ARO with the value addressed by
; the operand @7 and clear the upper
; half of XARO.

12: MOV AH,*XARO ; Load AH with the value pointed to by

5 XARO.
D2 R1 R2 E w Cycle
Il 1
I2 T1 2
I2 Il 3
IZ Il 4
I2 Il

Iz

=1 un

IZ

You can reduce or eliminate pipeline-protection cycles due to a register conflict by inserting other
instructions between the instructions that cause the conflict. For example, the code in Section 4.4.2.1
could be improved by moving two other instructions from elsewhere in the program (assume that the
instructions following SETC SXM operate correctly with PM = 1 and SXM = 1):
11: MOVB ARO,@7 ; Load ARO with the value addressed by
; the operand @7 and clear the upper
; half of XARO.
SPM 0O ; PM = 1 (no product shift)
SETC SXM ; SXM = 1 (sign extension on)

12: MOV AH,*XARO ; Load AH with the value pointed to by
; ARO.

Inserting the SPM and SETC instructions reduces the number of pipeline-protection cycles to one.
Inserting one more instruction would remove the need for pipeline protection. As a general rule, if a read
operation occurs within three instructions from a write operation to the same register, the pipeline-
protection mechanism adds at least one inactive cycle.

4.4.3 Protection Against Interrupts
Instructions for enabling and disabling interrupts via IER and INTM always take effect before the next
instruction is processed. These instructions take up multiple cycles in the pipeline to prevent any following
instructions from reaching the D2 stage before IER and INTM are modified.

4.5 Avoiding Unprotected Operations
This section describes pipeline conflicts that the pipeline-protection mechanism does not protect against.
These conflicts are avoidable, and this section offers suggestions for avoiding them.

45.1 Unprotected Program-Space Reads and Writes
The pipeline protects only register and data-space reads and writes. It does not protect the program-space
reads done by the PREAD and MAC instructions or the program-space write done by the PWRITE
instruction. Be careful with these instructions when using them to access a memory block that is shared by
data space and program space.
As an example, suppose a memory location can be accessed at address 00 0D5016 in program space
and address 0000 0D5016 in data space. Consider the following lines of code:
; XAR7 = 000D50 in program space

76 Pipeline SPRU430F—August 2001 —Revised April 2015

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

I

WWW.1i

45.2

4.5.3

TeExAs
INSTRUMENTS
i.com Avoiding Unprotected Operations
; Datal = 000D50 in data space
ADD @Dbatal,AH ; Store AH to data-memory location
; Datal.
PREAD @AR1,*XAR7 ; Load AR1 from program-memory

; location given by XAR7.

The operands @Datal and *XAR7 are referencing the same location, but the pipeline cannot interpret this
fact. The PREAD instruction reads from the memory location (in the R2 phase) before the ADD writes to
the memory location (in the W phase).

However, the PREAD is not necessary in this program. Because the location can be accessed by an
instruction that reads from data space, you can use another instruction, such as a MOV instruction:
ADD @Datal,AH ; Store AH to memory location Datal.
MoV AR1,*XAR7 ; Load AR1 from memory location

given by XARTY .

An Access to One Location That Affects Another Location

If an access to one location affects another location, you may need to correct your program to prevent a
pipeline conflict. You only need to be concerned about this kind of pipeline conflict if you are addressing a
location outside of a protected address range. (See Section 4.5.3). Consider the following example:

MOV @DataA,#4 ; This write to DataA causes a
; peripheral to clear bit 15 of DataB.

$10: TBIT @DataB,#15 ; Test bit 15 of DataB.
SB $10,NTC ; Loop until bit 15 is set.

This program causes a misread. The TBIT instruction reads bit 15 (in the R2 phase) before the MOV
instruction writes to bit 15 (in the W phase). If the TBIT instruction reads a 1, the code prematurely ends
the loop. Because DataA and DataB reference different data-memory locations, the pipeline does not
identify this conflict.

However, you can correct this type of error by inserting two or more NOP (no operation) instructions to
allow for the delay between the write to DataA and the change to bit 15 of DataB. For example, if a
2-cycle delay is sufficient, you can fix the previous code as follows:

MOV @DataA,#4 ; This write to DataA causes a
; peripheral to clear bit 15 of DataB.

NOP ; Delay by 1 cycle.
NOP ; Delay by 1 cycle.
$10: TBIT @DataB,#15 ; Test bit 15 of DataB.
SB $10,NTC ; Loop until bit 15 is set.

Write Followed By Read Protection Mode

The CPU contains a write followed by read protection mode to ensure that any read operation that follows
a write operation within a protected address range is executed as written by delaying the read operation
until the write is initiated.

See your device data sheet for device-specific information about which memory region is write-followed-
by-read protected.

The PROTSTART(15:0) and PROTRANGE(15:0) input signals set the protection range. The
PROTRANGE(15:0) value is a binary multiple with the smallest block size being 64 words, and the largest
being 4M words (64 words, 128 words, 256 words ...1M words, 2M words, 4M words). The PROTSTART
address must always be a multiple of the chosen range. For example, if a 4K block size is selected, then
the start address must be a multiple of 4K.

The ENPROT signal enables this feature (when set high), it disables this feature (when set low)

All of the above signals are latched on every cycle. The above signals are connected to registers and can
be changed within the application program.

SPRU430F—August 2001 —-Revised April 2015 Pipeline 77
Submit Documentation Feedback

Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

Avoiding Unprotected Operations

13 TEXAS
INSTRUMENTS

www.ti.com

The above mechanism only works for reads that follow writes to the protected area. Reads and write
sequences to unprotected areas are not affected, as shown in the following examples.

Example 1:

Example 2:

Example 3:

write protected_area
write protected_area
write protected_area

read non_protected_area
write protected_area
write protected_area
write protected_area
read non_protected_area

read protected_area
read protected_area

write non_protected_area
write non_protected_area
write non_protected_area

read protectd_area

<- pipe protection (3

<- no pipe protection

<- pipe protection (2

<- no pipe protection

cycles)

invoked

cycles)

invoked

78

Pipeline

SPRU430F—August 2001 —Revised April 2015

Copyright © 2001-2015, Texas Instruments Incorporated

Submit Documentation Feedback

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

. Chapter 5
I ’.{‘IE)S(’;A"IEUMENTS SPRU430F—August 2001—Revised April 2015

C28x Addressing Modes

This chapter describes the addressing modes of the C28x and provides examples.

Topic Page
5.1 Type of AdAreSSiNg MOGES . .cueuieieiniiiiietie sttt e et et e et e e aaa s e eneaeanes 80
5.2 Addressing Modes Select Bit (AMODE).......cucuiuieieieiieenieeeaeaeeneneeeeeeeenenrnraeenene 81
5.3 Assembler/Compiler Tracking of AMODE Bitcucuiuieiiiiiiiieieneieeeeeieeeeeeneneanes 83
5.4 Direct ADdresSing MOAES (DP)uuiuiuiiiiieiiiet ettt e e et aa e a s ee e e e e anns 84
5.5 Stack Addressing MOAES (SP)....uiuiuiiiiiiiiiiei et e e e e e 85
5.6 INdirect AddresSSing MOAEScuiiuiuiuiiiiietie ettt a e e e e e e aaaas 86
5.7 Register AddresSSing MOOESuuiuiuiuiiititiis ettt et e e e e a e s e eeaeanes 100
5.8 Data/Program/IO Space Immediate Addressing MOAeS.....cccuvveiuiuiieieieniininieieneannns 103
5.9 Program Space Indirect Addressing MOAESccuieuiuieiiiiiiieiiieee e eeeaens 104
5.10 Byte AdAreSSing MOGESuiuiieieiiiit ettt ettt et e et e e e e e e aa e eaeeeees 105
5.11 Alignment of 32-Bit OPEratiONScucieieieiiiiiitat et e et e eeeaeaanas 106

SPRU430F-August 2001 —-Revised April 2015 C28x Addressing Modes 79

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS

INSTRUMENTS
Type of Addressing Modes www.ti.com
5.1 Type of Addressing Modes
The C28x CPU supports four basic types of addressing modes:
» Direct Addressing Mode
DP (data page pointer): In this mode, the 16-bit DP register behaves like a fixed page pointer. The
instruction supplies a 6-bit or 7-bit offset field, which is concatenated with the value in the DP register.
This type of addressing is useful for accessing fixed address data structures, such as peripheral
registers and global or static variables in C/C++.
» Stack Addressing Mode
SP (stack pointer): In this mode, the 16-bit SP pointer is used to access information on the software
stack. The software stack grows from low to high memory on the C28x and the stack pointer always
points to the next empty location. The instruction supplies a 6-bit offset field that is subtracted from the
current stack pointer value for accessing data on the stack or the stack pointer can be post-
incremented or pre-decremented when pushing and popping data from the stack, respectively.
» Indirect Addressing Mode
XARO to XAR7 (auxiliary register pointers): In this mode, the 32-bit XARn registers behave as generic
data pointers. The instruction can direct to post-increment, pre/post-decrement, or index from the
current register contents with either a 3-bit immediate offset field or with the contents of another 16-bit
register.
* Register Addressing Mode
In this mode, another register can be the source or destination operand of an access. This enables
register-to-register operations in the C28x architecture.
On most C28x instructions, an 8-bit field in the instruction op-code selects the addressing mode to use
and what modification to make to that mode. In the C28x instruction set, this field is referred to as:
* locl6
Selects Direct/Stack/Indirect/Register addressing mode for 16-bit data access.
* loc32
Selects Direct/Stack/Indirect/Register addressing mode for 32-bit data access.
An example C28x instruction description, which uses the above, would be:
» ADD — AL,loc16
Take the 16-bit contents of AL register, add the contents of 16-bit location specified by the "loc16” field
and store the contents in AL register.
» ADDL — loc32,ACC
Take the 32-bit contents of the location pointed to by the "loc32” field, add the contents of the 32-bit
ACC register, and store the result back into the location specified by the "loc32” field.
Other types of addressing modes supported are:
» Data/Program/IO Space Immediate Addressing Modes:
In this mode, the address of the memory operand is embedded in the instruction.
e Program Space Indirect Addressing Modes:
Some instructions can access a memory operand located in program space using an indirect pointer.
Since memory is unified on the C28x CPU, this enables the reading of two operands in a single cycle.
Only a small number of instructions use the above modes and typically they are in combination with the
"loc16/loc32” modes.
The following sections contain detailed descriptions of the addressing modes with example instructions.
For more information about the instructions shown in examples throughout this chapter, see Chapter 6,
Assembly Language Instructions.
80 C28x Addressing Modes SPRU430F-August 2001 —Revised April 2015

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

I

TEXAS
INSTRUMENTS

www.ti.com

Addressing Modes Select Bit (AMODE)

5.2

Addressing Modes Sel

ect Bit (AMODE)

To accommodate various types of addressing modes, an addressing mode bit (AMODE) selects the
decoding of the 8-bit field (loc16/loc32). This bit is found in Status Register 1 (ST1). The addressing

modes have been broadly
« AMODE=0

classified as follows:

This is the default mode on reset and is the mode used by the C28x C/C++ compiler. This mode is not
fully compatible to the C2xLP CPU addressing modes. The data page pointer offset is 6-bits (it is 7-bits
on the C2xLP) and not all of the indirect addressing modes are supported.

« AMODE =1

This mode contains addressing modes that are fully compatible to the C2xLP device. The data page

pointer offset is increased to 7-bits and all of the indirect addressing modes available on the C2xLP are

supported.

The available addressing modes, for the "loc16” or "loc32” field, are summarized in Table 5-1.

Table 5-1. Addressing Modes for “loc16” or “loc32”

AMODE =0 AMODE = 1
8-Bit Decode | "loc16/loc32” Syntax 8-Bit Decode ‘ "loc16/loc32” Syntax
Direct Addressing Modes (DP):
00 Il 111 @sbit ERITEI | 0a7pit
Stack Addressing Modes (SP):
01 111 11l *_SP[6bit]
10 111 101 *SP++ 10 111 101 *SP++
1 0 111 110 *--SP 1 0 111 110 *--SP
C28x Indirect Addressing Modes (XARO to XAR7):
1 0 000 AAA *XARN++ 1 0 000 AAA *XARN++
1 0 001 AAA *~—XARN 1 0 001 AAA *~—XARn
1 0 010 AAA *+XARN[ARO] 1 0 010 AAA *+XARN[ARO]
1 0 011 AAA *+XARN[AR1] 1 0 011 AAA *+XARN[AR1]
11 111 AAA *+XARN[3bit]
C2xLP Indirect Addressing Modes (ARP, XARO to XAR7):
1 0 111 000 * 1 0 111 000 *
1 0 111 001 *++ 1 0 111 o001 *++
1 0 111 010 *—— 1 0 111 010 *——
10 111 011 *0++ 10 111 011 *0++
1 0 111 100 *0-- 1 0 111 100 *0--
1 0 101 110 *BRO++ 1 0 101 110 *BRO++
10 101 111 *BRO—— 10 101 111 *BRO——
1 0 110 RRR *,ARPn 1 0 110 RRR *,ARPn
1 1 000 RRR *++,ARPn
1 1 001 RRR *——,ARPn
1 1 010 RRR *0++,ARPn
1 1 011 RRR *0--,ARPn
1 1 100 RRR *BRO++,ARPn
11 101 RRR *BRO--,ARPN
Circular Indirect Addressing Modes (XAR6, XAR1):
10 111 111 *AR6%++ 10 111 111 *+XAR6 [AR1%++]
32-Bit Register Addressing Modes (XARO to XAR7, ACC, P, XT):
1 0 100 AAA @XARN 1 0 100 AAA @XARN
1 0 101 001 @ACC 1 0 101 001 @ACC
1 0 101 011 @P 1 0 101 011 @P
1 0 101 100 @XT 1 0 101 100 @XT

16-Bit Register Addressing Modes (ARO to AR7, AH, AL, PH, PL, TH, SP):

SPRU430F—August 2001 —-Revised April 2015
Submit Documentation Feedback

Copyright © 2001-2015, Texas Instruments Incorporated

C28x Addressing Modes

81

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

Addressing Modes Select Bit (AMODE)

13 TEXAS
INSTRUMENTS

www.ti.com

Table 5-1. Addressing Modes for “loc16” or “loc32” (continued)

AMODE =0 AMODE =1
8-Bit Decode "loc16/loc32” Syntax 8-Bit Decode "loc16/loc32” Syntax

1 0 100 AAA @ARN 1 0 100 AAA @ARN
1 0 101 00O @AH 1 0 101 000 @AH
1 0 101 001 @AL 1 0 101 001 @AL
1 0 101 010 @PH 1 0 101 010 @PH
1 0 101 011 @PL 1 0 101 011 @PL
1 0 101 100 @TH 1 0 101 100 @TH
1 0 101 101 @spP 1 0 101 101 @sP

In the "C28x Indirect” addressing modes, the auxiliary register pointer used in the addressing mode is

implicitly specified. In the "C2xLP Indirect” addressing modes, a 3-bit pointer called the auxiliary register
pointer (ARP) is used to s lect which of the auxiliary registers is currently used and which pointer is used
in the next operation.

The examples below illustrate the differences between the "C28x Indirect” and "C2xLP Indirect”

addressing modes:

« ADD — AL,*XAR4++

Read the contents of 16-bit memory location pointed to by register XAR4, add the contents to AL
register. Post-increment the contents of XAR4 by 1.

» ADD — AL *++

Assume ARP pointer in ST1 contains the value 4. Read the contents of 16-bit memory location pointed
to by register XAR4, add the contents to AL register. Post-increment the contents of XAR4 by 1.

e ADD — AL *++ ARP5
Assume ARP pointer in ST1 contains the value 4. Read the contents of 16-bit memory location pointed

to by register XAR4, add the contents to AL register. Post-increment the contents of XAR4 by 1. Set
the ARP pointer to 5. Now it points to XARS5.

On the C28x instruction syntax, the destination operand is always on the left and the source operands are
always on the right.

82

C28x Addressing Modes

SPRU430F—August 2001 —Revised April 2015
Submit Documentation Feedback

Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

I3 TEXAS
INSTRUMENTS
www.ti.com Assembler/Compiler Tracking of AMODE Bit
5.3 Assembler/Compiler Tracking of AMODE Bit
The compiler will always assume the addressing mode is set to AMODE = 0 and therefore will only use
addressing modes that are valid for AMODE = 0. The assembler can be instructed, via the command line
options, to default to either AMODE = 0 or AMODE = 1. The command line options are:
-v28 Assumes AMODE = 0 (C28x addressing modes).
-v28 -m20 Assumes AMODE = 1 (full C2xLP compatible addressing modes.
Additionally, the assembler allows directives to be embedded within a file to instruct the assembler to
override the default mode and change syntax checking to the new address mode setting:
.c28_amode Tells assembler that any code that follows assumes AMODE = 0 (C28x addressing
modes).
.Ip_amode Tells assembler that any code that follows assumes AMODE = 1 (full C2xLP compatible
addressing modes)
The above directives cannot be nested. The above directives can be used as follows within an assembly
program:
; File assembled using "-v28" option (assume AMODE = 0):
; This section of code can only use AMODE = O
; addressing modes
SETé AMODE ; Change to AMODE = 1
-Ip_amode ; Tell assembler to check for AMODE = 1 syntax
; This section of code can only use AMODE = 1
; addressing modes
CLRC AMODE ; Revert back to AMODE = O
.c28_amode ; Tell assembler to check for AMODE = 1 syntax
; This section of code can only use AMODE = O
; addressing modes
; Eﬁd of file.
SPRU430F-August 2001 —-Revised April 2015 C28x Addressing Modes 83

Submit Documentation Feedback

Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

Direct Addressing Modes (DP)

13 TEXAS
INSTRUMENTS

www.ti.com

5.4 Direct Addressing Modes (DP)

AMODE "loc16/loc32" Syntax Description
0 @6bit 32bitDataAddr(31:22) = 0
32bitDataAddr(21:6) = DP(15:0)
32bitDataAddr(5:0) = 6bit
Note: The 6-bit offset value is concatenated with the 16-bit DP register. The offset
value enables 0 to 63 words to be addressed relative to the current DP register value.
Example (s):
MOVW DP,#VarA Load DP pointer with page value containing VarA
ADD AL ,@VarA ; Add memory location VarA to register AL
MOV @varB,AL Store AL into memory location VarB
; VarB is located in the same 64-word page as VarA
MOVW DP,#VarC Load DP pointer with page value containing VarC
SuB AL,@varC Subtract memory location VarC from register AL
MOV @varD,AL Store AL into memory location VarD
; VarC is located in the same 64-word page as VarD
; VarC & D are in different pages than VarA & B
AMODE "loc16/loc32” Syntax Description
0 @@7bit 32bitDataAddr(31:22) = 0
32bitDataAddr(21:7) = DP(15:1)
32bitDataAddr(6:0) = 7bit
Note: The 7-bit offset value is concatenated with the 15-bit DP register. Bit 0 of DP
register is ignored and is not affected by the operation. The offset value enables 0 to
127 words to be addressed relative to the current DP register value.
Example (s):
SETC AMODE ; Make sure AMODE = 1
-Ip_amode ; Tell assembler that AMODE = 1
MOVW DP,#VarA ; Load DP pointer with page value containing VarA
ADD AL,@@VarA ; Add memory location VarA to register AL
MoV @@varB,AL ; Store AL into memory location VarB
; VarB is located in the same 128-word page as VarA
MOVW DP,#VarC ; Load DP pointer with page value containing VarC
SUB AL,@@VarC ; Subtract memory location VarC from register AL
MoV @@varD,AL ; Store AL into memory location VarD

; VarC is located in the same 128-word page as VarD
; VarC & D are in different pages than VarA & B

Note: The direct addressing mode can access only the lower 4M of data address space on the C28x device.

84 C28x Addressing Modes

SPRU430F—August 2001 —Revised April 2015
Submit Documentation Feedback

Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS

INSTRUMENTS

www.ti.com

Stack Addressing Modes (SP)

5.5 Stack Addressing Modes (SP)

AMODE

"loc16/loc32” Syntax

Description

0 *_SP [6bit]

value.

32bitDataAddr(31:16) = 0x0000
32bitDataAddr(15:0) = SP - 6bit

Note: The 6-bit offset value is subtracted from the current 16-bit SP register value. The
offset value enables 0 to 63 words to be addressed relative to the current SP register

Example (s):
ADD AL,*-SP[5] ; Add 16-bit contents from stack location
; -5 words from top of stack to AL register
MoV *-SP[8],AL ; Store 16-bit AL register to stack location
; -8 words from top of stack
ADDL ACC,*-SP[12] ; Add 32-bit contents from stack location
; —12 words from top of stack to ACC register.
MOVL *-Sp[34],ACC ; Store 32-bit ACC register to stack location
; -34 words from top of stack
AMODE "loc16/loc32” Syntax Description
X *SP++ 32bitDataAddr(31:16) = 0x0000
32bitDataAddr(15:0) = SP
if(locl16), SP=SP + 1
if(loc32), SP = SP + 2
Example (s):
MOV *SP++,AL ; Push contents of 16-bit AL register onto top
; of stack
MOVL *Sp++,P ; Push contents of 32-bit P register onto top
; of stack
AMODE "loc16/loc32” Syntax Description
X *--SP if(locl6), SP = SP - 1
if(loc32), SP = SP - 2
32bitDataAddr(31:16) = 0x0000
32bitDataAddr(15:0) = SP
Example (s):
ADD AL, *--SP ; Pop contents from top of stack and add to 16-bit
; Al register
MOVL ACC, *--Sp Pop contents from top of stack and store in

; 32-bit ACC register
Note: This addressing mode can only access the lower 64K of data address space on the C28x device.

SPRU430F—August 2001 —-Revised April 2015
Submit Documentation Feedback

C28x Addressing Modes

Copyright © 2001-2015, Texas Instruments Incorporated

85

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

Indirect Addressing Modes

13 TEXAS

INSTRUMENTS

www.ti.com

5.6 Indirect Addressing Modes
This section includes indirect addressing modes for the 28x and 2xLP devices. It also includes circular
indirect addressing modes.
5.6.1 C28x Indirect Addressing Modes (XARO to XAR7)
AMODE "loc16/loc32” Description
Syntax
X *XARN++ ARP = n
32bitDataAddr(31:0) = XARn
if(locl6), XARn = XARn + 1
if(loc32), XARn = XARn + 2
Example (s):
MOVL XAR2, #Arrayl ; Load XAR2 with start address of Arrayl
MOVL XAR3, #Array2 ; Load XAR3 with start address of Array2
MoV @ARO, #N-1 ; Load ARO with loop count N
Loop:
MOVL ACC,*XAR2++ Load ACC with location pointed to by XAR2,
; post-increment XAR2
MOVL *XAR3++,ACC ; Store ACC into location pointed to by XAR3,
; post-increment XAR3
BANZ Loop,ARO-- ; Loop until ARO == 0, post-decrement ARO
AMODE "loc16/loc32” Description
Syntax
X *--XARN ARP = n
if(locl6), XARn = XARn + 1
if(loc32), XARn = XARn + 2
32bitDataAddr(31:0) = XARn
Example (s):
MOVL XARZ2,#Arrayl+N*2 Load XAR2 with start address of Arrayl
MOVL XAR3,#Array2+N*2 ; Load XAR3 with start address of Array2
MOV @ARO, #N-1 ; Load ARO with loop count N
Loop:
MOVL ACC,*--XAR2 ; Pre-decrement XAR2,
; load ACC with location pointed to by XAR2
MOVL *--XAR3,ACC ; Pre-decrement XAR3,
; store ACC into location pointed to by XARS3,
BANZ Loop,ARO-- Loop until ARO == 0, post-decrement ARO
86 (C28x Addressing Modes SPRU430F-August 2001 —Revised April 2015

Copyright © 2001-2015, Texas Instruments Incorporated

Submit Documentation Feedback

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS

INSTRUMENTS
www.ti.com Indirect Addressing Modes
AMODE "loc16/loc32" Syntax Description
X *+XARN[ARO] ARP =n
32bitDataAddr(31:0) = XARn + ARO
Note: The lower 16-bits of XARO are added to the selected 32-bit register. Upper 16-bits of
XARO are ignored. ARO is treated as an unsigned 16-bit value. Overflow into the upper 16-bits
of XARnN can occur.
Example (s):

MOVW DP,#ArraylPtr ; Point to Arrayl Pointer location

MOVL XAR2,@ArraylPtr ; Load XAR2 with pointer to Arrayl

MOVB XARO,#16 ; ARO = 16, AROH = 0

MOVB XAR1,#68 7 AR1 = 68, AR1H = 0

MOVL ACC,*+XAR2[ARO] ; ; Swap contents of location Arrayl[16]

MOVL P,*+XAR2[AR1] ;3 with the contents of location Arrayl[68]

MOVL *+XAR2[AR1],ACC ; ;

MOVL *+XAR2[ARO],P N

AMODE "loc16/loc32” Description
Syntax
X *+XARN[AR1] ARP =n

32bitDataAddr(31:0) = XARn + AR1

Note: The lower 16-bits of XARO are added to the selected 32-bit register. Upper 16-bits of XARO
are ignored. ARO is treated as an unsigned 16-bit value. Overflow into the upper 16-bits of XARn

can occur.

Example (s):

MOVW DP,#ArraylPtr ; Point to Arrayl Pointer location

MOVL XAR2,@ArraylPtr ; Load XAR2 with pointer to Arrayl

MOVB XARO,#16 ; ARO = 16, AROH = 0O

MOVB XAR1,#68 ; AR1 = 68, AR1H = 0

MOVL ACC,*+XAR2[ARO] ; ; Swap contents of location Arrayl[16]

MOVL P,*+XAR2[AR1] ;3 with the contents of location Arrayl[68]

MOVL *+XAR2[AR1],ACC ; ;

MOVL *+XAR2[ARO],P .
AMODE "loc16/loc32” Description

Syntax

X *+XARn[3bit]

ARP =n
32bitDataAddr(31:0) = XARnN +3bit
Note: The immediate value is treated as an unsigned 3-bit value.

Example (s):

MOVW
MOVL
MOVL
MOVL
MOVL
MOVL

DP,#ArraylPtr
XAR2,@ArraylPtr
ACC,*+XAR2[2]
P,*+XAR2[5]
*+XAR2[5],ACC
*+XAR2[2],P

i
1
i
1
1

i

Point to Arrayl Pointer location
Load XAR2 with pointer to Arrayl
Swap contents of location Arrayl[2]

; with the contents of location Arrayl[5]

Note: The assembler also accepts "*XARn” as an addressing mode. This is the same encoding as the "*+XARN[0]” mode.

SPRU430F—August 2001 —-Revised April 2015
Submit Documentation Feedback

C28x Addressing Modes

Copyright © 2001-2015, Texas Instruments Incorporated

87

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

Indirect Addressing Modes

13 TEXAS
INSTRUMENTS

www.ti.com

5.6.2 C2xLP Indirect Addressing Modes (ARP, XARO to XAR7)

AMODE "loc16/loc32” Description
Syntax
X * 32bitDataAddr(31:0) = XAR(CARP)
Note: The XARn register used is the register pointed to by the current value in the ARP pointer.
ARP = 0, points to XARO, ARP =1, points to XAR1 and so on.
Example (s):
Movz DP,#RegAPtr ; Load DP with page address containing RegAPtr
MOVZ AR2,@RegAPtr ; Load AR2 with contents of RegAPtr, AR2H = 0O
MOVZ AR3,@RegAPtr ; Load AR3 with contents of RegBPtr, AR3H = 0O
; RegAPtr and RegBPtr are located in the same 128 word data page,
; Both are located in the low 64K of data memory space.
NOP *,ARP2 ; Set ARP pointer to point to XAR2
MoV *,#0x0404 ; Store 0x0404 into location pointed by XAR2
NOP *,ARP3 ; Set ARP pointer to point to XAR3
MoV *,#0x8000 ; Store 0x8000 into location pointed by XAR3,
AMODE "loc16/loc32” Description
Syntax
X *,XARn 32bitDataAddr(31:0) = XAR(ARP)
ARP = n
Example (s):
Movz DP,#RegAPtr ; Load DP with page address containing RegAPtr
MOVZ AR2,@RegAPtr ; Load AR2 with contents of RegAPtr, AR2H = 0
MOVZ AR3,@RegAPtr ; Load AR3 with contents of RegBPtr, AR3H = 0
; RegAPtr and RegBPtr are located in the same 128 word data page,
; Both are located in the low 64K of data memory space.
NOP *,ARP2 ; Set ARP pointer to point to XAR2
MoV *,#0x0404 ,ARP3 ; Store 0x0404 into location pointed by XAR2
; Set ARP pointer to point to XAR3
MoV *,#0x8000 ; Store 0x8000 into location pointed by XAR3,

88 (C28x Addressing Modes

SPRU430F—August 2001 —Revised April 2015
Submit Documentation Feedback

Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

www.ti.com

Indirect Addressing Modes

AMODE "loc16/loc32" Syntax Description
X *++ 32bitDataAddr(31:0) = XARn (ARP)
if(locl6), XAR(ARP) = XAR(ARP) + 1
if(loc32), XAR(ARP) = XAR(ARP) + 2
Example (s):
MOVL XAR2, #Arrayl Load XAR2 with start address of Arrayl
MOVL XAR3, #Array2 Load XA32 with start address of Array2
MOV @ARO,#N-1 ; ALoad ARO with loop count N
Loop:
NOP *,ARP2 ; Set ARP pointer to point to XAR2
MOVL ACC,*++ Load ACC with location pointed to by XAR2,
post-increment XAR2
NOP *,ARP3 ; Set ARP pointer to point to XAR3
MOVL *++ACC ; Store ACC into location pointed to by XAR3,
post-increment XAR3
NOP *,ARPO ; Set ARP pointer to point to XARO
XBANZ Loop,*-- Loop until ARO == 0, post-decrement ARO
AMODE | "locl6/loc32” Syntax | Description
X *++,ARPn 32bitDataAddr(31:0) = XARn + AR1
if(locl6), XAR(ARP) = XAR(ARP) + 1
if(loc32), XAR(ARP) = XAR(ARP) + 2
Example (s):
MOVL XAR2,#Arrayl Load XAR2 with start address of Arrayl
MOVL XAR2,#Array2 Load XAR3 with start address of Array2
MOV @ARO,#N-1 Load ARO with loop count N
NOP *,ARP2 ; Set ARP pointer to point to XAR2
SETC AMODE Make sure AMODE = 1
- Ip_amode ; Tell assembler that AMODE = 1
Loop:
MOVL ACC,*++,ARP3 Load ACC with location pointed to by XAR2
post-increment XAR2, set ARP to point to XAR3
MOVL *++,ACC,ARPO ; Store ACC into location pointed to by XAR3,
post-increment XAR3, set ARP to point to XARO
XBANZ Loop, *--,ARP2 Loop until ARO == 0, post-decrement ARO,

; set ARP pointer to point to XAR2

SPRU430F—August 2001 —-Revised April 2015

Submit Documentation Feedback

C28x Addressing Modes

Copyright © 2001-2015, Texas Instruments Incorporated

89

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

Indirect Addressing Modes

13 TEXAS
INSTRUMENTS

www.ti.com

AMODE "loc16/loc32” Syntax Description
X *o— 32bitDataAddr(31:0) = XAR(ARp)
if(locl6), XAR(ARP) = XAR(ARP) + 1
if(loc32), XAR(ARP) = XAR(ARP) + 2
Example (s):
MOVL XAR2,#Arrayl+(n-1)*2 ; Load XAR2 with ends address of Arrayl
MOVL XAR3,#Array2+(n-1)*2 ; Load XAR3 with end address of Array2
MOV @ARO,#N-1 ; Load ARO with loop count N
Loop:
NOP *,ARP2 ; Set ARP pointer to point to XAR2
MOVL ACC,*-- ; Load ACC with location pointed to by XAR2
; post-increment XAR2
NOP *,ARP3 ; Set ARP pointer to point to XAR3
MOVL *--,ACC ; Store ACC into location pointed to by XAR3,
; post-increment XAR3
NOP *,ARPO ; Set ARP pointer to point to XARO
XBANZ Loop, *-- ; Loop until ARO == 0, post-decrement ARO
AMODE "loc16/loc32” Syntax Description
1 *——,ARPN 32bitDataAddr(31:0) = XAR(ARp)
if(locl6), XAR(ARP) = XAR(ARP) + 1
if(loc32), XAR(ARP) = XAR(ARP) + 2
ARP=n
Example (s):
MOVL XAR2,#Arrayl+(n-1)*2 ; Load XAR2 with ends address of Arrayl
MOVL XAR3,#Array2+(n-1)*2 ; Load XAR3 with end address of Array2
MoV @ARO, #N-1 ; Load ARO with loop count N
NOP *,ARP2 ; Set ARP pointer to point to XAR2
SETC AMODE ; Make sure AMODE = 1
-Ip_amode ; Tell assembler that AMODE = 1
Loop:
MOVL ACC,*--,ARP3 ; Load ACC with location pointed to by XAR2
; post-increment XAR2, set ARP to point to XAR3
MOVL *--,ACC,ARPO ; Store ACC into location pointed to by XAR3,
, post-increment XAR3, set ARP to point to XARO
XBANZ Loop, *--,ARP2 ; Loop until ARO == 0, post-decrement ARO

; set ARP pointer to point to XAR2

90 C28x Addressing Modes

SPRU430F—August 2001 —Revised April 2015
Submit Documentation Feedback

Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS

INSTRUMENTS

www.ti.com

Indirect Addressing Modes

AMODE "loc16/loc32" Syntax Description
X *+ 32bitDataAddr(31:0) = XAR(ARP)
XAR(ARP)=XAR(ARP)+ARO
Note: The lower 16-bits of XARO are added to the selected 32-bit register. Upper 16-bits of
XARO ignored. ARO is treated as an unsigned 16-bit value. Overflow into the upper 16-bits of
XAR(ARP) can occur.
Example (s):
MOVL XAR2,#Arrayl ; Load XAR2 with end address of Arrayl
MOVL XAR3,#Array2 ; Load XAR3 with end address of Array2
MoV @ARO, #4 ; Load ARO to copy every fourth value from Arrayl to Array2
MOV @AR1Im #N-1 ; Load AR1 with loop count N
Loop:
NOP *,ARP2 ; Set ARP pointer to point to XAR2
MOVL ACC,*0++ ; Load ACC with location pointed to by XAR2,
; post-increment XAR2 by ARO
NOP *,ARP3 ; Set ARP pointer to point to XAR3
MOVL *++,ACC ; Store ACC with location pointed to by XAR3, post-increment XAR3
NOP *,ARP1 ; Set ARP pointer to point to XAR1
XBANZ Loop, *-- ; Loop until ARO == 0, post-decrement AR1
AMODE "loc16/loc32” Syntax | Description
1 *++,ARPn 32bitDataAddr(31:0) = XAR(ARP)
XAR(ARP)=XAR(ARP)+ARO
ARP=n
Note: The lower 16-bits of XARO are added to the selected 32-bit register. Upper 16-bits of
XARO ignored. ARO is treated as an unsigned 16-bit value. Overflow into the upper 16-bits
of XAR(ARP) can occur.
Example (s):
MOVL XAR2,#Arrayl ; Load XAR2 with end address of Arrayl
MOVL XAR3,#Array2 ; Load XAR3 with end address of Array2
MoV @ARO,#4 ; Set ARO to copy every fourth value from Arrayl to Array2
MOV @AR1N #N-1 ; Load AR1 with loop count N
NOP *,ARP2 ; Set ARP pointer to point to XAR2
SETC AMODE ; Make sure AMODE = 1
-Ip_amode ; Tell assembler that AMODE = 1
Loop:
MOVL ACC,*0++,ARP3 ; Load ACC with location pointed to by XAR2,
; post-increment XAR2 by ARO, set ARP pointer
MOVL *++,ACC,ARP1 ; Store ACC with location pointed to by XAR3,
; post-increment XAR3, set ARP pointer to point tp XAR1l
XBANZ Loop, *--,ARP2 ; Loop until ARO == 0, post-decrement AR1,
; set ARP to point to XAR2
SPRU430F—August 2001 —-Revised April 2015 C28x Addressing Modes 91

Submit Documentation Feedback

Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

Indirect Addressing Modes

13 TEXAS

INSTRUMENTS

www.ti.com

AMODE "loc16/loc32” Syntax Description
X *0-- 32bitDataAddr(31:0) = XAR(ARP)
XAR(ARP)=XAR(ARP)+ARO
Note: The lower 16-bits of XARO are added to the selected 32-bit register. Upper 16-bits of
XARO ignored. ARO is treated as an unsigned 16-bit value. Overflow into the upper 16-bits of
XAR(ARP) can occur.
Example (s):
MOVL XAR2,#Arrayl+(N-1)*8 ; Load XAR2 with end address of Arrayl
MOVL XAR3,#Array2+(N-1)*2 ; Load XAR3 with end address of Array2
Mov @ARO, #4 ; Set ARO to copy every fTourth value from Arrayl to Array2
MOV @AR1n #N-1 ; Load AR1 with loop count N
Loop:
NOP *,ARP2 ; Set ARP pointer to point to XAR2
MOVL ACC,*0-- ; Load ACC with location pointed to by XAR2,
, post-increment XAR2 by ARO
NOP *,ARP3 ; Set ARP pointer to point to XAR3
MOVL *--,ACC ; Store ACC with location pointed to by XAR3,
; post-increment XAR3
NOP *,ARP1 ; Set ARP pointer to point to XAR1
XBANZ Loop, *-- ; Loop until AR1 == 0, post-decrement AR1
AMODE "loc16/loc32” Syntax Description
1 *0--,ARPn 32bitDataAddr(31:0) = XAR(ARP)
XAR(ARP)=XAR(ARP)+ARO
ARP=n
Note: The lower 16-bits of XARO are added to the selected 32-bit register. Upper
16-bits of XARO ignored. ARO is treated as an unsigned 16-bit value. Overflow into
the upper 16-bits of XAR(ARP) can occur.
Example (s):
MOVL XAR2,#Arrayl+(N-1)*8 ; Load XAR2 with end address of Arrayl
MOVL XAR3,#Array2+(N-1)*2 ; Load XAR3 with end address of Array2
MoV @ARO,#4 ; Set ARO to copy every fourth value from Arrayl to Array2
MOV @AR1n #N-1 ; Load AR1 with loop count N
NOP *,ARP2 ; Set ARP pointer to point to XAR2
SETC AMODE ; Make sure AMODE = 1
-Ip_amode ; Tell assembler that AMODE = 1
Loop:
MOVL ACC,*0--,ARP3 ; Load ACC with location pointed to by XAR2,
; post-increment XAR2 by ARO, set ARP pointer to XAR3
MOVL *++,ACC,ARP1 ; Store ACC with location pointed to by XAR3,
; post-increment XAR3, set ARP pointer to point tp XAR1l
XBANZ Loop, *--,ARP2 ; Loop until ARO == 0, post-decrement AR1,

; set ARP to point to XAR2

92 (C28x Addressing Modes

SPRU430F—August 2001 —Revised April 2015
Submit Documentation Feedback

Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

www.ti.com

Indirect Addressing Modes

AMODE "loc16/loc32” Syntax Description
X *BRO++ 32bitDataAddr(31:0) = XAR(ARP)
XAR(ARP) (15:0)= AR(ARP)rcadd ARO
XAR(CARP) (31:16) = unchanged
Note: The lower 16-bits of XARO are reverse carry added (rcadd) to the lower 16-bits of the
selected register. Upper 16-bits of XARO ignored. Upper 16-bits of the selected register
unchanged by the operation.
Example (s):
; Transfer contents of Arrayl to Array2 in bit reverse order:
MOVL XAR2,#Arrayl ; Load XAR2 with end address of Arrayl
MOVL XAR3,#Array?2 ; Load XAR3 with end address of Array2
MOV @ARO, #N ; Load ARO with size of array,
; N must be a multiple of 2 (2, 4, 8, 16, ...)
MOV @AR1 #N-1 ; Load AR1 with loop count N
Loop:
NOP *,ARP2 ; Set ARP pointer to point to XAR2
MOVL ACC,*0++ ; Load ACC with location pointed to by XAR2, post-
increment XAR2
NOP *,ARP3 ; Set ARP pointer to point to XAR3
MOVL *BRO++,ACC ; Store ACC with location pointed to by XAR3,
; post-increment XAR3 with ARO reverse carry add
NOP *,ARP1 ; Set ARP pointer to point to XAR1
XBANZ Loop, *-- ; Loop until AR1 == 0, post-decrement AR1
SPRU430F-August 2001 —-Revised April 2015 C28x Addressing Modes 93

Submit Documentation Feedback

Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

Indirect Addressing Modes

13 TEXAS
INSTRUMENTS

www.ti.com

AMODE

"loc16/loc32” Syntax Description

1

*BRO++, ARPN 32bitDataAddr(31:0) = XAR(ARP)
XAR(ARP) (15:0)= AR(ARP) rcadd ARO
XAR(CARP)(31:16) = unchanged
ARP=n

Note: The lower 16-bits of XARO are reverse carry added (rcadd) to the lower 16-bits of the
selected register. Upper 16-bits of XARO ignored. Upper 16-bits of the selected register
unchanged by the operation

Example (s):
Transfer contents of Arrayl to Array2 in bit reverse order:

MOVL XAR2,#Arrayl
MOVL XAR3,#Array?2
MOV @ARO #N

MoV @ARL, #N-1
NOP *,ARP2
SETC AMODE
-1p_amode

Loop:

MOVL ACC,*++,ARP3

MOVL *++,ACC,ARP1

MOVL *BRO++,ACC,ARP1

XBANZ Loop, *--,ARP2

1
i

1

Load XAR2 with start address of Arrayl

Load XAR3 with start address of Array2

Load ARO with size of array,

N must be a multiple of 2 (2, 4, 8, 16,...)
Load AR1 with loop count N

Set ARP pointer to point to XAR2

Make sure AMODE = 1

Tell assembler that AMODE = 1

Load ACC with location pointed to by XAR2,
post-increment XAR2 by ARO, set ARP pointer to XAR3
Store ACC with location pointed to by XAR3,
post-increment XAR3, set ARP pointer to point tp XAR1l
Store ACC with location pointed to by XAR3,
post-increment XAR3 with ARO reverse carry

add, set ARP pointer to point to XAR1l

Loop until AR1 == 0, post-decrement AR1,

set ARP to point to XAR2

94 C28x Addressing Modes

SPRU430F—August 2001 —Revised April 2015
Submit Documentation Feedback

Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

www.ti.com

Indirect Addressing Modes

AMODE

"loc16/loc32” Syntax

Description

X

*BRO--

Address Generation:
32bitDataAddr(31:0)=XAR(ARP)

XAR(CARP) (15:0)= AR(ARP)rbsub ARO {see note [1]1}

XAR(ARP) (31:16) = unchanged

Note: The lower 16-bits of XARO are reverse carry added (rbsub) from the lower 16-bits of the
selected register. Upper 16-bits of XARO ignored. Upper 16-bits of the selected register
unchanged by the operation

Example (s):

Transfer contents of Arrayl to Array2 in bit reverse order:

MOVL XAR2,#Arrayl+(N-1)*2
MOVL XARS3,#Array2+(N-1)*2

Loop:

MOV @ARO, #N
MoV @AR1 #N-1
NOP *,ARP2

MOVL ACC,*0--

NOP *,ARP3

MOVL *BRO--,ACC

NOP *,ARP1
XBANZ Loop, *--

i
1

i

Load XAR2 with end address of Arrayl
Load XAR3 with end address of Array2
Load ARO with size of array,

N must be a multiple of 2 (2, 4, 8, 16,...)

Load AR1 with loop count N

Set ARP pointer to point to XAR2

Load ACC with location pointed to by XAR2,

post-increment XAR2

Set ARP pointer to point to XAR3

Store ACC with location pointed to by XAR3,
post-increment XAR3 with ARO reverse carry add

Set ARP pointer to point to XAR1l

Loop until ARl == 0, post-decrement AR1l

SPRU430F—August 2001 —-Revised April 2015
Submit Documentation Feedback

Copyright © 2001-2015, Texas Instruments Incorporated

C28x Addressing Modes 95

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS

INSTRUMENTS
Indirect Addressing Modes www.ti.com
AMODE "loc16/loc32” Syntax Description
1 *BRO--,ARPn 32bitDataAddr(31:0) = XAR(ARP)

XAR(ARP) (15:0)= AR(ARP) rbsub ARO
XAR(CARP)(31:16) = unchanged
ARP=n

Note: The lower 16-bits of XARO are reverse carry added (rbsub) from the lower 16-bits of the
selected register. Upper 16-bits of XARO ignored. Upper 16-bits of the selected register
unchanged by the operation.

Example (s):

; Transfer contents of Arrayl to Array2 in bit reverse order:
MOVL XAR2,#Arrayl+(N-1)*2 ; Load XAR2 with start address of Arrayl
MOVL XAR3,#Array2+(N-1)*2 ; Load XAR3 with start address of Array2

MOV @ARO #N ; Load ARO with size of array,
; N must be a multiple of 2 (2, 4, 8, 16,...)
MoV @AR1, #N-1 ; Load AR1 with loop count N
NOP *,ARP2 ; Set ARP pointer to point to XAR2
SETC AMODE ; Make sure AMODE = 1
-Ip_amode ; Tell assembler that AMODE = 1
Loop:
MOVL ACC,*--,ARP3 ; Load ACC with location pointed to by XAR2,
; post-increment XAR2, set ARP pointer to point to XAR3
MOVL *++,ACC,ARP1 ; Store ACC with location pointed to by XAR3,
post-increment XAR3, set ARP pointer to point tp XAR1l
MOVL *BRO--,ACC,ARP1 ; Store ACC with location pointed to by XAR3,

; post-increment XAR3 with ARO reverse borrow substract,
, set ARP pointer to point to XAR1

XBANZ Loop, *--,ARP2 ; Loop until AR1 == 0, post-decrement AR1,
; set ARP to point to XAR2

Reverse carry addition or reverse carry subtraction is used to implement bit-reversed addressing as used
in the re—ordering of data elements in FFT algorithms. Typically, ARO is initialized with the (FFT size) /2.

The value of ARO is then added or subtracted, with reverse carry addition or subtraction, to generate the

bit reversed address

Reverse Carry Addition Example Is Shown Below (FFT size = 16):

XAR(ARP) (15:0) = 0000 0000 0000 0000
+ ARO 0000 0000 0000 1000

XAR(ARP) (15:0) = 0000 0000 0000 1000
+ ARO = 0000 0000 0000 1000

XAR(ARP) (15:0) = 0000 0000 0000 0100
+ ARO = 0000 0000 0000 1000

XAR(ARP) (15:0) = 0000 0000 0000 1100
+ ARO = 0000 0000 0000 1000

XAR(ARP) (15:0) = 0000 0000 0000 0010
+ ARO = 0000 0000 0000 1000

XAR(ARP) (15:0) = 0000 0000 0000 1010

96

C28x Addressing Modes SPRU430F—August 2001 —Revised April 2015

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS

INSTRUMENTS

www.ti.com

Indirect Addressing Modes

Reverse Borrow Subtraction Example Is Shown Below (FFT size = 16):

XAR(ARP) (15:0) = 0000 0000 0000 0000
- ARO = 0000 0000 0000 1000
XAR(ARP) (15:0) = 0000 0000 0000 1111
- ARO = 0000 0000 0000 1000
XAR(ARP) (15:0) = 0000 0000 0000 0111
- ARO = 0000 0000 0000 1000
XAR(ARP) (15:0) = 0000 0000 0000 1011
- ARO = 0000 0000 0000 1000
XAR(ARP) (15:0) = 0000 0000 0000 0011
- ARO = 0000 0000 0000 1000
XAR(ARP) (15:0) = 0000 0000 0000 1101

On the C28x, the bit reversed addressing is restricted to block size < 64K. This is OK since most FFT
implementations are much less than this.

5.6.3 Circular Indirect Addressing Modes (XAR6, XAR1)

AMODE "loc16/loc32” Description
Syntax
0 *ARG%++ 32bitDataAddr(31:0) = XAR6

if(XAR6(7:0) == XAR1(7:0))
{
XAR6(7:0) = 0x00
XAR6(15:8) = unchanged
}
else
{
if(16-bit data), XAR6(15:0) =+ 1
if(32-bit data), XAR6(15:0) =+ 2
}
XAR6(31:16) = unchanged
ARP =6

As seen in Figure 5-1, buffer size is determined by the 8 LSBs of AR1 or AR1[7:0]. Specifically, the buffer
size is AR1[7:0] +1. When AR1[7:0] is 255, then the buffer size is at its maximum size of 256 words.

XARG6 points to the current address in the buffer. The top of the buffer must be at an address where the 8
LSBs are all Os.

If one of the instructions accessing the circular buffer performs a 32-bit opera- tion, make sure XAR6 and
ARL1 are both even before the buffer is accessed.

SPRU430F—August 2001 —-Revised April 2015 C28x Addressing Modes 97
Submit Documentation Feedback

Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

Indirect Addressing Modes

I

TEXAS
INSTRUMENTS

www.ti.com

Top of buffer

15 8 7 0

AR1 X X 0 8
| —

Buffer size=8+1=9

31 8 7 0

4— XAR6| X X X X X X | O 0
—

L]

e Must be zero

XARG6[7:0] is incremented until it matches AR1[7:0]

31 8 7 0

Bottom of buffer

4+— XAR6 | X X X X X X 0 8

| S
Matches AR1[7:0]

Figure 5-1. Circular Buffer with AMODE = 0

Example (s):
; Calculate FIR Ffilter (X[N]

MOVW DP,#Xpointer
MOVL XAR6 , @Xpointer
MOVL XAR7 ,#C

MoV @AR1,#N

SPM -4

ZAPA

RPT #N-1

[1QMACL P, *ARBYU-++, *XART7++

= data array, C[N] = coefficient array):

Load DP with page address of Xpointer
Load XAR6 with current X pointer

Load XAR7 with start address of C array
Load ARl with size of data array N,

Set product shift mode to '>> 4")"
Zero ACC, P, OVC

Repeat next instruction N timeses

ACC = ACC + P >> 4,

P = (*AR6%++ * *XAR7++) >> 32

ADDL ACC,P << PM Final accumulate
MOVL @Xpointer,XAR6 Store XAR6 into current X pointer
MOVL @Sum,ACC Store result into sum

AMODE | "loc16/loc32” Syntax | Description

1 *+XAR6[AR1%++]

32bitDataAddr(31:0) = XAR6 + AR1
if(XAR1(15:0) == XAR1(31:16))

{
XAR1(15:0) = 0x0000
XAR6(15:8) = unchanged

}

else

{
if(16-bit data), XAR1(15:0) =+ 1
if(32-bit data), XAR1(15:0) =+ 2

}

XAR1(31:16) = unchanged

ARP =6

Note: With this addressing mode, there is no circular buffer alignment requirements.

98

C28x Addressing Modes

SPRU430F—August 2001 —Revised April 2015
Submit Documentation Feedback

Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

www.ti.com

Indirect Addressing Modes

As seen in Figure 5-2, buffer size is determined by the upper 16 bits of XAR1 or XAR1[31:16]. Specifically,

the size is XAR1[31:16] + 1.
XARG points to the top of the buffer.

The current address in the buffer is pointed to by XAR6 with an offset of XAR1[15:0].
If the instructions that access the circular buffer perform 32-bit operations, make sure XAR6 and

XAR1[31:16] are even.

Top of buffer

Bottom of buffer

31 16 15 0
XAR1 0 0 0 9 0 0 0 O

Buffer size = Buffer index

9+1=10

31 0
XARG 003F8010

<+— XARG6 + XAR1[15:0] = 3F8010h
|

0x0000

XAR1[15:0] increments until
it matches XAR1[31:16]

<+— XARG6 + XAR1[15:0] = 3F8010h + 0009h
S

Matches
XAR1[31:16]

Figure 5-2. Circular Buffer with AMODE =1

Example (s):

; Calculate FIR filter (X[N] = data array, C[N] = coefficient array):

MOVW DP,#Xindex
MOVL XARG6 , #X
MOV @AH, #N

MOV AL, @Xindex
MOVL XAR1,@ACC
MOVL XAR7 ,#C

SPM -4
ZAPA
RPT #N-1

[IQVACL P,*XARB[ARLU++],*XAR7++

ADDL ACC,P << PM
MoV @Xindex, XAR1
MOVL @Sum,ACC

; Load DP with page address of Xindex

; Load XAR6 with start address of X array
; Load AH with size of data array X (N)

; Load AL with current circular index

; Load parameters into XAR1l

; Load XAR7 with start address of C array
; Set product shift mode to '>> 4","

; Zero ACC, P, OVC

; Repeat next instruction N timeses

; ACC = ACC + P >> 4,

; P = (*AR6%++ * *XAR7++) >> 32

; Final accumulate

; Store XAR6 into current X index

; Store result into sum

SPRU430F—August 2001 —-Revised April 2015
Submit Documentation Feedback

C28x Addressing Modes

Copyright © 2001-2015, Texas Instruments Incorporated

99

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS

INSTRUMENTS
Register Addressing Modes www.ti.com
5.7 Register Addressing Modes
This section includes register addressing modes for 32-bit and 16-bit registers.
5.7.1 32-Bit Register Addressing Modes
AMODE "loc32" Syntax Description
X @ACC Access contents of 32-bit ACC register.
When the "@ACC" register is the destination operand, this may affect the Z,N,V,C,O0VC
flags.
Example (s):
MOVL XAR6,@ACC ; Load XAR6 with contents of ACC
MOVL @ACC,XT ; Load ACC with contents of XT register
ADDL ACC,@ACC ; ACC = ACC + ACC
AMODE "loc32" Syntax Description
X @pP Access contents of 32-bit ACC register.
Example (s):
MOVL XAR6,@AP ; Load XAR6 with contents of P
MOVL @P,XT ; Load P with contents of XT register
ADDL ACC, @AP ; P=ACC + P
AMODE "loc32” Syntax Description
X @xT Access contents of 32-bit XT register.
Example (s):
MOVL XARG6 , @XT ; Load XAR6 with contents of XT
MOVL @P,XT ; Load P with contents of XT register

ADDL ACC,@XT ACC = ACC + XT

AMODE "loc32” Syntax Description
X @XARN Access contents of 32-bit XARnN registers.
Example (s):
MOVL XARG6 , @XR2 ; Load XAR6 with contents of XAR2
MOVL P,@XAR2 ; Load P with contents of XAR2 register
ADDL ACC,@XAR2 ; ACC = ACC + XAR2

Note: When writing assembly code, the “@” symbol in front of the register is optional. For example:
“MOVL ACC,@P” or “MOVL ACC,P". The disassembler will use the @ to indicate operands that are
“loc16” or “loc32". For example, MOVL ACC, @P is the MOVL ACC, loc32 instruction and MOVL @ACC,
P is the MOVL loc32, P instruction.

100 C28x Addressing Modes SPRU430F-August 2001 —Revised April 2015

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS

INSTRUMENTS

www.ti.com

Register Addressing Modes

5.7.2 16-Bit Register Addressing Modes

AMODE "loc16” Syntax Description
X @AL Access contents of 16-bit AL register.
AH register contents are un-affected.
When the "@AL" register is the destination operand, this may affect the Z,N,V,C,0VC
flags.
Example (s):
MoV PH, @AL ; Load PH with contents of AL
ADD AH, @AL , AH = AH + AL
MoV T,@AL ; Load P with contents of AL
AMODE "loc16” Syntax Description
X @AH Access contents of 16-bit Ah register.
Al register contents are unaffected.
When the "@AH?" register is the destination operand, this may affect the Z,N,V,C,0VC
flags.
Example (s):
MoV PH, @AH Load PH with contents of AH
ADD AL, @AH ; Al = Al + Ah
MoV T,@AH Load t with contents of AH
AMODE "loc16” Syntax Description
X @pPL Access contents of 16-bit PL register.
PH register contents are unaffected.
Example (s):
MOV PH, @AL Load PH with contents of PL
ADD AH, @AL ; AL = AL + PL
MoV T,@AL Load T with contents of PL
AMODE "loc16” Syntax Description
X @PH Access contents of 16-bit PH register.
PL register contents are unaffected.
Example (s):
MoV PL,@PH Load PL with contents of PH
ADD AL, @PH , AL = AL + PH
MoV T,@PH ; Load T with contents of PH

SPRU430F—August 2001 —-Revised April 2015
Submit Documentation Feedback

Copyright © 2001-2015, Texas Instruments Incorporated

C28x Addressing Modes 101

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS

INSTRUMENTS
Register Addressing Modes www.ti.com
AMODE "loc16” Syntax Description
X @TH Access contents of 16-bit TH register.
TL register contents are unaffected.
Example (s):
MOV PL,Q@T ; Load PL with contents of T
ADD AL,@T ; AL = AL + TH
MOVZ AR4,@T ; Load AR4 with contents of T, AR4H = 0
AMODE "loc16” Syntax Description
X @TH Access contents of 16-bit SP register
Example (s):
MOVZ AR4,@SP ; Load AR4 with contents of SP, AR4H = 0O
MOV AL, @SP ; Load AL with contents of SP
MOV @SP, AH ; Load SP with contents of AH
AMODE "loc16” Syntax Description
X @ARN Access contents of 16-bit ARO to AR7 registerS.
AROH to AR7H register contents are unaffected.
Example (s):
MOVZ AR4,@AR2 ; Load AR4 with contents of AR2, AR4H = 0O
MoV AL,@AR3 ; Load AL with contents of AR3
MoV @AR5, AH ; Load AR5 with contents of AH, AR5H = unchanged
102 C28x Addressing Modes SPRU430F-August 2001 —Revised April 2015

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

www.ti.com

Data/Program/IO Space Immediate Addressing Modes

5.8 Data/Program/IO Space Immediate Addressing Modes

Syntax

Description

*(0:16bit)

32BitDataAddr(31:16) = 0
32BitDataAddr(15:0) = 16-bit immediate value

Note: If instruction is repeated, the address is post-incremented on each iteration. This addressing mode can
only access the low 64K of data space.

Instructions that use this addressing mode:

MOV locl16,*(0:16bit) ; [locl6] = [0:16bit]
MoV *(0:16bit),locl6 ; [locl6] = [0:16bit]
Syntax Description
*(PA) 32BitDataAddr(31:16) = 0

32BitDataAddr(15:0) = PA 16-bit immediate value

Note: If instruction is repeated, the address is post-incremented on each iteration. The I/O strobe signal is
toggled when accessing /O space with this addressing mode. The data space address lines are used for
accessing /O space.

Instructions that use this addressing mode:

ouT (PA) ,*locl6 ; l10space[0:pa]= [locl6]
uouT *(0:16bit),locl6é ; 10space[0:pa]= [locl6](unprotected)
IN loc16,*(PA) ; [locl6] = 10space[0:PA]

Syntax Description

0:pma 22BitProgAddr(21:16) = 0

22BitProgAddr(15:0) = pma 16-bit immediate value

Note: If instruction is repeated, the address is post-incremented on each iteration. This addressing mode can
only access the low 64K of program space.

Instructions that use this addressing mode:

MAC p,locl6,0:pma ; ACC = ACC + P << PM,
v P = [locl6] * ProgSpace[0:pma]
Syntax Description
*(0:16bit) 22BitProgAddr(21:16) = Ox3F

22BitProgAddr(15:0) = pma 16-bit immediate value

Note: If instruction is repeated, the address is post-incremented on each iteration. This addressing mode can
only access the upper 64K of program space.

Instructions that use this addressing mode:

XPREAD locl6, *(pma) ; [locl6] = ProgSpace [0x3f:pma]
XMAC P, locl6*(pma) ; ACC = ACC + P << PM,
; P = [locl6] * ProgSpace[Ox3F:pma]
XMACD P, locl6*(pma) ; ACC = ACC + P << PM,
; P = [locl6] * ProgSpace[0x3F:pma]
7 [locli6+1] = [locl6]
SPRU430F—August 2001 —-Revised April 2015 C28x Addressing Modes 103

Submit Documentation Feedback

Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

Program Space Indirect Addressing Modes www.ti.com

5.9 Program Space Indirect Addressing Modes

Syntax Description
*AL 22BitProgAddr(21:16) = Ox3F
22BitProgAddr(15:0) = AL
Note: If instruction is repeated, the address in AL is copied to a shadow register and the value post-incremented
on each iteration. The AL register is not modified. This addressing mode can only access the upper 64K of
program space.
Instructions that use this addressing mode:
XPREAD locl6,*AL v [locl6] = ProgSpace [0x3F:AL]
XPWRITE *AL, locl6 ; ProgSpace [0x3F:AL] = [locl6]
Syntax Description
*XAR7 22BitProgAddr(21:0) = XAR7
Note: If instruction is repeated, only in the XPREAD and XPWRITE instructions, is the address contained in XAR7
copied to a shadow register and the value post-incremented on each iteration. The XAR7 register is not modified.
For all other instructions, the address is not incremented even when repeated.
Instructions that use this addressing mode:
MAC P,locl6,*XAR7 ; ACC = ACC + P << PM,
i P = [locl6] * ProgSpace[*XAR7]
DMAC ACC:P, loc32,*XAR7 v ACC = ([loc32]-MSW * ProgSpace[*XAR7].MSW) >> PM,
v P = ([10c32].LSW * ProgSpace[*XAR7].MSW) >> PM
QMACL P, loc32,*XAR7 ; ACC = ACC + P >> PM,
;v P = ([1oc32] * ProgSpace[*XAR7] >> 32
IMACL P,l10c32,*XAR7 , ACC = ACC + P,
v P = ([1oc32] * ProgSpace[*XAR7] << PM
PREAD locl16,*XAR7 ; [locl6] = ProgSpace[*XAR7]
PWRITE *XAR7,10cl6 ; ProgSpace[*XAR7] = [locl6]
Syntax Description
*XART++ 22BitProgAddr(21:0) = XAR7,
if(16-bit operation) XAR7 = XAR7 + 1,
iT(32-bit operation) XAR7 = XAR7 + 2
Note: If instruction is repeated, the address is post-incremented as normal.
Instructions that use this addressing mode:
MAC P, locl6,*XAR7++ ; ACC = ACC + P << PM,
i P = [locl6] * ProgSpace[*XAR7++]
DMAC ACC:P,l10c32,*XAR7++ , ACC = ([10c32].MSW * ProgSpace[*XAR7++].MSW) >> PM,
i P = ([1oc32].LSW * ProgSpace[*XAR7].MSW) >> PM
QMACL P,10c32,*XAR7++ ; ACC = ACC + P >> PM,
v P = ([1oc32] * ProgSpace[*XAR7++] >> 32
IMACL P, l1oc32,*XAR7++ ; ACC = ACC + P,
v P = ([10oc32] * ProgSpace[*XAR7++] << PM
104 C28x Addressing Modes SPRU430F-August 2001 —Revised April 2015

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS

INSTRUMENTS

www.ti.com

Byte Addressing Modes

5.10 Byte Addressing Modes

Syntax Description
*+XARN[ARO] | 32BitDataAddr(31:0) = XARn + Offset (Offset = ARO/AR1/3bit)
*+XARN[AR1] | .
*+XARN[3bit] if(offset == Even Value)

Access LSByte Of 16-bit Memory Location;
MSByte untouched;
if(Offset == 0dd Value)

Access MSByte Of 16-bit Memory Location;
LSByte untouched;

Leave

Leave

untouched.

Note: For all other addressing modes, only the LSByte of the addressed location is accessed, the MSByte is left

Instructions that use this addressing mode:

MOVB AX_LSB, locl16 ; 1T(address mode == *+XARnN[ARO/AR1/3bit])

; if(offset == even)
: AX_.LSB = [locl6].LSB;
; AX_MSB = 0x00;

; if(offset == odd)

: AX_.LSB = [locl6].MSB;
; AX_MSB = 0x00;

; else

: AX_.LSB = [locl6].LSB;
; AX_MSB = 0x00;

MOVB AX_MSB, locl16
; if(offset == even)
; AX.LSB = untouched;

; AX_.MSB = [locl6].LSB;
: if(offset == odd)

; AX.LSB = untouched;

; AX_.MSB = [locl6]-MSB;
; else

; AX.LSB = untouched;

; AX_.MSB = [locl6].LSB;

MOVB locl16,AX.LSB ; 1f(address mode == *+XARnN[ARO/AR1/3bit])

; if(offset == even)
; [locl6].LSB = AX.LSB

; if(address mode == *+XARn[ARO/AR1/3bit])

; [loc16].MSB = untouched;

; if(offset == odd)

; [1oc16].LSB = untouched;
; [1oc16].MSB = AX.LSB;

; else

; [locl16]-.LSB = AX.LSB;

; [loc16].MSB = untouched;

MOVB locl16,AX.MSB ; 1T(address mode == *+XARN[ARO/AR1/3bit])

; if(offset == even)

; [locl16].LSB = AX.MSB

; [locl16].MSB = untouched;
; if(offset == odd)

; [loc16].LSB = untouched;
; [locl6].MSB = AX_.MSB;

; else

; [locl16].LSB = AX_.MSB;

; [locl16].MSB = untouched;

SPRU430F—August 2001 —-Revised April 2015

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

C28x Addressing Modes

105

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

Alignment of 32-Bit Operations www.ti.com

5.11 Alignment of 32-Bit Operations

All 32-bit reads and writes to memory are aligned at the memory interface to an even address boundary
with the least significant word of the 32-bit data aligned to the even address. The output of the address
generation unit does not force alignment, hence pointer values retain their values.

For example:
MOVB ARO,#5 ; ARO = 5
MOVL *ARO,ACC ; AL —> address 0x000004
; AH —-> address 0x000005
; ARO = 5

The programmer must take the above into account when generating addresses that are not aligned to an
even boundary.

The 32-bit operands are stored in the following order; low order bits, 0 to 15, followed by the high order
bits, 16 to 31, on the next highest 16-bit address increment (little-endian format).

106

C28x Addressing Modes SPRU430F—August 2001 —Revised April 2015
Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

i Chapter 6

TE S SPRU430F-August 2001—-Revised April 2015

INSTRUMENTS

C28x Assembly Language Instructions

This chapter presents summaries of the instruction set, defines special symbols and notations used, and
describes each instruction in detail in alphabetical order.

6.1 Summary of Instructions

The instructions are listed alphabetically, preceded by a summary.
Table 6-1. Summary of Instructions

Title Page
F N =L@ I e A o T 11T 1] 124
ABS ACC —ADbsolute Value Of ACCUMUIALON ...uuuiiiiieiiiiiiiiiiiiiieeessessssasaasassnnsttaaaeesssssssssssnnnnnnnneeessses 125
ABSTC ACC —Absolute Value of Accumulator and LOAd TCuueeiiiiiieiiiiieeiaaaee e eeaaneeeea e e saanee s aaanneeaannes 126
ADD ACC,#16bit<<#0..15 —Add Value t0 ACCUMUIALON ...t utteesiieeresreeeeerennnnrrrrsrrerernnnnnnnrsrrrrrrrrennnnsnsnnnnss 128
ADD ACC,10¢16 <<T —Add Value t0 ACCUMUIALON ... vuetieeesrenneesssnnesssanneesasnnnesassnnesssannnessssnnessssnsnrssnnnns 129
ADD ACC,l0c16 << #0..16 —Add Value t0 ACCUMUIALON +..tututteiiiiiiistettestesssessaasssstesesrsnsnnssssssssreeesrnnssnssnnns 130
ADD AX, [0C16 — A0 ValUB 10 AX tititiiiitieittesaiissssssessaesesssssessssssesssssemsetsreessteestirsstetsttrsssrennes 131
ADD loc16, AX —Add AX t0 SPeCified LOCAtIONuutseiieteiiiteeraiet e eraiaee s iar s saa s s s ss s e s saannn e s sannnasaannnns 132
ADDB SP, #7bit —Add 7-bit Constant t0 STACK POINTEI ...eviiiiiiiiiiir et eesrrraeaereeeeetnnsnnrrarasrreerrrnnnnnnnnnns 136
ADDB XARnN, #7bit —Add 7-bit Constant to AuXiliary RegISter....uuvueerieeiiiii i rane 137
ADDCL ACC,loc32 —Add 32-hit Value Plus Carry t0 ACCUMUIATON ...uviieeesiieeeessannessaannesssannressaanneessnnnnesnnns 138
ADDCU ACC,loc16 —Add Unsigned Value Plus Carry t0 ACCUMUIALON .. .ueiiiieeesiiistessaanneessanneersaanneessannnesanns 139
ADDL ACC,l0c32 —Add 32-bit Value t0 ACCUMUIATOT «...iiuiitieiisttatissssssssrasisssnsssssasesrsnsesesnstesssnsssssnssens 140
ADDL ACC,P << PM —Add Shifted P t0 ACCUMUIBTOT « ..t ttaiitttiisstaissssssesssassssensssssmssisrsnssssssssesssnsssssnssnns 141
ADDL l0c32,ACC —Add Accumulator to Specified LOCAtION.eiiii e e e ane e eanes 142
ADDU ACC,loc16 —Add Unsigned Value t0 ACCUMUIALOLueiieeesiieieeesssanneessannessaannessaanneessaannersaanneesnnns 143
ADDUL P,loc32 —Add 32-bit UNSigned Value t0 P ...ueiiiiieiiiiie i sasneessssnneesssnnesssannesssannnessannnessnnnns 144
ADDUL ACC, loc32 —Add 32-hit Unsigned Value t0 ACCUMUIALON ..viiiieeeriiiieeeisiitessaanneessanntesseanneessannnesenns 145
ADRK #8bit —Add to Current AUXIlIary ReEgISIEr . ..uuuiiiiiiiie i r e s tr e s raarr s raanreaaannes 146
AND ACC #16Dit << #0..16 — DESCIIPIION 1 v uuttetiiaateeiantersaate s ine s ssaaas e saaaassssaasas st aaansestaannassaannsersannnes 147
AND ACC, 10C16 —BitWiSE AND ...uuuuttiiiiittettiitte et taa it s tataneetaaatestaaaaestaasatessaantaesaanneessssneessssnnees 148
AND AX, 10C16, #1ODit — BItWiSE AN D .. tetiettttiinttereintereainneerarneeraannestaanneereaseesrasnseeressnressssnneressnnnes 149
AND IER,#16bit —Bitwise AND to Disable Specified CPU INterTUPLS . .uuueeeiieieersainnessaanneessannrerraanneessaanneeenns 150
AND IFR#16bit —Bitwise AND to Clear Pending CPU INteITUPLS . ..uuueiiutiiieeiiniiieerirssiessaassnanesnassansesannsaness 151
AND 10C16, AX —BitWiISE AND ..ttttiuttiiiitteteianteseainestaaneesaaanestaanteesaanntesseantessesnneessssnnessssnneesesnnnes 152
AND AX, 10C16 —BitWiSE AND ..tttiuettiiiitteteiintesaainestaaneetaantestaanteesaanstessaantesseanntesessnnessssnneesssnnnes 153
AND 10C16,#16hitSigNed — BitWiSE ANDttt e a e e e e e e taaane e e saane et sann e s saanna e e aaanreraaannes 154
ANDB AX, #8bit —BitwiSE AND 8-Dit VaAlUB +.evtteutiiiiiirtseeeeteensarrsresrreeeernnnnnnarrerrerrnennnnsssssrrereernnnnnnns 155
ASP B L18 LTS] 7= Lo Q=011 (T P 156
ASR AX#1...16 —Arithmetic Shift RIGNT «... et e e e s r e s s e e e e aann e e e aanneesaannnes 157
ASR AX, T —Arithmetic Shift RIGNtueeiiiii et r s r e r e e aaaannes 158
ASR64 ACC:P,#1..16 —Arithmetic Shift Right of 64-bit Valuecviiiiiii i 159
ASR64 ACC:P,T —Arithmetic Shift Right Of 64-bit ValUeooeiiiii e e e r e e e anes 160
ASRL ACC,T —Arithmetic Shift Right of ACCUMUIALONueiiiii s r e r e s s e e e rannreerannnes 161

SPRU430F—August 2001 —-Revised April 2015 C28x Assembly Language Instructions 107

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

I3 TEXAS
INSTRUMENTS
Summary of Instructions www.ti.com
Table 6-1. Summary of Instructions (continued)

B 16DitOffSEt, COND — BlanCN c e utitsieeieesseeteteeeaassasseeseeeeeennnsanasreeeeeeennnnssnnsssreeeeemnnnnnnssnssessreseennnnns 162
BANZ 16bitOffset, ARn— — —Branch if Auxiliary Register Not EQUal t0 ZEr0......vouvivieiiieniiiiiiiiiieiiinieeninnians 163
BAR 16bitOffset,ARn,ARmM,EQ/NEQ —Branch on Auxiliary Register COmMPariSONccverriierereinneersnsnnessesnneess 164
BF 16bitOffSet,COND — BranCh Fast uuuiueiiiiieiiiiisiiittiisiresiisssnsesssnsssestnsesssnsseeenertenstisrentersesssssssnnns 165
C27MAP —Set the MOMIMAPR Bt 1.uuueisiiiitiiee ittt e s s e r e s s e s r s s aaneranas 166
C270BJ —Clear the ODbJMOAE Bit..uuuussiruseiseiiserseisssessrsrse st sa s ra s s raneeranes 167
C28ADDR —Clear the AMODE StatusS Bil ...uueuuseissiiseriireii s rr s s rs s ernes 168
C28MAP —Set the MOMLMAP Bit ..eeeiieiteesaateessaneessaanneessanreseaannessaanneesaaannessaannessssnnnssssnnnessnnnns 169
C280BJ —Set the ObJMOGE Bit .uueiiiieeiiiiesieaeessaseessaantessaanneesaaannesaasnnessssnneessssnnessssnnessssnnnessnnnes 170
CLRC AMODE —Clear the AMODE Bil....uuutiusisssesatssissrsesssssassras st assassarasanssenns 171
CLRC MOMIMAP —Clear the MOMIMAP Bit .. .uuuuiuiieisinsintisissnert s rsess s s s s sasssasa s ansananns 172
CLRC Objmode —Clear the ODJMOUE Bit ...uiuseiiuserseiissisisiisrise i sar s sanrssnes 173
CLRC OVC —Clear OVErflOW COUNTET . uuuuuttiseiussssssssssssssassssss e s sasssas st s sasssas s sasssanssansssnnes 174
CLRC XF —Clear XIF STAtUS Bit ... uusiusisusssatesseisssssesasssssssssssass s sssssasessss s ssss e sannssasstsnnssanns 175
CLRC M0Ode —Clear StatUS BilS .uuueiusurserueisisersertrsinserserrsas e sasssa e esar s aanesaenns 176
LY G Lo o0t I Gt @0 o] o - = 177
CMP 10C16,#16DItSIgNEA —— COMIPAIE . .ttt iaeeiaaee s taaae et st e s saata s saaas s e s saa s s s saaantssaannsssaannnsssannnnsinnnes 178
CMP64 ACC:P —Compare 64-Dit VAIUE ... et r e s rr it e s s s s e e s s n s s sann e e ssanneaanns 179
CMPB AX, #8bit — Compare 8-Dit ValUeconiiiiii ittt r e re e e ssan e e s raann e e sannn e saanneaanns 180
CMPL ACC,I0C32 —Compare 32-Dit ValUe......ueeeeiiiieteissieeease e ss e e s saanne s saannn e s sannnessaannnesaannressannneennnn 181
CMPL ACC,P << PM —Compare 32-bit ValUe .. .ueeiiiiiiiiiiese i sseisee s sassne s ssassee s sanneessannnesssannnessannneesnns 182
CMPR 0/1/2/3 —Compare AUXiliary REQISIEIS. .. .uuueieteiiiittirrie i issie s tsaas st saasre s saaarsssansrsssaannnessns 183
(0251 2 3 N O Ot 018 1 A0S o o =71 £ 184
[L@ Lo Yot et 51T ox =0 1T |)Y/ 185
DINT —Disable Maskable Interrupts (Set INTM Bit) ...uueuueiieeiiutsrseiiirieriessis s i saesaisesanns 186
DMAC ACC:P,loc32,*XAR7/++ —16-Bit Dual Multiply and ACCUMUIALEcviiieeiriii e ieai s rannee s ranneenns 187
DMOV loc16 —Data Move Contents Of 16-Dit LOCAION ..vuuuuseiseiisinsirieiisss s rarrnsenaenrnas 189
EALLOW —Enable Write ACCESS {0 ProteCted SPaCE. . uuutteiiieteiiiieiriir s sssiae s isase s ssaiasesiaansessaannes 190
EDIS —Disable Write ACCess t0 ProteCted REQISIEIS . ..uuuiiiieieiiiiieeiiite st s srie s saaiass s saannesaaanes 191
EINT —Enable Maskable Interrupts (Clear INTM Bit)uueeiiiei i s s e s r e e s arnne s ananes 192
ESTOPO —EMUIALION STOP O utiustiteiseissesatssss s st sae s e ss s s s s s saa s s s s saa et ae s s a e s aa s s s n s s nsansaaneans 193
IS O e R o 4 T F= Lo] (o o 194
FFC XAR7,22bit —Fast FUNCHON Call.....uisiiiieiitiisiiiisr e s e e s ananas 195
FLIP AX —FIip Order of BitS iN AX REQISIEI 1. uuueiiiietiiiises st siiatessrastessaasss s ssas s ssaaarssssasssiaannnsssnnnns 196
IACK #16Dbit —INnterrupt ACKNOWIEAGEttt et e st e sr s s s s s s s s asann e s saannesannnes 197
IDLE e Y L o £ 1o TS =T T T T o = 1Y o T L= 198
IMACL P,loc32,*XAR7/++ —Signed 32 X 32-Bit Multiply and Accumulate (Lower Half)coooviiiiiiiiiiiiiinen, 199
IMPYAL P,XT,loc32 —Signed 32-Bit Multiply (Lower Half) and Add Previous P........ccovviiiiiiniiiiiniineeas 201
IMPYL ACC,XT,loc32 —Signed 32 X 32-Bit Multiply (Lower Half)oviiieeeiiiii i i e s rnnn e e s e nnnneenaas 203
IMPYL P,XT,loc32 —Signed 32 X 32-Bit Multiply (Lower Half)ocueeiiiiiiiii i s e e e 204
IMPYSL P,XT,loc32 —Signed 32-Bit Multiply (Low Half) and Subtract Pcoieeiiiiiiiiiiiii e 205
IMPYXUL P,XT,loc32 —Signed 32 X Unsigned 32-Bit Multiply (Lower Half)ooveiiieiiiiiiiiiiiieciniaeeas 207
IN 10C16,*(PA) —INPUL DAta FrOM POt ... ueestsiseiise it sss s s e e s a s s s s s s s s e san e san e aanennes 209
1N L@ o Tt G T T o0 1T o 0 T=T o o) 211
INTR —Emulate HardWare INTEITUDPE ...eueeeesseieeessasseessaaneesssanneessaanneessannessssnneessssnnessssnnessssnnnessnnnes 212
IRET et |11 (ST 010 =]] o 214
(ISR O ot o Vo TN [o =T X = = o o 216
IS R o T et e o == o o 217
LC *XART7 —LONG INAIr€CE Call 1 uuutiseiintisieiite st s r s s s s e s s et s s s a s s s a e s s e s ran e aannens 218

108 C28x Assembly Language Instructions SPRU430F-August 2001 —Revised April 2015

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

I3 TEXAS
INSTRUMENTS
www.ti.com Summary of Instructions
Table 6-1. Summary of Instructions (continued)
[@2 o YL Gy o o 0 219
LCR #22bit —LoNg Call USING RPC . uutiiieiiitiite ittt ts s st s st s s e s s st s s s s s s s e s e sa e s s e aanesanns 220
LCR *XARN —Long Indirect Call USING RP C .. uiiiiiiiiiiiii s i s tcsee s sase e s ssaan e s san e e s ananneesaannnesaannnessnnnns 221
LOOPNZ 10c16,#16bit —LOOP WHIlE NOT ZEIO +vuiineieiiiitteisiete st ssias s s ise s ss e s ssaas e s saansassaannns 222
LOOPZ 10C16,#16bit —LOOP WHIlE ZEIO 1.uirunetiiiiteiiii i s e s s s e e s s s e s sr s e st sanan e s sannassannns 224
LPADDR — St the AMODE Bil...suissiiteresisessantsaessanesasesanesanssanssannssanssannssanesanssesnesannsssnessnnsennerns 226
[e 03T TN = U 227
LRETE —Long Return and ENable INterrupts v erieeiiini e s e e s s s r s s s e s n e s e aa e e anns 228
LRETR —Long Return USING RPCuiiiiiiiiiiiie i sii s teseee s sesste st aanne e s sann e s sasnneesaannnesaannnessannnnessnnnes 229
LSL ACC,#1..16 —Logical Shift Leff...uuuseireiiiieiieiiiieraeisiss st sias s raassaas s s aassaa s s saa s st sanessanssanness 230
LSL ACC, T —Logical Shift Left DY T(3:0) «uuuuuueeiiiiiiiiiiie it e s s s s s s a e s s aann e s saannaesaannes 231
LSL AX#1...16 —Logical Shift Left «..uueiieeieieeiitiiiesaereaee e s se e saan s ae s san s saan s sanssannssanssannsannssannssnnesannens 232
LSL AX, T —Logical Shift Left DY T(3:0) «uuuuuuuutiutirseiterseisessas st sasessas s s s sarsraneaaness 233
LSLE64 ACC:P#1..16 —Logical Shift Left .ot e s e e e s ss e e s sann e s snanne s sannnnessannnenrannnes 234
LSL64 ACC:P,T —64-Bit Logical Shift Left By T(5:0) +.uuiiueiiiiiiiiiiiiiie i s rnas s s sansssaens 235
LSLL ACC, T —Logical Shift Left DY T (410) . uuuuesiiueeisiiuseeissnsesiaisssessassessaansrsssansrsssaansssssaansssssinnssisnnns 236
LSR AX#1...16 —Logical Shift RIGNE ..t e r e s s e s e e s e s s e e saae s sn e sannsaneesnneaannens 237
LSR AX, T —Logical Shift RIGNt DY T(3:0) 1uutuutiiuniiiutinneiisisirire e s s aaneaaans 238
LSR64 ACC:P,#1..16 —64-Bit Logical Shift RIgNtoii i r e s s e s rnanne e aannns 239
LSR64 ACC:P,T —64-Bit Logical Shift RIGht DY T(5:0) +uvueuereurereriesesneereeenrerenrenreneeerrnresnesnesareneensenns 240
LSRL ACC,T —Logical Shift RIGht DY T (4:0) uueeiiiiittiiiiieesssieessaasneessaansesssannressaansesssannressssnneesssnnnessnnns 241
MAC P,loc16,0:pma —Multiply and ACCUMUIALEueeeiiiteiiiie e r s s s s s as e st aaaaenaannes 242
MAC P ,l0c16,*XAR7/++ —Multiply @and ACCUMUIALEuueiiiiiiii i r e s e rr e s ananes 244
MAX AX, 10CL16 — FiNd the MaXimUIM . e e i eeeiiiteeiisesaissessnssessssssnsssssnsssssensssssssssssesssssssssssrsnssssssssssssnsns 246
MAXCUL P,loc32 —Conditionally Find the Unsigned MaXimuUIMoieeiieirieeineieisssinsssssiss s snsesanasans 247
MAXL ACC,10C32 —Find the 32-Dit MaXimMUM cuuueisiiseeeeeeeeeeeeereasrreeeeennnnnsssraarsrreeemmnnsnsssrrsrrrereeennnnnnns 248
MIN AX, 10C16 —Find the MiNiMUM .. .uei i s s st s s s s r s s s ta e s s e s saa s s s a s s n s s e s sannanannss 249
MINCUL P,loc32 —Conditionally Find the Unsigned MinimumMeeeiiiieiiiiie i ssnsss s sasse s saannnennas 250
MINL ACC,10€32 —Find the 32-bit MinimUM e ee ittt it iit it ettt se st easnsssesnsssessssssssnsesssssssssnnnns 251
MOV *(0:16bit), |0CLE —MOVE VAlUE eeeeieteiie it ia et e e iae st a e ae e s saaas e s ssaan e et san e e s s aann e e saannssaaannessnnnns 252
MOV ACC #16bit<<#0..15 —Load Accumulator With Shift......uiiiiiirii s rrrrrrre s e e ernnnnnnnes 253
MOV ACC,loc16<<T —Load Accumulator With Shifteeeeieesiiiiiiirs et errriatarsreeeearnnsnnsrrrarrreerernnnnnnns 254
MOV ACC, loc16<<#0..16 —Load Accumulator With Shift........ooeiiiiiiiiiiiii s 255
MOV ARG6/7, 10C16 —Load AUXiliary ReQISTEr .. .uuuiieseiiites it sr it s s ssaase s as e s saaanesaannes 256
[T@ YA o o K Ty o T o AN 257
MOV DP, #10bit —Load Data-Page POINterciiteiiiite i r it ra e e rr e s sa s e s taann s ssannessaannnssannnes 258
MOV IER,loc16 —Load the Interrupt-Enable REQISIEr ...vuuiiieiiii i e 259
MOV 10C16, #16Dit —SaVve 16-Dit CONSTANT +.vuureiiieerreeeeeeeeennnrararrreeeernennnnsnrarsrreeemmnnsnssrsrsrrreeeeennnnnnns 260
MOV [0C16, *(0:16hit) —MOVE ValUBueteiiiieteiieiteesaaiaeessaianessaanneessanneessaanneessannnessesnneesssnnnessssnneessnnns 261
MOV [0C16, #O — Clear 16-Dit LOCATION . .uuuuitstenissenassssssssnsssssnssssnsssssmssesssnsesemnsereentiemterriassernnns 262
MOV loc16,ACC << 1..8 —Save Low Word of Shifted ACCUMUIALOriiieiiiiiiiiiiriiiesintisisnsisesenesssnnsssssnsesees 263
MOV loc16, ARN —Store 16-bit AUXIlIary REGISErttt e s e s s e s sa e e s saannesaannnesaannes 264
Y (O AV o T K T G (0] 265
MOV loc16, AX, COND —Store AX Register CONditioNallycoeeeeiiieeeiiiieeseereresanre s saanrersannneesaanneesnnnns 266
MOV [0C16,IER —Store Interrupt-ENable REQISEr . ..uueiiiieiiiii i se it saaanr e ssaane e s saanneesaannnesaannnessnnnes 268
MOV [0C16,0VC — Store the OVerfloW COUNM B .ttt ittt tttiistsesisessnsesesnssessaeresnstsessneresstsrraterssssrnnnns 269
MOV loc16,P —Store Lower Half of Shifted P RegISter......uiiiiii i e e s raaes 270
MOV [0C16, T —StOre the T REOISIEIttt r et r e st a e st s s e s sa i n e e ssaan s e s aaann e s aaannnssaannnestannns 271
MOV OVC, 10C16 —Load the OVEIrflOW COUNTET v uuuueirtereeeeeeeeneaarasreeeeernesnnnsssassreeeemmnnsnsssssssrreeeernnnnnnns 272
SPRU430F—August 2001 —-Revised April 2015 C28x Assembly Language Instructions 109

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

I} TEXAS
INSTRUMENTS
Summary of Instructions www.ti.com
Table 6-1. Summary of Instructions (continued)

MOV PH, loc16 —Load the High Half of the P REQISIEr «..uuiiuiiiiiiiiii i e 273
MOV PL, loc16 —Load the Low Half Of the P REQISIEr .. uueeiiii i r e r s s e se e e sannnn e saannnenaannes 274
MOV PM, AX —Load Product Shift MOOEuuueiseiiitiiieiiisiiis s s er s s s s ra s s e s raassa s ssa s s e aaanssannss 275
MOV T, loc16 —Load the Upper Half of the XT ReQISteruuuiiiiieiiiiini i s as e anaes 276
MOV TL, #0 —Clear the Lower Half of the XT RegiSter......uueiiiiiiiiii i s r e s e e aaanes 277
MOV XARN, PC —Save the Current Program COUNTEEuesiiieeeiiaaetesraatssssaanesssannsessaannsssaansssaannnessannes 278
MOVA T,loc16 —Load T Register and Add Previous ProdUCTeeiiiiieiiiiieeiiiaresraaneessannnessaanneesaannneaanns 279
/@ AV 7N T I o Yo K Ty o =T =T £ - 280
MOVB ACC,#8bit —Load Accumulator With 8-bit Valueceviieiiiiiiiii i s 281
MOVB ARG6/7, #8bit —Load Auxiliary Register With an 8-bit ConStantvvviieiiiiiiiiiii i i 282
MOVB AX, #8bit —Load AX With 8-Dit CONSTaANT ..iiueiittitiiiittiitttsisresasssessnsrsasssssssssressssssssssersssssssrannns 283
MOVB AX.LSB, [0C16 —L0ad BYtE ValUEueiiiiiteiiiiit it et e e e e s s ae e s s s e s saaan e s saanne e s sannassannnes 284
MOVB AX.MSB, 10C16 —L0Ad BYIE VAIUEueiiiiiitiiiiiieeie i e s aae e ssaane s saanee e ssannn e s sannne s saannnessannnessannnes 286
MOVB loc16,#8bit, COND — Conditionally Save 8-hit CONSLANTuuerieiiiiiiiie i i e raeeaaes 288
MOVB 1016, AX.LSB —Store LSB Of AX REQISIEI .uutiiiitetiiiteiiiatessaanressasnneessasneesaaannessaannessssnnnessnnnes 290
MOVB 10c16, AX.MSB —Store MSB Of AX REQISIEI .. uutiitteiiiieiiiirr i ss i ssar s ssaire s ssasaessannns 292
MOVB XARnN, #8bit —Load Auxiliary Register With 8-bit Valuecoviieiiiiii e 294
MOVDL XT,10c32 —Store XT and LOAd NEW X .uuiiiuiiiiieiiiieesnisessnsresnsssesssresssssssssssrssssssssssssrsssssssssnnns 295
Y (@AY o I o Tt K I AN O Gt e I & e I 1= o 11T o 296
MOVH loc16, P —Save High Word of the P REQISTEr 1..uuiueiiiiiieii i s s s s raes 297
MOVL ACC,loc32 —Load Accumulator With 32 BitS.....uuueisieriiutiriesiintirineiisisiesiinssiasiansssnesiansisinssanrssnns 298
MOVL ACC,P << PM —Load the Accumulator With Shifted P ..u.iiiiieiiiiiiiiiiiiiiiiaississsssissisrissssssrssssressnres 299
MOVL [0C32, ACC —StOre 32-Dit ACCUMUI A0 tuutittteiittttiestsssseesnsesessssseesnsssessssssessssresssssssssserssssssrssnnns 300
MOVL loc32,ACC,COND —Conditionally Store the ACCUMUIALOTeuiieieiiiiee i aare s s sranre e raanneeanas 301
MOVL 10C32,P —StOre the P REQISIEI . .uiiiiiiiiiie i r s s e e et s e e s sa e e e ssannn e s saann e s saannnesaannnesannnnes 303
MOVL loc32, XARN —Store 32-bit AUXIlIary RegIStEr . ..uuueeietiiteii i erns 304
MOVL 10C32,XT — StOre the XT REQISIE 1 uietttiiiitesiaieeesieeesaasneesaasnnessaannesssasnnessannnesseannnessanneessennnes 305
MOVL P, ACC —Load P From the ACCUMUIATOT . v ..t ittt ttteiittssissssnssesnssessnssresssssssssssrssssssesssssrsssssssnsnnns 306
MOVL P,10C32 —L0ad the P REGISTEN ... uuiiiiiiiiiite i ra et aae st st e s sa s s s s n s e s saan s e s ssannssaannnesinnnes 307
MOVL XARN, 0€32 —Load 32-bit AUXIIAIY REQISTEN ...t it ra e s s e s s ann e s aaannneaannas 308
MOVL XARnN, #22bit —Load 32-bit Auxiliary Register With Constant Value.........ccvvviiiiiiiiiiini i 309
MOVL XT,I0C32 — L0ad the XT REQISIE .ttt eteteeieeereaneessaannessaanneessaanressaannnessaanneesaanneessannnessesnnnessnnns 310
MOVP T,loc16 —Load the T Register and Store P in the ACCUMUIALOr.....uveiiiieei i i cre e e s e annneaaas 311
MOVS T,loc16 —Load T and Subtract P From the ACCUMUIATON ..viueiiiiiiiiiiiii i ressieserssisrsssssssnansssssnnnnses 312
MOVU ACC,loc16 —Load Accumulator With Unsigned Wordc..eeiiiiieiiiiiniiiriis e ssnian s ssnineeaaas 313
MOVU loc16,0VC —Store the Unsigned OVerflow COUNTETueeieiiiiii i it rainr e ssaanr e saninns s ssanneannnns 314
MOVU OVC,loc16 —Load Overflow Counter With Unsigned Value........oouiiieiiiiiiiiiiiiinisins e nneenaes 315
MOVW DP, #16bit —Load the ENtire Data Page «..cceveiiiieesiiaeessaaeressasareessanneessaannessaannessaannnesssnnnessnnnes 316
MOVX TL,loc16 —Load Lower Half of XT With Sign EXtENSIONuueeiiiiiesiiii s siieesianeeessannnessannneesaannnenanns 317
MOVZ ARn, loc16 —Load Lower Half of XARN and Clear Upper Halfccoviiiiiiiiiiiiiii i naeeeas 318
MOVZ DP, #10bit —Load Data Page and Clear High BitSocieeiiiiiiiiiiiin i e s e rninn e aaas 319
MPY ACC,loc16, #16bit — 16 X L16-Dit MUIIPIY +.uueieeiieiiies i e sr s s e e s e s aneesanesar e rnnesannenaneaannss 320
MPY ACC, T, 10€16 —16 X 16-Dit MUIIPIY ... eeeeee e et e s e e s s e e s sa e e e saanne e s annnenaannnes 321
MPY P,10C16,#16bit — 16 X 16-Bit MUIIPIY ... vvueirneeteeteeteesneesneesneeseetaeetesneesnresneessesasenaeensesneesnsesneesns 322
MPY P,T,I0C16 —16 X 16 MUIIDIY ¢t eueeeesiieeeseeaeessaannesssasneessaaneesseanneessannnnesssnnnessssnneesssnnnsssssnnessnnnns 323
MPYA P,loc16,#16bit —16 X 16-Bit Multiply and Add Previous ProducCt.........ceeeviviiiisiiiiiiesiiiissiiinserninnnennas 324
MPYA P,T,loc16 —16 X 16-bit Multiply and Add Previous ProducCtcc.eeiiiiieiiiiieiii i s ssananeeaas 325
MPYB ACC, T, #8bit —Multiply by 8-Dit CONSIANT.ttt r e s rane s saanne s aanns 326
MPYB P,T,#8bit —Multiply Signed Value by Unsigned 8-bit CONSIANTuviiiiiiiiiiiiiiiri i 327

110 C28x Assembly Language Instructions SPRU430F-August 2001 —Revised April 2015

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

I3 TEXAS
INSTRUMENTS
www.ti.com Summary of Instructions
Table 6-1. Summary of Instructions (continued)
MPYS P,T,loc16 —16 X 16-bit Multiply @and SUDIIACT ...t e e s s ane e ananes 328
MPYU P,T,l0c16 —UNsigned 16 X 16 MUIIPIY .. uueenueeineineeiterae it sssssaasssas s sses s ssnnssannssnns 329
MPYU ACC,T,l0¢c16 —16 X 16-bit UNSigned MUIIPIY . .veeiieeeeiiiis i ssesseessssnne e ssanneessannsesaannneesannnnesannns 330
MPYXU ACC, T, loc16 —Multiply Signed Value by Unsigned Valueccciiiiiiiiiiiiiniiiiiiiin e snannneenas 331
MPYXU P,T,loc16 —Multiply Signed Value by Unsigned ValUecoiiiieiiiiiiiiiiiiii it s nessanneenaas 332
[NS S B o o] ¥= o) Q01 (] 333
NEG ACC —Negate ACCUMUIBION ..ttt tseiseerat st st s s s s e s s s e s s e s s a e s aa s s s s s s nsaneraneaas 334
NEG AX ——NeQate AX REGISTE . 1t u it ittt istire sttt e s s s e e s s s a e e s e sa e s s a et e e s san e sannsrannaas 335
NEG64 ACC:P —Negate Accumulator Register and Product REQISTEruueiiiiiiiiiiiiie i siinee s rnanneesenneenas 336
NEGTC ACC —If TC is Equivalent t0 1, Negate ACC .. .uiiuuuieiiieteiiiiteessiiassssasnssssiasssisasssssaansssisansssssannns 337
NOP {*ind}{ARPn} —No Operation With Optional Indirect Address Modificationccvviiiiiiiiiiiiiiiiiiiaeens 339
NORM ACC, *ind —Normalize ACC and Modify Selected Auxiliary REQISIErueiiiiiiiiiiiii i rraneeeas 340
NORM ACC,XARn++/- = —Normalize ACC and Modify Selected Auxiliary RegiSterooevviiiiiiiiiiniiiiiinnen, 341
NOT ACC — Complement ACCUMUIALOT . .uuuuueerstsraeessssrte e sae e sia s saas s s s s s s s s sa e ss s s saa s ssassannssanssannens 342
NOT AX — ComPlEmMENt AX REQISIEI 1.ttt eiiaie e sasee e tsaiaeessaanteeseaneessaanneessannressasnneesssnnnessssnnessnnnns 343
OR ACC, 10C16 —BItWiISE OR .uuuuiuutiusiusesseratissseraertrssase st e sttt ae st s s st e s s es e s aansanens 344
OR ACC,#16bit << #0..16 —BItWISE OR ... tuutitistiueitiiir ittt s s et e s e s s eanearans 345
OR AX, |0CL16 — BitWiSE O R tiiitiitittiiitetniseesassessssseessssressssssesssssessssssesssstesssssssssssresssssssssssrsssssssssnnns 346
OR IERHLEDIT —BitWiSE OR .. uuiutiutitisesasstiasrassssassas s sar s st et sas et sae st saasaansassanssnssantnnsnnssnssns 347
OR IFR,ZLEDIt — BItWiSE OR .itetiieieetsaaeessaateessanressaanneesaaneesaaannessaannessasnnnessasnnessssnnessssnnnessnnnns 348
OR 10C16,#16D1t —BitWIiSE OR 4.uutiusiuserseisisiss sttt s er et e s s et s et eranaaneraenns 349
OR 10CL16, AX — BIlWISE O R ttttuiittttiittanisesnassesnnssessssreessssessssmeessseessmmesermmimeeettieetettnnins 350
ORB AX,#8Dit — BitwWiSE OR 8-Dit ValUe 1uuiiiiiiiiiiiiiiiiiiissiiteaaettesssseassssessssstesssssesssssrssssssssssssrssssnses 351
OUT *(PA),I0C16 —OULPUL DAt@ t0 PO .. .eeiiiiie it iaa e et ee s rr et e s ss e s e s s et e s ss st e s aan s e saannesaaannessannns 352
POP ACC —Pop Top Of StaCk t0 ACCUMUIALON . v uusisesstissesatssss s e ss s s s s s s s ar s raaeaan e sanraaans 353
POP ARN:ARmM —Pop Top of Stack to 16-bit Auxiliary REeGISIEIS ...uiiueiiiiiiiiii i 354
POP AR1H:AROH —Pop Top of Stack to Upper Half of AuXiliary RegiSters......coviiiiiieiiiieessiiesininneessannnenas 355
POP DBGIER —P0op Top Of Stack 10 DBGIER ..uuuiuseisiisisinseisisissrsesssnssasssss s sansasssssassnnsnssns 356
POP DP —Pop Top of Stack t0 the Data PAgeoc.eieiiiiiiiiiiieiiii s s r s s e s sraas st st e s saannassannns 357
POP DP:ST1 —Pop Top Of Stack t0 DP @nd STL ..uuueeiiseiiueeinnirseiissinerississssissssss s 358
POP IFR —Pop Top Of StACK t0 IFR 1. ueii ettt r s s s s n s raaeaaanens 359
[0 Lo ol G = o I 0] oI 0 - Lo« 360
O] e g (0] o 0] 5] = Uox Gl o T PP 361
POP RPC —Pop RPC Register FrOom StaCKuuuiieieiiiiiiiiiiiiis i ss s sssase s ssisss s ssanass s sansessannnes 362
POP STO —POP TOP Of StACK 10 ST 0 .. uuttiiieeiiatesriiae s saaase s saaase st saaas et saaan e s ssaan s e s saannsssaannnssaannnsssnnnes 363
POP ST1 —P0Op TOP Of SEACK 10 ST L .. uuuuueiustiutssuneinerserassssssrastsrse s srre s s sas st aasrsarsrassrannens 364
POP T:STO —Pop Top Of Stack t0 T @nd STO .uuuuueiuueeineineesstirseiisesase e ssss s ssss e saisesanrsanns 365
POP XARN —Pop Top of Stack to 32-bit AuXiliary RegIStEr.....uuiieeiiiriiiri i e 366
POP XT —POP TOP Of StACK 10 XT 1tuiiiiiiinetieieesssaneessaaneesssanneessaanneessannessssnneesssnnnessssnnessssnnnessnnnes 367
PREAD loc16,*XAR7 —Read From Program MeMOIYuuueeiiiiuueeisiutesiaissssisansssssannnsssaisnsssannnssssinnssisnns 368
PUSH ACC —Push Accumulator ONtO StACK.uviuueeiiiiieiiiiiee i s r e s s s s a s s saaa e s saannesaannes 369
PUSH ARn:ARmM —Push 16-bit Auxiliary REQISters ONto StaCKcvvieiiiiiiii i rn e eaaas 370
PUSH AR1H:AROH —Push AR1H and ArOH RegiSters 0N StACK v...vvueeviusiiseiiireiiisiesianssssiarsnsesaneannes 371
PUSH DBGIER —Push DBGIER Register ONtO STACK .. .uuutiruetiiutsiaeiitesiteiasssiessasts s saansssssansssnnssannssnns 372
PUSH DP —Push DP RegiSter ONtO StACK +..uuuteiiiisiesiiitsesssaneessssnnessasnneesaannessssnnessssnneessssnnessesnnnssennnes 373
PUSH DP:ST1 —Push DP and ST1 ONt0 StACK ... vuuuusiiiiiieiiiie i r i s s s s s ss s s asaanaensannes 374
PUSH IFR —PUSH IFR ONO SEACK .1ttt it vt st e s e s e e s s r e s s an s a e e aes 375
PUSH 10¢16 —Push 16-bit Value 0N StaCKcoiiiiiiiii i e e s s e s s aar e s s rnnr s sranr e aaannns 376
PUSH P —PUSH P ONtO StACK. .11ttt s et s s e s s s s e s s e s e s a s s s s s e s n s nenas 377
SPRU430F—August 2001 —-Revised April 2015 C28x Assembly Language Instructions 111

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

I} TEXAS
INSTRUMENTS
Summary of Instructions www.ti.com
Table 6-1. Summary of Instructions (continued)

PUSH RPC —PUSh RPC ONO SEACK .. etetieteiiaieessaanesssaanessaannasssannsessaanneessaannessaannesssannnsssssnnessnnnes 378
PUSH STO —PUSHh STO ONO SEACK. 1. uetetianeetraaeesssannessaaneesssaneessaanneessaannessasnneessasnnessssnnessssnnnessnnnes 379
PUSH ST1 —PuUSh ST1 ONO StACK. ...t ettt sttt es st s s s s s s s s e s s s s e s s aa s s s ssnnsaannans 380
PUSH T:STO —Push T and STO ONO STACK . .uutuiuuueteiinneirnieesssiiaesssassssssnssssssasssssasnsesssasssssansressannnes 381
PUSH XARN —Push 32-bit Auxiliary Register ONtO STACKviiiieieiiiiiiiiiiie i r s sraae e aanans 382
PUSH XT —PUSh XT ONtO StACK. ...ttt r et e r st e s s e e ss s et s s e s saannn e s saannessannnns 383
PWRITE *XAR7,10C16 —WIite t0 Program MemMOIY .. .ueuuesreesssssseiasssssesassssisssansssiss s sasssainssasssnns 384
QMACL P,loc32,*XAR7/++ —Signed 32 X 32-bit Multiply and Accumulate (Upper Half)ccovviviiiiiiiiiiiniinnsn 385
QMPYAL P,XT,loc32 —Signed 32-bit Multiply (Upper Half) and Add Previous P......cc.iiiiieeiiiiieniiiieeriiineeennnnees 387
QMPYL P,XT,loc32 —Signed 32 X 32-bit Multiply (Upper Half) c..oiiueeiiii s e aae e 388
QMPYL ACC,XT,loc32 —Signed 32 X 32-bit Multiply (Upper Half)ooieiiiiii e e e aee e 389
QMPYSL P,XT,loc32 —Signed 32-bit Multiply (Upper Half) and Subtract Previous P........ccovviiiiiiiiiiiiiininan., 390
QMPYUL P,XT,loc32 —Unsigned 32 X 32-bit Multiply (Upper Half)ooveiiiiiiii e 391
QMPYXUL P,XT,loc32 —Signed X Unsigned 32-bit Multiply (Upper Half)ovveiiiiiiiiii e 392
ROL ACC —Rotate ACCUMUIAOr LETt .uuuueeiueiiieiiitiieiit st ss e st s s s e sa e s s aesa e s s aa e saessanssannsrannans 393
ROR ACC —Rotate ACCUMUIALOr RIGNT ..t r e s s s s s s s ne s aaaane s sannes 394
RPT #8bit/l0c16 —Repeat NeXt INSITUCLION . ..uueiiteiiiitte et r e s sr s s ss s e s sraaas s ssanaresiaannassannnes 395
SAT ACC —SatUrate ACCUMUIALON ... ate et et et it e e sa e e e ssan e e ssa e e s saane s saaa e et saann e s saannnsssannnessannnnsssnnnes 396
SAT64 ACC:P —Saturate 64-bit Value AC C P iii it r et a et r e s taar e s saan e e s aaanneesaanneesaannneaannn 397
SB 8bitOffset,COND —Need desCription NEIE.ueii e e i rra s sa s e saannessaannessaannnessannrerraannnennnn 399
SBBU ACC,loc16 —Subtract Unsigned Value PIUS INVEIrSE BOrOWueeiiiieeeiiiieesiianseessannressasnneessanneesssnnnes 400
SBF 8bitOffset,EQ/NEQ/TC/NTC —Short BranCh Fastuuuueisiieiiiiiiiiiiiiissssssssssssssississssssssssssnmmesssmimmnnns 401
SBRK #8bit — Subtract From Current AuXiliary RegISIErueiiiiiii i s rraare s rranneeas 402
SETC Mode —Set MUIIPIE STAtUS BilS ... uueeiiieiiiie e iia it r e r et r e s s aaa e e s s s st e saaanr e s aaann e s aaannesaannns 403
SETC MOM1MAP —Set the MOMLMAP StatusS Bitueeeiiiiiieiiiae e rreie e sssneesaannre s saannessaannnessannnesraannnesnn 405
SETC Objmode —Set the Objmode STAtUS Biteiieeiieiiseiiri i e s s s raneaaes 406
SETC XF —Set XF Bit and OULPUL SIgNal...cuieeeiiiiieeiseiessaintesssasseessansressaannesssanneessannnessssnneesssnnnessnnns 407
SFR ACC,#1..16 — Shift AcCUmMUIAtOr RIGNT «..u .t s r e r e asanreanaas 408
SFR ACC, T —Shift AcCUumMUIALOr RIGNT ... et s s s e s s a s e s s s e s ssannae s aanns 409
SPM shift —Set Product Mode Shift BitSu.ueeiiiiiiiii it r s s s e s s s e e ssanr e saaanneaannns 410
SQRA loc16 —Square Value and Add P t0 ACC .. .uuiiutiise i irierasss s s ar s saa s s aannerans 412
SQRS loc16 —Square Value and SubtracCt P FrOmM ACCueiiueiiieiiiiiiitiite i isisesass st s sans s aanssannsans 413
SUB ACC,loc16 << #0..16 — Subtract Shifted Value From ACCUMUIALONuuiiuiiiieiiiieiieiiieriesisieesiarsaesianeas 414
SUB ACC,loc16 << T —Subtract Shifted Value From ACCUMUIATO viieiiiittaiitteniistseaiirsassesessntsrssnssssnsnssrees 416
SUB ACC,#16bit << #0..15 — Subtract Shifted Value From ACCUMUIALONeuuiiiiiiiii it iiiiiisiiserssesssnsansanans 417
SUB AX, loc16 —Subtract Specified LOCatioN From AX ...t iaa i sss s s saaias s saanne s saannassaannnensns 418
SUB loc16, AX —Reverse-Subtract Specified LOCation From AXeiieeiieeiiiriiisisiniesisssisesinasssaneaas 419
SUBB ACC,#8bDit — SUDLraCt 8-Dit VallUE ...vuveeiiiiiiiirstettteesiersatrreeeeeresannnnraasreeeesrnnnnnssrarsrreeeennnnnssnnns 420
SUBB SP,#7Dit — Subtract 7-bit VAlUE ..o s e 421
SUBB XARN #7bit —Subtract 7-Bit From Auxiliary RegiSter......uuiiieieiiiiiiiirii i s rnaeeeas 422
SUBBL ACC, loc32 —Subtract 32-bit Value Plus INVErSE BOIOW ..u.iiiiiiiiiiiiiiiiaiiiiisiiiesniisesnssssssnsssssssasennes 423
SUBCU ACC,l0c16 —Subtract CONAItIONAl 16 BilS...u.ueeuiseresiseesanssesnnssessnsssessssssesnsssessssssssssrssssssssssssrens 424
SUBCUL ACC,l0c32 —Subtract ConditioNal 32 BilS ..uuueeeuuuuiriresreeeeeeennnnnrareerreeemmnnnnnsrmrresreermennssssssrrrees 426
SUBL ACC, 10C32 —SUDLIract 32-Dit ValUe +.vuuuiiiiiiseseetteessieaseesseeeaennsanssrrrsreeeeennnnnnssrrrrrreeeessnnnnns 428
SUBL ACC,P << PM —Subtract 32-Dit VaAlUEviiueiiiiiiie it st s s s s s s s s s n s snae s e nnans 429
SUBL 10€32, ACC — SUDract 32-Dit ValUE «.uiieiiiiiiiiiiiiistiaiisesesissssnsisssnssessnsesessstsesenserssssstssssserssssnses 430
SUBR loc16,AX —Reverse-Subtract Specified Location From AX.ueiiiieiiiieiriieiriirrinessssaies s sninaeeas 431
SUBRL loc32, ACC —Reverse-Subtract Specified Location From ACCueiiiiiiiiiiiiiie it isannessaanreesnannees 432
SUBU ACC, loc16 —Subtract Unsigned 16-bit ValUe......cuiieiiiiiiiiiiii i i ess s e sseine s snane s saann e s snnnneeens 433

112 C28x Assembly Language Instructions SPRU430F-August 2001 —Revised April 2015

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

I3 TEXAS
INSTRUMENTS
www.ti.com Summary of Instructions
Table 6-1. Summary of Instructions (continued)
SUBUL ACC, 1032 —Subtract Unsigned 32-bit ValUeo..eeiiiiiiiiiii i s s e rsane e ssnnne s snnnne e sannnneenn 434
SUBUL P,l0c32 —Subtract Unsigned 32-Dit ValUeueeeiiiiiiiiii e i eesseee s ssne s ssann e s snnne s snnnnnessannnenenn 435
TBIT [0C16,#bit — TeSt SPECITIEU Bit..eeetiieeetiiieestiiteessaantessaanreesaanresaasnnessasnnessaasnnessssnnessssnneessennnensnn 436
TBIT l0c16,T —Test Bit Specified DY REGISTEr «.uuuuueiiiieiiii i r s s s aannenas 437
TCLR loc16,#bit —Test and Clear SPeCified Bil.......uviieeiiiiiiiiiii i rr e s aaanneas 438
TEST ACC —Test for Accumulator EQUAI 10 ZEI0 w.uuviuseiiseiiieirisisse st st i s s s s s saneaanesannanns 439
TRAP #VeCtOrNUMDEr — SOfWAIE Tra . uuussissirseiseisetrastsrss e sss s s st ssaa s ra s aaasssanrsraneans 440
TSET 10c16,#16bit —Test and Set SPECIfied Bitcviieieeiiiii it rare s s saan e saaanresaaanneeaannnness 442
UOUT *(PA),loc16 —Unprotected Output Data to 1/O PoOrtciiiieeiiiiiee i i s sianneessaneessaansessaanneesannnnesannns 443
XB *AL —C2 xLP Source-Compatible Indirect BranCh........couveiiiiiiiiiiii i s aee e 444
XB pma,*,ARPn —C2xLP Source-Compatible Branch with ARP Modificationccoviiiiiiiiiiiiiiiiiiniieaans 445
XB pma,COND —C2 XLP Source-Compatible BranChoeiiiiiiiiii i i s rrnr e rr e e snnnnees 446
XBANZ pma,*ind{,ARPn} —C2 x LP Source-Compatible Branch If ARN IS NOt Zero........vveviiiiiieiiiiiinnininnne, 448
XCALL *AL —C2 x LP Source-Compatible FUNCHON Calluuiieiiiiiiiiiiiniie s s e s anaeeas 450
XCALL pma,*,ARPn —C2 x LP Source-Compatible Function Callc.ciiiiiiiiiiii i i i s s nnnne e annes 451
XCALL pma,COND —C2xLP Source-Compatible FUNCtion Callcceiiiiiiiiiiiiiiiiii i e 452
XMAC P,loc16,*(pma) — C2xLP Source-compatible Multiply and ACCUMUIALEceviiiiieiiiiiiiiii e 454
XMACD P,loc16,*(pma) —C2xLP Source-Compatible Multiply and Accumulate With Data Movecccvviiinnnnnn. 456
XOR ACC,I0C16 —BitwWiSE EXCIUSIVE OR . uuuuiiiiiitiiiiisiiriaasseeeeetnnnnarsreeseeeeeennnnnrsreerersenennnssssssrreseenns 458
XOR ACC #16bit << #0..16 —BitWiSE EXCIUSIVE OR .1uuuuiiiirtreeetteesnnnnsrasrreeeernnsnnnssrrrsrreeemmnnnnsrssrrsrreeennns 459
XOR AX,10C16 —BitwiSe EXCIUSIVE OR .uuuuiustiseitisinstiseisiserseressrassrae s sarsasereannans 460
XOR 10€16, AX —BitWiSE EXCIUSIVE O R 4 uiitttiiittttiitessissssssssnsssssmssssensssmsssmmnsttmsierntiaterieterennns 461
XOR 10C16,#16bit — BitWiSE EXCIUSIVE O R 1iiuiiiiiiiiiiiii sttt itstitsttaissasssssaassssnssssssasssssnssssssnsesssnsssesnns 462
XORB AX, #8bit —Bitwise EXCIUSIVE OR 8-Dit ValUe ..uuuiiiiiiiiiiiiiiiiiiiiiesisiesssisresssssessssssessssrssssssssssssrennns 463
XPREAD loc16, *(pma) —C2xLP Source-Compatible Program ReaAd.......vvviiiiriiiiiiriniiiiniiaenninesnnnenaees 464
XPREAD loc16, *AL —C2xLP Source-Compatible Program REadc.evvuiiiiiiiiiiiriiiiiiiieiasinieesinnsnnees 465
XPWRITE *A,loc16 —C2xLP Source-Compatible Program WIit ...uuiiieeeeiiii i esiee e sssneessnnnnessannnnesannnes 466
XRET —C2xLP Source-Compatible RetUMueeiiiie i s s s s s s as e asananenss 467
XRETC COND —C2xLP Source-Compatible Conditional REetUINueeiiiiiie i e e aee s 468
ZALR ACC,loc16 —Zero AL and Load AH With ROUNING. .. uuueieiiiieiiiiie e ra e rraiae e s snas e s srnne s s snnr e e aannnes 470
ZAP OVC —Clear OVerfloOW COUNTET . ..t eeettaateetsannnessaaneeessanneesaaanresaaannessaaannesaannnessaannesssannnessannnnnsns 471
ZAPA —Zero Accumulator and P REGISIEr 1.uuuiiueiiitiiite i e 472
SPRU430F—August 2001 —-Revised April 2015 C28x Assembly Language Instructions 113

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

C28x Assembly Language Instructions by Function www.ti.com

6.2 C28x Assembly Language Instructions by Function

NOTE: The examples in this chapter assume that the device is already operating in C28x Mode
(Objmode = = 1, AMODE = = 0). To put the device into C28x mode following a reset, you
must first set the Objmode bit in ST1 by executing the "C280BJ"M (or "SETC Objmode"M)
instruction.

NOTE: Cycle Counts assume the instruction is executed from zero-wait (single-cycle) memory and
there are no pipeline stalls.

Table 6-2. Instruction Set Summary (Organized by Function)

Symbol Description

XARnN XARO to XARY registers

ARnN, ARm Lower 16-bits of XARO to XAR7 registers

ARnNH Upper 16-bits of XARO to XAR7 registers

ARPnN 3-bit auxiliary register pointer, ARPO to ARP7

ARPO points to XARO and ARP7 points to XAR7

AR(ARP) Lower 16-bits of auxiliary register pointed to by ARP

XAR(ARP) Auxiliary registers pointed to by ARP

AX Accumulator high (AH) and low (AL) registers

Immediate operand

PM Product shift mode (+4,1,0,-1,-2,-3,-4,-5,-6) PC Program counter

~ Bitwise compliment

[loc16] Contents of 16-bit location

0:[loc16] Contents of 16-bit location, zero extended

S:[loc16] Contents of 16-bit location, sign extended

[loc32] Contents of 32-bit location

0:[loc32] Contents of 32-bit location, zero extended

S:[loc32] Contents of 32-bit location, sign extended

7bit 7-bit immediate value

0:7bit 7-bit immediate value, zero extended

S:7bit 7-bit immediate value, sign extended

8bit 8-bit immediate value

0:8bit 8-bit immediate value, zero extended

S:8bit 8-bit immediate value, sign extended

10bit 10-bit immediate value

0:10bit 10-bit immediate value, zero extended

16bit 16-bit immediate value

0:16bit 16-bit immediate value, zero extended

S:16bit 16-bit immediate value, sign extended

22bit 22-bit immediate value

0:22bit 22-bit immediate value, zero extended

LSb Least Significant bit

LSB Least Significant Byte

LSW Least Significant Word

MSB Most Significant Byte

MSb Most Significant bit

MSW Most Significant Word

OBJ Objmode bit state for which instruction is valid
114 C28x Assembly Language Instructions SPRU430F—-August 2001 —Revised April 2015

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

www.ti.com C28x Assembly Language Instructions by Function

Table 6-2. Instruction Set Summary (Organized by Function) (continued)

Symbol Description

N Repeat count (N =0,1,2,3,4,5,6,7,....)
{} Optional field

= Assignment

== Equivalent to

SPRU430F—August 2001 —-Revised April 2015 C28x Assembly Language Instructions 115

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

Register Operations

13 TEXAS
INSTRUMENTS

www.ti.com

6.3 Register Operations

NOTE: The examples in this chapter assume that the device is already operating in C28x Mode
(Objmode == 1, AMODE == 0). To put the device into C28x mode following a reset, you
must first set the Objmode bit in ST1 by executing the "C280BJ"M (or "SETC Objmode"M)

instruction.

NOTE: Cycle Counts assume the instruction is executed from zero-wait (single-cycle) memory and

there are no pipeline stalls.

Table 6-3. Register Operations

Mnemonic ‘ Description

XARN Register Operations (XARO-XAR?7)

ADDB XARN #7bit Add 7-bit constant to auxiliary register

ADRK #8bit Add 8-bit constant to current auxiliary register
CMPR 0/1/2/3 Compare auxiliary registers

MOV ARG6/7,loc16 Load auxiliary register

MOV loc16,ARN Store 16-bit auxiliary register

MOV XARN,PC Save the current program counter

MOVB ARG6/7 #8bit Load auxiliary register with an 8-bit constant
MOVB XARN, #8bit Load auxiliary register with 8-bit value

MOVL loc32,XARN Store 32-bit auxiliary register

MOVL XARnN,loc32 Load 32-bit auxiliary register

MOVL XARN,#22bit Load 32-bit auxiliary register with constant value
MOvz ARn,loc16 Load lower half of XARn and clear upper half
SBRK #8bit Subtract 8-bit constant from current auxiliary register
SUBB XARN #7bit Subtract 7-bit constant from auxiliary register
DP Register Operations

MOV DP #10bit Load data-page pointer

MOVW DP #16bit Load the entire data page

MOvz DP #10bit Load data page and clear high bits

SP Register Operations

ADDB SP,#7bit Add 7-bit constant to stack pointer

POP ACC Pop ACC register from stack

POP AR1:ARO Pop AR1 & ARO registers from stack

POP AR1H:AROH Pop AR1H & AROH registers from stack
POP AR3:AR2 Pop AR3 & AR?2 registers from stack

POP AR5:AR4 Pop AR5 & AR4 registers from stack

POP DBGIER Pop DBGIER register from stack

POP DP:ST1 Pop DP & ST1 registers on stack

POP DP Pop DP register from stack

POP IFR Pop IFR register from stack

POP loc16 Pop 4€Mlocl6a€M data from stack

POP P Pop P register from stack

POP RPC Pop RPC register from stack

POP STO Pop STO register from stack

POP ST1 Pop ST1 register from stack

POP T:STO Pop T & STO registers from stack

POP XT Pop XT register from stack

116 C28x Assembly Language Instructions

SPRU430F—August 2001 —Revised April 2015
Submit Documentation Feedback

Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

www.ti.com

Register Operations

Table 6-3. Register Operations (continued)

Mnemonic Description

POP XARnN Pop auxiliary register from stack
PUSH ACC Push ACC register on stack

PUSH ARN:ARN Push ARn & ARn registers on stack
PUSH AR1H:AROH Push AR1H & AROH registers on stack
PUSH DBGIER Push DBGIER register on stack
PUSH DP:ST1 Push DP & ST1 registers on stack
PUSH DP Push DP register on stack

PUSH IFR Push IFR register on stack

PUSH loc16 Push &M loc16&€M data on stack
PUSH P Push P register on stack

PUSH RPC Push RPC register on stack

PUSH STO Push STO register on stack

PUSH ST1 Push ST1 register on stack

PUSH T:STO Push T & STO registers on stack
PUSH XT Push XT register on stack

PUSH XARnN Push auxiliary register on stack
SUBB SP #7bit Subtract 7-bit constant from the stack pointer
AX Register Operations (AH, AL)

ADD AX,loc16 Add value to AX

ADD loc16,AX Add AX to specified location

ADDB AX,#8bit Add 8-bit constant to AX

AND AX,loc16,#16bit Bitwise AND

AND AX,loc16 Bitwise AND

AND loc16,AX Bitwise AND

ANDB AX,#8bit Bitwise AND 8-bit value

ASR AX,1..16 Arithmetic shift right

ASR AX, T Arithmetic shift right by T(3:0) = 0...15
CMP AX,loc16 Compare

CMPB AX,#8bit Compare 8-bit value

FLIP AX Flip order of bits in AX register

LSL AX,1..16 Logical shift left

LSL AX, T Logical shift left by T(3:0) = 0...15
LSR AX,1..16 Logical shift right

LSR AX, T Logical shift right by T(3:0) = 0..15
MAX AX,loc16 Find the maximum

MIN AX,loc16 Find the minimum

MOV AX,loc16 Load AX

MOV loc16,AX Store AX

MOV loc16,AX,COND Store AX register conditionally
MOVB AX,#8bit Load AX with 8-bit constant

MOVB AX.LSB,loc16 Load LSB of AX reg, MSB = 0x00
MOVB AX.MSB,loc16 Load MSB of AX reg, LSB = unchanged
MOVB loc16,AX.LSB Store LSB of AX reg

MOVB loc16,AX.MSB Store MSB of AX reg

NEG AX Negate AX register

NOT AX Complement AX register

OR AX,loc16 Bitwise OR

SPRU430F—August 2001 —-Revised April 2015
Submit Documentation Feedback

C28x Assembly Language Instructions 117

Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

Register Operations

13 TEXAS
INSTRUMENTS

www.ti.com

Table 6-3. Register Operations (continued)

Mnemonic Description

OR loc16,AX Bitwise OR

ORB AX,#8bit Bitwise OR 8-bit value

SUB AX,loc16 Subtract specified location from AX

SUB loc16,AX Subtract AX from specified location

SUBR loc16,AX Reverse-subtract specified location from AX
SXTB AX Sign extend LSB of AX reg into MSB

XOR AX,loc16 Bitwise exclusive OR

XORB AX,#8bit Bitwise exclusive OR 8-bit value

XOR loc16,AX Bitwise exclusive OR

16-Bit ACC Register Operations

ADD ACC,loc16 {<< 0..16} Add value to accumulator

ADD ACC, #16bit {<< 0..15} Add value to accumulator

ADD ACC,locl16 << T Add shifted value to accumulator

ADDB ACC #8bit Add 8-bit constant to accumulator

ADDCU ACC,loc16 Add unsigned value plus carry to accumulator
ADDU ACC,loc16 Add unsigned value to accumulator

AND ACC,loc16 Bitwise AND

AND ACC,#16bit{<< 0..16} Bitwise AND

MOV ACC,loc16 {<< 0..16} Load accumulator with shift

MOV ACC, #16bit {<< 0..15} Load accumulator with shift

MOV loc16,ACC << 1..8 Save low word of shifted accumulator
MOV ACC,locl6 << T Load accumulator with shift

MOVB ACC #8bit Load accumulator with 8-bit value

MOVH loc16,ACC << 1..8 Save high word of shifted accumulator
MOVU ACC,loc16 Load accumulator with unsigned word
SUB ACC,locl6 << T Subtract shifted value from accumulator
SUB ACC,loc16 {<< 0..16} Subtract shifted value from accumulator
SUB ACC,#16bit {<< 0..15} Subtract shifted value from accumulator
SUBB ACC, #8bit Subtract 8-bit value

SBBU ACC,loc16 Subtract unsigned value plus inverse borrow
SUBU ACC,loc16 Subtract unsigned 16-bit value

OR ACC,loc16 Bitwise OR

OR ACC, #16bit {<< 0..16} Bitwise OR

XOR ACC,loc16 Bitwise exclusive OR

XOR ACC,#16bit {<< 0..16} Bitwise exclusive OR

ZALR ACC,loc16 Zero AL and load AH with rounding

32-Bit ACC Register Operations

ABS ACC Absolute value of accumulator

ABSTC ACC Absolute value of accumulator and load TC
ADDL ACC,loc32 Add 32-bit value to accumulator

ADDL loc32,ACC Add accumulator to specified location
ADDCL ACC,loc32 Add 32-bit value plus carry to accumulator
ADDUL ACC,loc32 Add 32-bit unsigned value to accumulator
ADDL ACC,P << PM Add shifted P to accumulator

ASRL ACC,T Arithmetic shift right of accumulator by T(4:0)
CMPL ACC,loc32 Compare 32-bit value

CMPL ACC,P << PM Compare 32-bit value

118 C28x Assembly Language Instructions

SPRU430F—August 2001 —Revised April 2015
Submit Documentation Feedback

Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS

INSTRUMENTS

www.ti.com

Register Operations

Table 6-3. Register Operations (continued)

Mnemonic Description

CSB ACC Count sign bits

LSL ACC,1..16 Logical shift left 1 to 16 places

LSL ACC,T Logical shift left by T(3:0) = 0...15

LSRL ACC, T Logical shift right by T(4:0)

LSLL ACC,T Logical shift left by T(4:0)

MAXL ACC,loc32 Find the 32-bit maximum

MINL ACC,loc32 Find the 32-bit minimum

MOVL ACC,loc32 Load accumulator with 32 bits

MOVL loc32,ACC Store 32-bit accumulator

MOVL P,ACC Load P from the accumulator

MOVL ACC,P << PM Load the accumulator with shifted P
MOVL loc32,ACC,COND Store ACC conditionally

NORM ACC,XARN++/-- Normalize ACC and modify selected auxiliary register.
NORM ACC,*ind C2XLP compatible Normalize ACC operation
NEG ACC Negate ACC

NEGTC ACC If TC is equivalent to 1, negate ACC
NOT ACC Complement ACC

ROL ACC Rotate ACC left

ROR ACC Rotate ACC right

SAT ACC Saturate ACC based on OVC value

SFR ACC,1..16 Shift accumulator right by 1 to 16 places
SFR ACC, T Shift accumulator right by T(3:0) = 0...15
SUBBL ACC,loc32 Subtract 32-bit value plus inverse borrow
SUBCU ACC,loc16 Subtract conditional 16-bit value
SUBCUL ACC,loc32 Subtract conditional 32-bit value

SUBL ACC,loc32 Subtract 32-bit value

SUBL loc32,ACC Subtract 32-bit value

SUBL ACC,P << PM Subtract 32-bit value

SUBRL loc32,ACC Reverse-subtract specified location from ACC
SUBUL ACC,loc32 Subtract unsigned 32-bit value

TEST ACC Test for accumulator equal to zero
64-Bit ACC:P Register Operations

ASR64 ACC:P,#1..16 Arithmetic shift right of 64-bit value
ASR64 ACC:P, T Arithmetic shift right of 64-bit value by T(5:0)
CMP64 ACC:P Compare 64-bit value

LSL64 ACC:P,1..16 Logical shift left 1 to 16 places

LSL64 ACC:P,T 64-bit logical shift left by T(5:0)

LSR64 ACC:P,#1..16 64-bit logical shift right by 1 to 16 places
LSR64 ACC:P,T 64-bit logical shift right by T(5:0)

NEG64 ACC:P Negate ACC:P

SAT64 ACC:P Saturate ACC:P based on OVC value

P or XT Register Operations (P, PH, PL, XT, T, TL)

ADDUL P,loc32 Add 32-bit unsigned value to P

MAXCUL P,loc32 Conditionally find the unsigned maximum
MINCUL P,loc32 Conditionally find the unsigned minimum
MOV PH,loc16 Load the high half of the P register

MOV PL,loc16 Load the low half of the P register

SPRU430F—August 2001 —-Revised April 2015
Submit Documentation Feedback

C28x Assembly Language Instructions 119

Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

Register Operations

13 TEXAS
INSTRUMENTS

www.ti.com

Table 6-3. Register Operations (continued)

Mnemonic Description

MOV loc16,P Store lower half of shifted P register

MOV T,locl6 Load the upper half of the XT register

MOV loc16,T Store the T register

MOV TL,#0 Clear the lower half of the XT register

MOVA T,locl6 Load the T register and add the previous product
MOVAD T,locl6 Load T register

MOVDL XT,loc32 Store XT and load new XT

MOVH loc16,P Save the high word of the P register

MOVL P,loc32 Load the P register

MOVL loc32,P Store the P register

MOVL XT,loc32 Load the XT register

MOVL loc32,XT Store the XT register

MOVP T,locl6 Load the T register and store P in the accumulator
MOVS T,locl6 Load T and subtract P from the accumulator
MOVX TL,loc16 Load lower half of XT with sign extension
SUBUL P,loc32 Subtract unsigned 32-bit value

16x16 Multiply Operations

DMAC ACC:P,loc32,*XAR7/++ 16-bit dual multiply and accumulate

MAC P,loc16,0:pma Multiply and accumulate

MAC P,loc16,*XAR7/++ Multiply and Accumulate

MPY P,T,loc16 16 X 16 multiply

MPY P,loc16,#16bit 16 X 16-bit multiply

MPY ACC,T,loc16 16 X 16-bit multiply

MPY ACC,loc16,#16bit 16 X 16-bit multiply

MPYA P,loc16,#16bit 16 X 16-bit multiply and add previous product
MPYA P,T,locl6 16 X 16-bit multiply and add previous product
MPYB P, T,#8bit Multiply signed value by unsigned 8-bit constant
MPYS P,T,locl6 16 X 16-bit multiply and subtract

MPYB ACC,T #8bit Multiply by 8-bit constant

MPYU ACC,T,loc16 16 X 16-bit unsigned multiply

MPYU P,T,locl6 Unsigned 16 X 16 multiply

MPYXU P,T,locl6 Multiply signed value by unsigned value

MPYXU ACC,T,loc16 Multiply signed value by unsigned value

SQRA loc16 Square value and add P to accumulator

SQRS loc16 Square value and subtract from accumulator
XMAC P,loc16,*(pma) C2xLP source-compatible multiply and accumulate
XMACD P,loc16,*(pma) C2xLP source-compatible multiply and accumulate with data move

32x32 Multiply Operations

IMACL P,loc32,*XAR7/++ Signed 32 X 32-bit multiply and accumulate (lower half)
IMPYAL P,XT,loc32 Signed 32-bit multiply (lower half) and add previous P
IMPYL P,XT,loc32 Signed 32 X 32-bit multiply (lower half)

IMPYL ACC,XT,loc32 Signed 32 X 32-bit multiply (lower half)

IMPYSL P,XT,loc32 Signed 32-bit multiply (lower half) and subtract P
IMPYXUL P,XT,loc32 Signed 32 X unsigned 32-bit multiply (lower half)
QMACL P,loc32,*XAR7/++ Signed 32 X 32-bit multiply and accumulate (upper half)
QMPYAL P,XT,loc32 Signed 32-bit multiply (upper half) and add previous P
QMPYL ACC,XT,loc32 Signed 32 X 32-bit multiply (upper half)

120 C28x Assembly Language Instructions

SPRU430F—August 2001 —Revised April 2015
Submit Documentation Feedback

Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

Ll

TEXAS

INSTRUMENTS

www.ti.com

Register Operations

Table 6-3. Register Operations (continued)

Mnemonic Description

QMPYL P,XT,loc32 Signed 32 X 32-bit multiply (upper half)
QMPYSL P,XT,loc32 Signed 32-bit multiply (upper half) and subtract previous P
QMPYUL P,XT,loc32 Unsigned 32 X 32-bit multiply (upper half)
QMPYXUL P,XT,loc32 Signed 32 X unsigned 32-bit multiply (upper half)
Direct Memory Operations

ADD loc16,#16bitSigned Add constant to specified location

AND loc16,#16bitSigned Bitwise AND

CMP loc16,#16bitSigned Compare

DEC loc16 Decrement by 1

DMOV loc16 Data move contents of 16-bit location
INC loc16 Increment by 1

MOV *(0:16bit),loc16 Move value

MOV loc16,*(0:16bit) Move value

MOV loc16,#16bit Save 16-bit constant

MOV loc16,#0 Clear 16-bit location

MOVB loc16,#8bit, COND Store byte conditionally

OR loc16,#16bit Bitwise OR

TBIT loc16,#bit Test bit

TBIT loc16,T Test bit specified by T register

TCLR loc16,#bit Test and clear specified bit

TSET loc16,#bit Test and set specified bit

XOR loc16,#16bit Bitwise exclusive OR

10 Space Operations

IN loc16,*(PA) Input data from port
ouT *(PA),loc16 Output data to port
uouT *(PA),loc16 Unprotected output data to 1/0 port

Program Space Operations

PREAD loc16,*XAR7 Read from program memory

PWRITE *XAR7,loc16 Write to program memory

XPREAD loc16,*AL C2xLP source-compatible program read
XPREAD loc16,*(pma) C2xLP source-compatible program read
XPWRITE *AL,loc16 C2xLP source-compatible program write

Branch/Call/Return Operations

B 16bitOff, COND Conditional branch

BANZ 16bitOff,ARN-- Branch if auxiliary register not equal to zero
BAR 16bOf,ARN,ARN,EQ/NEQ Branch on auxiliary register comparison
BF 16bitOff, COND Branch fast

FFC XAR7,22bitAddr Fast function call

IRET Interrupt return

LB 22bitAddr Long branch

LB *XAR7 Long indirect branch

LC 22bitAddr Long call immediate

LC *XAR7 Long indirect call

LCR 22bitAddr Long call using RPC

LCR *XARN Long indirect call using RPC

LOOPZ loc16,#16bit Loop while zero

LOOPNZ loc16,#16bit Loop while not zero

SPRU430F—August 2001 —-Revised April 2015
Submit Documentation Feedback

C28x Assembly Language Instructions 121

Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

Register Operations www.ti.com

Table 6-3. Register Operations (continued)

Mnemonic Description

LRET Long return

LRETE Long return and enable interrupts

LRETR Long return using RPC

RPT #8bit/loc16 Repeat next instruction

SB 8bitOff, COND Short conditional branch

SBF 8hitOff, EQ/NEQ/TC/NTC Short fast conditional branch

XB pma C2XLP source-compatible branch

XB pma,COND C2XLP source-compatible conditional branch

XB pma,*,ARPn C2XLP source-compatible branch function call

XB *AL C2XLP source-compatible function call

XBANZ pma,*ind{,ARPn} C2XLP source-compatible branch if ARn is not zero
XCALL pma C2XLP source-compatible call

XCALL pma,COND C2XLP source-compatible conditional call

XCALL pma,*,ARPn C2XLP source-compatible call with ARP modification
XCALL *AL C2XLP source-compatible indirect call

XRET Alias for XRETC UNC

XRETC COND C2XLP source-compatible conditional return

Interrupt Register Operations

AND IER,#16bit Bitwise AND to disable specified CPU interrupts
AND IFR,#16bit Bitwise AND to clear pending CPU interrupts
IACK #16bit Interrupt acknowledge
INTR INT1/../INT14 Emulate hardware interrupts
NMI
EMUINT
DLOGINT
RTOSINT
MOV IER,loc16 Load the interrupt-enable register
MOV loc16,IER Store interrupt enable register
OR IER,#16bit Bitwise OR
OR IFR,#16bit Bitwise OR
TRAP #0..31 Software trap

Status Register Operations (STO, ST1)

CLRC Mode Clear status bits

CLRC XF Clear the XF status bit and output signal
CLRC AMODE Clear the AMODE bit

C28ADDR Clear the AMODE status bit

CLRC Objmode Clear the Objmode bit

C270BJ Clear the Objmode bit

CLRC MOM1MAP Clear the MOM1MAP bit

C27MAP Set the MOM1MAP bit

CLRC ovC Clear OVC hits

ZAP ovC Clear overflow counter

DINT Disable maskable interrupts (set INTM bit)
EINT Enable maskable interrupt (clear INTM bit)
MOV PM,AX Load product shift mode bits PM = AX(2:0)
MOV OVC,loc16 Load the overflow counter

MOVU OVC,loc16 Load overflow counter with unsigned value
MOV loc16,0VC Store the overflow counter

MOVU loc16,0VC Store the unsigned overflow counter

122 C28x Assembly Language Instructions SPRU430F—-August 2001 —Revised April 2015

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

www.ti.com

Register Operations

Table 6-3. Register Operations (continued)

Mnemonic Description

SETC Mode Set multiple status bits

SETC XF Set XF bit and output signal

SETC MOM1MAP Set the MOM1MAP bit

C28MAP Set MOM1MAP bit

SETC Objmode Set Objmode bit

C280BJ Set the Objmode bit

SETC AMODE Set AMODE bit

LPADDR Alias for SETC AMODE

SPM PM Set product shift mode bits

Miscellaneous Operations

ABORTI Abort interrupt

ASP Align stack pointer

EALLOW Enable access to protected space

IDLE Put processor in IDLE mode

NASP Un-align stack pointer

NOP {*ind} No operation with optional indirect address modification

ZAPA Zero accumulator P register and OVC

EDIS Disable access to protected space

ESTOPO Emulation Stop 0

ESTOP1 Emulation Stop 1
SPRU430F—August 2001 —-Revised April 2015 C28x Assembly Language Instructions 123

Submit Documentation Feedback

Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

ABORTI — Abort Interrupt www.ti.com

ABORTI

Syntax Options
Opcode
Objmode

RPT

cyC

Operands

Description

Flags and Modes

Abort Interrupt

ABORTI
0000 0000 0000 0001

X

2
None

This instruction is available for emulation purposes. Generally, a program uses the IRET
instruction to return from an interrupt. The IRET instruction restores all of the values that
were saved to the stack during the automatic context save. In restoring status register
ST1 and the debug status register (DBGSTAT), IRET restores the debug context that
was present before the interrupt.

In some target applications, you might have interrupts that must not be returned from by
the IRET instruction. Not using IRET can cause a problem for the emulation logic,
because the emulation logic assumes that the original debug context will be restored.
The abort interrupt (ABORTI) instruction is provided as a means to indicate that the
debug context will not be restored and the debug logic needs to be reset to its default
state. As part of its operation, the ABORTI instruction:

e Sets the DBGM bit in ST1. This disables debug events.

» Modifies select bits in the DBGSTAT register. This effect is a resetting of the debug
context. If the CPU was in the debug-halt state before the interrupt occurred, the
CPU does not halt when the interrupt is aborted.

The ABORTI instruction does not modify the DBGIER, the IER, the INTM bit or any
analysis registers (for example, registers used for breakpoints, watch points, and data

logging).

Flags and Modes Description

DBGM The DBGM bit is set.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.
124 C28x Assembly Language Instructions SPRU430F—-August 2001 —Revised April 2015

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

www.ti.com

ABS ACC — Absolute Value of Accumulator

ABS ACC

Syntax Options
Opcode
Objmode

RPT

cyC

Operands

Description

Flags and Modes

Absolute Value of Accumulator
ABS ACC
1111 1111 0101 0110

X

1
ACC — Accumulator register

The content of the ACC register is replaced with its absolute value:
iF(ACC = 0x8000 0000)

vV = 1;

If (OW = 1)

ACC = OX7FFF FFFF;

else

ACC = 0x8000 0000;
else

if(ACC < 0)

ACC = -ACC;

Flags and Modes Description
N After the operation, the N flag is set if bit 31 of the ACC is 1, else N is cleared.
4 After the operation, the Z flag is set if the ACC is zero, else Z is cleared.
C C is cleared by this operation.
v If (ACC = 0x8000 0000) at the start of the operation, this is considered an overflow
value and V is set. Otherwise, V is not affected.
If (ACC = 0x8000 0000) at the start of the operation, this is considered an overflow
OVM value, and the ACC value after the operation depends on the state of OVM: If OVM is
cleared, ACC will be filled with 0x8000 0000. If OVM is set ACC will be saturated to
OX7FFF FFFF.
Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.
Example ; Take absolute value of VarA, make sure value is saturated:

MOVL ACC,@VarA ; Load ACC with contents of VarA
SETC OWM ; Turn overflow mode on

ABS ACC ; Absolute of ACC and saturate
MOVL @VarA,ACC ; Store result into VarA

SPRU430F—August 2001 —-Revised April 2015

C28x Assembly Language Instructions

Submit Documentation Feedback

Copyright © 2001-2015, Texas Instruments Incorporated

125

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

ABSTC ACC — Absolute Value of Accumulator and Load TC www.ti.com

ABSTC ACC

Syntax Options
Opcode
Objmode

RPT

cyC

Operands

Description

Flags and Modes

Absolute Value of Accumulator and Load TC

ABSTC ACC

0101 0110 0101 1111

1

1

ACC — Accumulator register

Replace the content of the ACC register with its absolute value and load the test control
(TC) bit with the sign bit XORed with the previous value of the test control bit:

iT(ACC = 0x8000 0000)

{
If (OW = 1)

ACC = OX7FFF FFFF;

else

ACC = 0x8000 0000;

V=1

TC = TC XOR 1;

{

else

{
if(ACC < 0)

ACC = -ACC;
TC = TC XOR 1;
b
C = 0;

Flags and Modes

Description

N After the operation, the N flag is set if bit 31 of the ACC is 1, else N is cleared.

z After the operation, the Z flag is set if the ACC is zero, else Z is cleared.

C The C flag bit is cleared.

vV If (ACC = 0x8000 0000) at the start of the operation, this is considered an overflow
value and V is set; otherwise, V is not affected.

TC If ACC < 0) at the start of the operation, then TC = TC XOR 1; otherwise, TC is not
affected.
If at the start of the operation, ACC = 0x8000 0000, then this is considered an overflow

OVM value and the ACC value after the operation depends on OVM. If OVM is cleared and

TC == 1, ACC will be filled with 0x8000 0000. If OVM is set and TC = 1, ACC will be
saturated to Ox7FFF FFFF.

126 C28x Assembly Language Instructions

SPRU430F—August 2001 —Revised April 2015
Submit Documentation Feedback

Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

www.ti.com

ABSTC ACC — Absolute Value of Accumulator and Load TC

Repeat

This instruction is not repeatable. If this instruction follows the RPT instruction, it resets

the repeat counter (RPTC) and executes only once.

Example ;
CLRC TC
MOV ACC,@Denl6 << 16
ABSTC ACC
MOV T,@AH
MOV ACC,@Numl6 << 16
ABSTC ACC
MOVU ACC,@AH
RPT #15
| ISUBCU ACC,@T
MOV @Reml16,AH
MOV ACC,@AL <<
NEGTC ACC
MOV @Quotl6,AH

16

Calculate signed: Quotl6 = Numl6/Denl6, Rem1l6 = Numl6%Denl6

Clear TC flag, used as sign flag

AH = Denl6, AL = 0
Take abs value, TC = sign ™ TC
Temp save Denl6 in T register
AH = Numl6, AL = O
Take abs value, TC = sign ™ TC
AH = 0, AL = Numl6

Repeat operation 16 times
Conditional subtract with Denl6
Store remainder in Reml6

AH = Quotl6, AL = 0

Negate if TC = 1

Store quotient in Quotl6

SPRU430F—August 2001 —-Revised April 2015
Submit Documentation Feedback

C28x Assembly Language Instructions 127

Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS

INSTRUMENTS

ADD ACC,#16bit<<#0..15 — Add Value to Accumulator www.ti.com
ADD ACC #16bit<<#0..15 Add Value to Accumulator
Syntax Options ADD ACC, #16bit<<#0..15
Opcode 1111 1111 0001 SHFT

CCCC CCCC Ceee ccce
Objmode X
RPT -
CcYC 1
Operands ACC - Accumulator register

#16bit — 16-bit immediate constant value

#0..15 — Shift value (default is "<<#0" if no value specified)
Description Add the left shifted 16-bit immediate constant value to the ACC register. The shifted

value is sign extended if sign extension mode is turned on (SXM = 1) else the shifted
value is zero extended (SXM = 0). The lower bits of the shifted value are zero filled:
iT(SXM = 1) // sign extension mode enabled

ACC = ACC + S:16bit << shift value;
else // sign extension mode disabled

ACC = ACC + 0:16bit << shift value;

Smart Encoding:

If #16bit is an 8-bit number and the shift is 0, then the assembler will encode this
instruction as ADDB ACC, #8bit to improve efficiency. To override this encoding, use the
ADDW ACC, #16bit instruction alias.

Flags and Modes

Flags and Modes Description
z After the addition, the Z flag is set if the ACC value is zero, else the flag is cleared.
N After the addition, the N flag is set if bit 31 of the ACC is 1, else the flag is cleared.
C If the addition generates a carry, C is set; otherwise C is cleared.
\Y, If an overflow occurs, V is set; otherwise V is not affected.
If (OVM = 0, disabled) then if the operation generates a positive overflow, then the
ove counter is incremented and if the operation generates a negative overflow, then the
counter is decremented. If (OVM = 1, enabled) then the counter is not affected by the
operation.
SXM If sign extension mode bit is set; then the 16-bit immediate constant will be sign-

extended before the addition. Else, the value will be zero extended.

OVM If overflow mode bit is set; then the ACC value will saturate maximum positive
(Ox7FFFFFFF) or maximum negative (0x80000000) if the operation overflowed.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Calculate signed value: ACC = (VarB << 10) + (23 << 6);
SETC SXM ; Turn sign extension mode on

MOV ACC,@VarB << #10 ; Load ACC with VarB left shifted by 10
ADD ACC,#23 << #6 ; Add 23 left shifted by 6 to ACC

128 C28x Assembly Language Instructions SPRU430F-August 2001 —Revised April 2015

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

www.ti.com ADD ACC,loc16 <<T — Add Value to Accumulator

ADD ACC,loc16 <<T Add Value to Accumulator

Syntax Options ADD ACC,locl6 <<T
Opcode 0101 0110 0010 0011

0000 0000 LLLL LLLL
Objmode 1
RPT -
CcYC N+1
Operands ACC - Accumulator register

loc16 — Addressing mode (see Chapter 5)
T — Upper 16 bits of the multiplicand register, XT(31:16)

Description Add to the ACC register the left-shifted contents of the 16-bit location pointed to by the
“loc16” addressing mode. The shift value is specified by the four least significant bits of
the T register, T(3:0) = shift value = 0..15. Higher order bits of T are ignored. The shifted
value is sign extended if sign extension mode is turned on (SXM = 1) else the shifted
value is zero extended (SXM = 0). The lower bits of the shifted value are zero filled:
if(SXM = 1) // sign extension mode enabled

ACC = ACC + S:[loc16] << T(3:0);
else // sign extension mode disabled
ACC = ACC + 0O:[locl6] << T(3:0);

Flags and Modes

Flags and Modes Description
z After the addition, the Z flag is set if the ACC value is zero, else Z is cleared.
N After the addition, the N flag is set if bit 31 of the ACC is 1, else N is cleared.
C If the addition generates a carry, C is set; otherwise C is cleared.
\'% If an overflow occurs, V is set; otherwise V is not affected.

If OVM = 0, disabled and the operation generates a positive overflow, then the counter
ove is incremented; if the operation generates a negative overflow, then the counter is
decremented. If OVM = 1, enabled, then the counter is not affected by the operation.

If sign extension mode bit is set; then the 16-bit operand, addressed by the "loc16”

SXM field, will be sign extended before the addition. Else, the value will be zero extended.
OVM If overflow mode bit is set; then the ACC value will saturate maximum positive
(Ox7FFFFFFF) or maximum negative (0x80000000) if the operation overflowed.
Repeat If this operation is repeated, then the instruction will be executed N+1 times. The state of

the Z, N, C flags will reflect the final result. The V flag will be set if an intermediate
overflow occurs. The OVC flag will count intermediate overflows, if overflow mode is

disabled.

Example ; Calculate signed value: ACC = (VarA << SB) + (VarB << SB)
SETC SXM ; Turn sign extension mode on
MOV T,@SA ; Load T with shift value in SA
MOV ACC,@VarA << T ; Load in ACC shifted contents of VarA
MOV T,@SB ; Load T with shift value in SB

ADD ACC,@VarB << T ; Add to ACC shifted contents of VarB

SPRU430F—August 2001 —-Revised April 2015 C28x Assembly Language Instructions 129

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS

INSTRUMENTS
ADD ACC,locl16 << #0..16 — Add Value to Accumulator www.ti.com
ADD ACC,loc16 << #0..16 Add Value to Accumulator
Syntax Options
Syntax Options Opcode Objmode RPT CcYyCc
ADD ACC,loc16<<#0 1000 0001 LLLL LLLL 1 Y N+1
ADD ACC,loc16 << #1..15 0101 0110 0000 0100 1 Y N+1
0000 SHFT LLLL LLLL
ADD ACC,locl6 << #16 0000 0101 LLLL LLLL X Y N+1
ADD ACC,loc16<<0...15 1010 SHFT LLLL LLLL 0 - N+1

Operands

Description

Flags and Modes

ACC — Accumulator register
loc16 — Addressing mode (see Chapter 5)
#0..16 — Shift value (default is "<<#0" if no value specified)

Add the left shifted 16-bit location pointed to by the "loc16” addressing mode to the ACC
register. The shifted value is sign extended if sign extension mode is turned on (SXM =
1) else the shifted value is zero extended (SXM = 0). The lower bits of the shifted value
are zero-filled:
iT(SXM = 1) // sign extension mode enabled

ACC = ACC + S:[locl6] << shift value;
else // sign extension mode disabled

ACC = ACC + 0O:[locl6] << shift value;

Flags and Modes Description
VA After the addition, the Z flag is set if ACC is zero, else Z is cleared.
N After the addition, the N flag is set if bit 31 of the ACC is 1, else N is cleared.
c If the aqldition generates a carry, C is set; otherwise_ C is cleared.
Exception: If a shift of 16 is used, the ADD instruction can set C but not clear C.
\ If an overflow occurs, V is set; otherwise V is not affected.

If (OVM = 0, disabled) then if the operation generates a positive overflow, then the
counter is incremented and if the operation generates a negative overflow, then the

ove counter is decremented. If (OVM = 1, enabled) then the counter is not affected by the
operation.

SXM If sign extension mode bit is set; then the 16-bit operand, addressed by the "loc16”
field, will be sign extended before the addition. Else, the value will be zero extended.

OVM If overflow mode bit is set; then the ACC value will saturate maximum positive

(0X7FFFFFFF) or maximum negative (0x80000000) if the operation overflowed.

Repeat If the operation is repeatable, then the instruction will be executed N+1 times. The state
of the Z, N, C flags will reflect the final result. The V flag will be set if an intermediate
overflow occurs. The OVC flag will count intermediate overflows, if overflow mode is
disabled. If the operation is not repeatable, the instruction will execute only once.

Example ; Calculate signed value: ACC = VarA << 10 + VarB << 6;

SETC SXM ; Turn sign extension mode on
MOV ACC,@VarA << #10 ; Load ACC with VarA left shifted by 10
ADD ACC,@VarB << #6 ; Add VarB left shifted by 6 to ACC
130 C28x Assembly Language Instructions SPRU430F-August 2001 —Revised April 2015

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

www.ti.com

ADD AX, loc16 — Add Value to AX

ADD AX, loc16 Add Value to AX

Syntax Options ADD AX, loc16

Opcode 1001 010A LLLL LLLL

Objmode X

RPT -

cyC 1

Operands AX — Accumulator high (AH) or accumulator low (AL) register

loc16 — Addressing mode (see Chapter 5)

Description Add the contents of the location pointed to by the “loc16” addressing mode to the
specified AX register (AH or AL) and store the result in the AX register.

Flags and Modes

Flags and Modes Description
N After the addition, AX is tested for a negative condition. If bit 15 of AX is 1, then the
negative flag bit is set, otherwise it is cleared.
7 After the addition, AX is tested for a zero condition. The zero flag bit is set if the
operation results in AX = 0; otherwise it is cleared.
C If the addition generates a carry, C is set; otherwise, C is cleared.
If an overflow occurs, V is set; otherwise V is not affected. Signed positive overflow
vV occurs if the result crosses the max positive value (0x7FFF) in the positive direction.
Signed negative overflow occurs if the result crosses the max negative value (0x8000)
in the negative direction.
Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.
Example ; Add the contents of VarA with VarB and store in VarC
MoV AL,@VarA ; Load AL with contents of VarA
ADD AL ,@VarB ; Add to AL contents of VarB
MoV @varcC,AL ; Store result in VarC
SPRU430F—August 2001 —-Revised April 2015 C28x Assembly Language Instructions 131

Submit Documentation Feedback

Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

ADD loc16, AX — Add AX to Specified Location www.ti.com

ADD loc16, AX

Syntax Options
Opcode
Objmode

RPT

cyC

Operands

Description

Flags and Modes

Add AX to Specified Location

ADD loc16, AX
0111 OO1A LLLL LLLL

X

1

loc16 — Addressing mode (see Chapter 5)
AX — Accumulator high (AH) or accumulator low (AL) register

Add the contents of the specified AX register (AH or AL) to the location pointed to by the
“loc16” addressing mode and store the results in location pointed to by “loc16”:

[locl6] = [locl6] + AX;

This is a read-modify-write operation.

Flags and Modes Description

N After the addition, [loc16] is tested for a negative condition. If bit 15 of [loc16] is 1, then
the negative flag bit is set, otherwise it is cleared.

7 After the addition, [loc16] is tested for a zero condition. The zero flag bit is set if the
operation generates [loc16] = 0; otherwise it is cleared

C If the addition generates a carry, C is set; otherwise C is cleared.
If an overflow occurs, V is set; otherwise V is not affected. Signed positive overflow

v occurs if the result crosses the max positive value (0x7FFF) in the positive direction.
Signed negative overflow occurs if the result crosses the max negative value (0x8000)
in the negative direction.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.
Example ; Add the contents of VarA to index register ARO:
MOV AL,@VarA ; Load AL with contents of VarA
ADD @ARO,AL ; ARO = ARO + A
; Add the contents of VarB to VarC:
MOV AH,@VarB ; Load AH with contents of VarB
ADD @VarC,AH ; VarC = VarC + AH
132 C28x Assembly Language Instructions SPRU430F-August 2001 —Revised April 2015

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

www.ti.com ADD loc16,#16bitSigned — Add Constant to Specified Location

ADD loc16,#16bitSigned Add Constant to Specified Location

Syntax Options ADD loc16,#16bitSigned
Opcode 0000 1000 LLLL LLLL
CCCC CCCC Ceee ccce
Objmode X
RPT -
CcYC 1
Operands loc16 — Addressing mode (see Chapter 5)

#16bit-signed — 16-bit immediate signed constant value

Description Add the specified signed 16-bit immediate constant to the signed 16-bit content of the
location pointed to by the “loc16” addressing mode and store the 16-bit result in the
location pointed to by “loc16™:

[locl16] = [locl6] + 16bitSigned;
Smart Encoding:

If loc16 = AL or AH and #16bitSigned is an 8-bit number then the assembler will encode
this instruction as ADDB AX, #16bitSigned to improve efficiency. To override this
encoding, use the ADDW loc16, #16bitSigned instruction alias.

Flags and Modes

Flags and Modes Description
N After the addition, if bit 15 of [loc16] is 1, then the N bit is set; else N cleared.
z After the addition, if [loc16] is zero, the Z is set, else Z is cleared.
C If the addition generates a carry, C is set; otherwise, C is cleared.
\Y If an overflow occurs, V is set; otherwise, V is cleared.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Calculate:
; VarA = vVarA + 10
; VarB = VarB - 3

ADD @varA,#10 ; VarA = VarA + 10
ADD @varB,#-3 ; VarB = VarB - 3
SPRU430F—August 2001 —-Revised April 2015 C28x Assembly Language Instructions 133

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

ADDB ACC,#8bit — Add 8-bit Constant to Accumulator www.ti.com

ADDB ACC,#8bit

Syntax Options
Opcode
Objmode

RPT

cyC

Operands

Description

Flags and Modes

Add 8-bit Constant to Accumulator

ADDB ACC #8bit

0000 1001 CCCC cccC

X

1

ACC — Accumulator register

#8bit — 8-bit immediate unsigned constant value

Add an 8-hbit, zero-extended constant to the ACC register:
ACC = ACC + 0:8bit;

Flags and Modes

Description

4

After the addition, the Z flag is set if ACC is zero, else Z is cleared.

After the addition, the N flag is set if bit 31 of the ACC is 1, else N is cleared.

If the addition generates a carry, C is set; otherwise C is cleared.

N
C
\%

If an overflow occurs, V is set; otherwise V is not affected.

ovC

If (OVM = 0, disabled) then if the operation generates a positive overflow, then the
counter is incremented and if the operation generates a negative overflow, then the
counter is decremented. If (OVM = 1, enabled) then the counter is not affected by the
operation.

OoVvM

If overflow mode bit is set; then the ACC value will saturate maximum positive
(Ox7FFFFFFF) or maximum negative (0x80000000) if the operation overflowed.

Repeat

Example

This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Increment contents of 32-bit location VarA:
MOVL ACC,@varA ; Load ACC with contents of VarA

ADDB ACC,#1

; Add 1 to ACC

MOVL @VarA,ACC ; Store result back into VarA

134 C28x Assembly Language Instructions

SPRU430F—August 2001 —Revised April 2015

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS

INSTRUMENTS

www.ti.com

ADDB AX, #8bitSigned — Add 8-bit Constant to AX

ADDB AX, #8bitSigned Add 8-bit Constant to AX

Syntax Options
Opcode
Objmode

RPT

cyC

Operands

Description

Flags and Modes

ADDB AX, #8bitSigned

1001 110A CCCC ccccC

X

1

AX — Accumulator high (AH) or accumulator low (AL) register

#8bit-signed — 8-bit immediate signed 2s complement constant value (-128 to 127)

Add the sign extended 8-bit constant to the specified AX register (AH or AL) and store
the result in the AX register:

AX = AX + S:8bit;

Flags and Modes

Description

After the addition, AX is tested for a negative condition. If bit 15 of AX is 1, then the

N negative flag bit is set; otherwise it is cleared.
7 After the addition, AX is tested for a zero condition. The zero flag bit is set if the
operation results in AX = 0, otherwise it is cleared.
C If the addition generates a carry, C is set; otherwise C is cleared.
If an overflow occurs, V is set; otherwise V is not affected. Signed positive overflow
v occurs if the result crosses the max positive value (0x7FFF) in the positive direction.

Signed negative overflow occurs if the result crosses the max negative value (0x8000)
in the negative direction.

Repeat

Example

This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

; Add 2 to VarA and subtract 3 from VarB:

MOV AL,@VarA ;

ADDB AL,#2

MOV @VarA,AL ;
MOV AL,@VarB ;

ADDB AL,#-3

MOV @VarB,AL ;

Load AL with contents of VarA

; Add to AL the value 0x0002 (2)

Store result in VarA
Load AL with contents of VarB

; Add to AL the value OxFFFD (-3)

Store result in VarB

SPRU430F—August 2001 —-Revised April 2015
Submit Documentation Feedback

C28x Assembly Language Instructions 135

Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

ADDB SP, #7bit — Add 7-bit Constant to Stack Pointer

13 TEXAS
INSTRUMENTS

www.ti.com

ADDB SP, #7bit

Syntax Options
Opcode
Objmode

RPT

CYC

Operands

Description

Flags and Modes

Repeat

Example

Add 7-bit Constant to Stack Pointer

ADDB SP, #7bit

1111 1110 OCCC CCCC

X

1
SP — Stack pointer

#7bit — 7-bit immediate unsigned constant value

Add a 7-bit unsigned constant to SP and store the result in SP:

SP = SP + 0:7bit;

None

This instruction is not repeatable. If this instruction follows the RPT instruction, it resets

the repeat counter (RPTC) and executes only once.

FuncA:
ADDB SP, #N

SUBB SP, #N
LRETR

; Function with local variables on stack.

; Return from function.

; Reserve N 16-bit words of space for
; local variables on stack:

; Deallocate reserved stack space.

136 C28x Assembly Language Instructions

SPRU430F—August 2001 —Revised April 2015
Submit Documentation Feedback

Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

www.ti.com ADDB XARn, #7bit — Add 7-bit Constant to Auxiliary Register

ADDB XARnN, #7bit Add 7-bit Constant to Auxiliary Register

Syntax Options ADDB XARnN, #7hit

Opcode 1101 1nnn OCCC CCCC

Objmode X

RPT -

cyC 1

Operands XARnN — XARO-XARY7, 32-bit auxiliary registers

Description Add a 7-bit unsigned constant to XARn and store the result in XARnN:

XARn = XARn + 0:7bit;

Flags and Modes None
Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.
Example MOVL XAR1,#VarA ; Initialize XAR1l pointer with address
; of VarA

MOVL XAR2,*XAR1 ; Load XAR2 with contents of VarA
ADDB XAR2,#10h ; XAR2 = VarA + 0x10

SPRU430F—August 2001 —-Revised April 2015 C28x Assembly Language Instructions 137

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS

INSTRUMENTS

ADDCL ACC,loc32 — Add 32-bit Value Plus Carry to Accumulator www.ti.com
ADDCL ACC,loc32 Add 32-bit Value Plus Carry to Accumulator
Syntax Options ADDCL ACC,loc32
Opcode 0101 0110 0100 0000

XXXX XXXX LLLL LLLL
Objmode 1
RPT -
CcyC 1
Operands ACC - Accumulator register

loc32 — Addressing mode (see Chapter 5)
Description Add to the ACC register the 32-bit content of the location pointed to by the “loc32”

addressing mode:

ACC = ACC + [loc32] + C;
Flags and Modes

Flags and Modes Description

z After the addition, the Z flag is set if the ACC is zero, else Z is cleared.

N After the addition, the N flag is set if bit 31 of the ACC is 1, else N is cleared.

c The state of the carry bit before execution is included in the addition. If the addition

generates a carry, C is set; otherwise C is cleared.
\Y If an overflow occurs, V is set; otherwise V is not affected.

If (OVM = 0, disabled) then if the operation generates a positive overflow, then the
counter is incremented and if the operation generates a negative overflow, then the

ove counter is decremented. If (OVM = 1, enabled) then the counter is not affected by the
operation.
OVM If overflow mode bit is set; then the ACC value will saturate maximum positive
(Ox7FFFFFFF) or maximum negative (0x80000000) if the operation overflows.
Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets

the repeat counter (RPTC) and executes only once.

Example ; Add two 64-bit values (VarA and VarB) and store result in VarC:

MOVL ACC,@vVarA+0 ; Load ACC with contents of the low
; 32 bits of VarA

ADDUL ACC,@VarB+0 ; Add to ACC the contents of the low
; 32 bits of vVarB

MOVL @VarC+0,ACC ; Store low 32-bit result into VarC

MOVL ACC,@VarA+2 ; Load ACC with contents of the high
; 32 bits of VarA

ADDCL ACC,@VarB+2 ; Add to ACC the contents of the high
; 32 bits of VarB with carry

MOVL @varC+2,ACC ; Store high 32-bit result into VarC

138 C28x Assembly Language Instructions SPRU430F-August 2001 —Revised April 2015

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

www.ti.com ADDCU ACC,loc16 — Add Unsigned Value Plus Carry to Accumulator

ADDCU ACC,loc16 Add Unsigned Value Plus Carry to Accumulator

Syntax Options ADDCU ACC,loc16

Opcode 0000 1100 LLLL LLLL
Objmode X

RPT -

cyC 1

Operands ACC - Accumulator register

loc16 — Addressing mode (see Chapter 5)

Description Add the 16-bit contents of the location pointed to by the “loc16” addressing mode, zero
extended, plus the content of the carry flag bit to the ACC register:

ACC = ACC + O:[locle] + C;

Flags and Modes

Flags and Modes Description
z After the addition, the Z flag is set if the ACC value is zero, else Z is cleared.
N After the addition, the N flag is set if bit 31 of the ACC is 1, else N is cleared.
c The state of the carry bit before execution is included in the addition. If the addition
generates a carry, C is set; otherwise C is cleared.
\Y If an overflow occurs, V is set; otherwise V is not affected.
If (OVM = 0, disabled) then if the operation generates a positive overflow, then the
ove counter is incremented and if the operation generates a negative overflow, then the
counter is decremented. If (OVM = 1, enabled) then the counter is not affected by the
operation.
OVM If overflow mode bit is set; then the ACC value will saturate maximum positive

(0X7FFFFFFF) or maximum negative (0x80000000) if the operation overflowed.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Add three 32-bit unsigned variables by 16-bit parts:
MOVU ACC,@VarAlow ; AH = 0, AL = VarAlow
ADD ACC,@VarAhigh << 16 ; AH = VarAhigh, AL = VarAlow
ADDU ACC,@VarBlow ; ACC = ACC + O:VarBlow
ADD ACC,@VarBhigh << 16 ; ACC = ACC + VarBhigh << 16
ADDCU ACC,@varClow ; ACC = ACC + VarClow + Carry
ADD ACC,@VarChigh << 16 ; ACC = ACC + VarChigh << 16

SPRU430F—August 2001 —-Revised April 2015 C28x Assembly Language Instructions 139

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS

INSTRUMENTS
ADDL ACC,loc32 — Add 32-bit Value to Accumulator www.ti.com
ADDL ACC,loc32 Add 32-bit Value to Accumulator
Syntax Options ADDL ACC,loc32
Opcode 0000 0111 LLLL LLLL
Objmode X
RPT Y
cyC N+1
Operands ACC - Accumulator register
loc32 — Addressing mode (see Chapter 5)
Description Add to the ACC register the 32-bit content of the location pointed to by the “loc32”
addressing mode:
ACC = ACC + [loc32];
Flags and Modes
Flags and Modes Description
N After the addition, the N flag is set if bit 31 of the ACC is 1, else N is cleared.
z After the addition, the Z flag is set if the ACC is zero, else Z is cleared.
C If the addition generates a carry, C is set; otherwise C is cleared.
\ If an overflow occurs, V is set; otherwise V is not affected.
If (OVM = 0, disabled) then if the operation generates a positive overflow, then the
ovC counter is incremented and if the operation generates a negative overflow, then the
counter is decremented. If (OVM = 1, enabled) then the counter is not affected by the
operation.
OVM If overflow mode bit is set; then the ACC value will saturate maximum positive

(Ox7FFFFFFF) or maximum negative (0x80000000) if the operation overflows.

Repeat If this operation is repeated, then the instruction will be executed N+1 times. The state of
the Z, N, C flags will reflect the final result. The V flag will be set if an intermediate
overflow occurs. The OVC flag will count intermediate overflows, if overflow mode is
disabled.

Example ; Calculate the 32-bit value: VarC = VarA + VarB
MOVL ACC,@VarA ; Load ACC with contents of VarA
ADDL ACC,@VvarB ; Add to ACC the contents of VarB
MOVL @VarC,ACC ; Store result into VarC

140 C28x Assembly Language Instructions SPRU430F-August 2001 —Revised April 2015

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS

INSTRUMENTS

www.ti.com

ADDL ACC,P << PM — Add Shifted P to Accumulator

ADDL ACC,P << PM Add Shifted P to Accumulator

Syntax Options
Opcode
Objmode

RPT

CyC

Operands

Description

Flags and Modes

ADDL ACC,P << PM
0001 0000 1010 1100
X
Y

N+1

Note: This instruction is an alias for the "MOVA T,loc16” operation with “loc16 = @T"
addressing mode.

ACC - Accumulator register
P — Product register
<< PM - Product shift mode

Add to the ACC register the contents of the P register, shifted as specified by the
product shift mode (PM):

ACC = ACC + P << PM

Flags and Modes Description
VA After the addition, the N flag is set if bit 31 of the ACC is 1, else N is cleared.
N After the addition, the N flag is set if bit 31 of the ACC is 1, else N is cleared.
C If the addition generates a carry, C is set; otherwise C is cleared.
\% If an overflow occurs, V is set; otherwise V is not affected.

If (OVM = 0, disabled) then if the operation generates a positive overflow, then the
counter is incremented and if the operation generates a negative overflow, then the

ocv counter is decremented. If (OVM = 1, enabled) then the counter is not affected by the
operation.
OVM If overflow mode bit is set; then the ACC value will saturate maximum positive
(0X7FFFFFFF) or maximum negative (0x80000000) if the operation overflowed.
The value in the PM bits sets the shift mode for the output operation from the product
PM register. If the product shift value is positive (logical left shift operation), then the low

bits are zero filled. If the product shift value is negative (arithmetic right shift operation),
the upper bits are sign extended.

Repeat If this operation is repeated, then the instruction will be executed N+1 times. The state of
the Z, N, C flags will reflect the final result. The V flag will be set if an intermediate
overflow occurs. The OVC flag will count intermediate overflows if overflow mode is
disabled.

Example ; Calculate: Y = ((M*X >> 4) + (B << 11)) >> 10
; Y, M, X, B are Q15 values
SPM -4 ; Set product shift to >> 4
SETC SXM ; Enable sign extension mode
MOV T,@M ;T=M
MPY P,T,@X ;P=M*X
MOV ACC,@B << 11 ; ACC = S:B << 11
ADDL ACC,P << PM ; ACC = (M*X >>4) + (S:B << 11)

MOVH @Y,ACC << 5 ; Store Q15 result into Y
SPRU430F—August 2001 —-Revised April 2015 C28x Assembly Language Instructions 141

Submit Documentation Feedback

Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

ADDL loc32,ACC — Add Accumulator to Specified Location www.ti.com

ADDL loc32,ACC

Syntax Options

Opcode

Objmode
RPT
CcYc

Operands

Description

Flags and Modes

Add Accumulator to Specified Location

ADDL loc32,ACC

0101 0110 0000 0001
0000 0000 LLLL LLLL

1

1

loc32 — Addressing mode (see Chapter 5)

ACC — Accumulator register

Add to the ACC register the 32-bit content of the location pointed to by the “loc32”
addressing mode:

[1oc32] = [loc32] + ACC;

This is a read-modify-write operation.

Flags and Modes

Description

N

After the addition, the N flag is set if bit 31 of the ACC is 1, else N is cleared.

After the addition, the Z flag is set if the ACC is zero, else Z is cleared.

If the addition generates a carry, C is set; otherwise C is cleared.

z
C
\%

If an overflow occurs, V is set; otherwise V is not affected.

ocv

If (OVM = 0, disabled) then if the operation generates a positive overflow, then the
counter is incremented and if the operation generates a negative overflow, then the
counter is decremented. If (OVM = 1, enabled) then the counter is not affected by the
operation.

OoVvM

If overflow mode bit is set, the ACC value will saturate maximum positive
(OX7FFFFFFF) or maximum negative (0x80000000) if the operation overflows.

Repeat

Example

This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

; Increment the 32-bit value VarA:

MOVB ACC,#1

; Load ACC with 0x00000001

ADDL @VarA,ACC ; VarA = VarA + ACC

142 C28x Assembly Language Instructions

SPRU430F—August 2001 —Revised April 2015

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

www.ti.com

ADDU ACC,loc16 — Add Unsigned Value to Accumulator

ADDU ACC,loc16

Syntax Options
Opcode
Objmode

RPT

cyC

Operands

Description

Flags and Modes

Add Unsigned Value to Accumulator

ADDU ACC,loc16
0000 1101 LLLL LLLL
X

Y

N+1

ACC — Accumulator register
loc16 — Addressing mode (see Chapter 5)

Add the 16-bit contents of the location pointed to by the “loc16” addressing mode to the
ACC register. The addressed location is zero extended before the add:

ACC = ACC + O:[locl6];

Flags and Modes Description
z After the addition, the Z flag is set if ACC is zero, else Z is cleared.
N After the addition, the N flag is set if bit 31 of the ACC is 1, else N is cleared.
C If the addition generates a carry, C is set; otherwise C is cleared.
\'% If an overflow occurs, V is set; otherwise V is not affected.

If (OVM = 0, disabled) then if the operation generates a positive overflow, then the
counter is incremented and if the operation generates a negative overflow, then the

ove counter is decremented. If (OVM = 1, enabled) then the counter is not affected by the
operation.
OVM If overflow mode bit is set; then the ACC value will saturate maximum positive

(Ox7FFFFFFF) or maximum negative (0x80000000) if the operation overflowed.

Repeat If this operation is repeated, then the instruction will be executed N+1 times. The state of
the Z, N, C flags will reflect the final result. The V flag will be set if an intermediate
overflow occurs. The OVC flag will count intermediate overflows, if overflow mode is
disabled.

Example ; Add three 32-bit unsigned variables by 16-bit parts:

MOVU ACC,@VarAlow ; AH = 0, AL = VarAlow
ADD ACC,@VarAhigh << 16 ; AH = VarAhigh, AL = VarAlow
ADDU ACC,@VarBlow ; ACC = ACC + O:VarBlow
ADD ACC,@VarBhigh << 16 ; ACC = ACC + VarBhigh << 16
ADDCU ACC,@VarClow ; ACC = ACC + VarClow + Carry
ADD ACC,@VarChigh << 16 ; ACC = ACC + VarChigh << 16
SPRU430F—August 2001 —-Revised April 2015 C28x Assembly Language Instructions 143

Submit Documentation Feedback

Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS

INSTRUMENTS

ADDUL P,loc32 — Add 32-bit Unsigned Value to P www.ti.com
ADDUL P,loc32 Add 32-bit Unsigned Value to P
Syntax Options ADDUL P,loc32
Opcode 0101 0110 0101 0111

0000 0000 LLLL LLLL
Objmode 1
RPT -
CcyC 1
Operands P — Product register

loc32 — Addressing mode (see Chapter 5)
Description Add to the P register the 32-bit content of the location pointed to by the “loc32”

addressing mode. The addition is treated as an unsigned ADD operation:
P =P + [loc32]; // unsigned add

Note: The difference between a signed and unsigned 32-bit add is in the treatment of the
overflow counter (OVC). For a signed ADD, the OVC counter monitors positive/negative
overflow. For an unsigned ADD, the OVC unsigned (OVCU) counter monitors the carry.

Flags and Modes

Flags and Modes Description
N After the addition, if bit 31 of the P register is 1, then set the N flag; otherwise clear N.
7 ther the addition, if the value of the P register is 0, then set the Z flag; otherwise clear
C If the addition generates a carry, set C; otherwise C is cleared.
\ If an overflow occurs, V is set; otherwise V is not affected.
ovCU The_ overflow counter is incremented when the addition operation generates an
unsigned carry. The OVM mode does not affect the OVCU counter.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Add 64-bit VarA + VarB and store result in VarC:
MOVL P,@vVarA+0 ; Load P with low 32 bits of VarA MOVL
ACC,@VarA+2 ; Load ACC with high 32 bits of VarA

ADDUL P,@VarB+0 ; Add to P unsigned low 32 bits of VarB
ADDCL ACC,@VarB+2 ; Add to ACC with carry high 32 bits of VarB
MOVL @VarC+0,P ; Store low 32-bit result into VarC

MOVL @VarC+2,ACC ; Store high 32-bit result into VarC

144 C28x Assembly Language Instructions SPRU430F—-August 2001 —Revised April 2015

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

www.ti.com ADDUL ACC, loc32 — Add 32-bit Unsigned Value to Accumulator

ADDUL ACC, loc32 Add 32-bit Unsigned Value to Accumulator

Syntax Options ADDUL ACC, loc32
Opcode 0101 0110 0101 0011
XXXX XXXX LLLL LLLL
Objmode 1
RPT Y
CcyC N+1
Operands ACC - Accumulator register

loc32 — Addressing mode (see Chapter 5)

Description Add to the ACC register the unsigned 32-bit content of the location pointed to by the
“loc32” addressing mode:

ACC = ACC + [loc32]; // unsigned add

Note: The difference between a signed and unsigned 32-bit add is in the treatment of the
overflow counter (OVC). For a signed ADD, the OVC counter monitors positive/negative
overflow. For an unsigned ADD, the OVC unsigned (OVCU) counter monitors the carry.

Flags and Modes

Flags and Modes Description

z After the addition, the Z flag is set if the ACC value is zero, else Z is cleared.

N After the addition, the N flag is set if bit 31 of the ACC is 1, else N is cleared.

C If the addition generates a carry, C is set; otherwise C is cleared.

\Y If an overflow occurs, V is set; otherwise V is not affected.

oveU The_ overflow counter is incremented when the addition operation generates an
unsigned carry. The OVM mode does not affect the OVCU counter.
Repeat If this operation is repeated, then the instruction will be executed N+1 times. The state of

the Z, N, C flags will reflect the final result. The V flag will be set if an intermediate
overflow occurs. The OVCU will count intermediate carries.

Example ; Add two 64-bit values (VarA and VarB) and store result in VarC:

MOVL ACC,@VarA+0 ; Load ACC with contents of the low
; 32 bits of VarA

ADDUL ACC,@VarB+0 ; Add to ACC the contents of the low
; 32 bits of VarB

MOVL @VarC+0,ACC ; Store low 32-bit result into VarC

MOVL ACC,@VarA+2 ; Load ACC with contents of the high
; 32 bits of VarA

ADDCL ACC,@vVarB+2 ; Add to ACC the contents of the high
; 32 bits of VarB with carry

MOVL @VarC+2,ACC ; Store high 32-bit result into VarC

SPRU430F—August 2001 —-Revised April 2015 C28x Assembly Language Instructions 145

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS

INSTRUMENTS
ADRK #8bit — Add to Current Auxiliary Register www.ti.com
ADRK #8bit Add to Current Auxiliary Register
Syntax Options ADRK #8bit
Opcode 1111 1100 LLIL 0001
Objmode X
RPT -
cyC 1
Operands #8bit — 8-bit immediate constant value
Description Add the 8-bit unsigned constant to the XARn register pointed to by ARP:

XAR(ARP) = XAR(ARP) + 0:8bit;

Flags and Modes

Flags and Modes Description

The 3-bit ARP points to the current valid Auxiliary Register, XARO to XAR7. This
pointer determines which Auxiliary register is modified by the operation.

ARP

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once

Example TableA: _word Ox1111
-word 0x2222
-word 0x3333
-word 0x4444

FuncA:
MOVL XAR1,#TableA ; Initialize XARl pointer
MOVZ AR2,*XAR1 ; Load AR2 with the 16-bit value
; pointed to by XAR1 (0x1111)
; Set ARP =1
ADRK #2 ; Increment XAR1 by 2
MOVZ AR3,*XAR1 ; Load AR3 with the 16-bit value
; pointed to by XAR1 (0x3333)
146 C28x Assembly Language Instructions SPRU430F-August 2001 —Revised April 2015

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

www.ti.com AND ACC #16bit << #0..16 — Description

AND ACC,#16bit << #0..16 Description

Syntax Options

Syntax Options Opcode Objmode RPT CcYyc

AND ACC, #16bit << #0..15 0011 1110 0000 SHFT 1 - 1
CCCC ccce ccee ccee

AND ACC, #16bit << #16 0101 0110 0000 1000 1 - 1
CCCC CcCccc ccce ccee

Operands ACC — Accumulator register
#16bit — 16-bit immediate constant value
#0..16 — Shift value (default is "<< #0" if no value specified)

Description Perform a bitwise AND operation on the ACC register with the given 16-bit unsigned
constant value left shifted as specified. The value is zero extended and lower order bits
are zero filled before the AND operation. The result is stored in the ACC register:

ACC = ACC AND (0:16bit << shift value);

Flags and Modes

Flags and Modes Description
N The load to ACC is tested for a negative condition. If bit 31 of ACC is 1, then the
negative flag bit is set; otherwise it is cleared.
7 The load to ACC is tested for a zero condition. The zero flag bit is set if the operation
generates ACC = 0; otherwise it is cleared.
Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.
Example ; Calculate the 32-bit value: VarA = VarA AND OxOFFFFO0O
MOVL ACC,@VarA ; Load ACC with contents of VarA
AND ACC,#OXFFFF << 12 ; AND ACC with OxOFFFFO000
MOVL @VarA,ACC ; Store result in VarA
SPRU430F—August 2001 —-Revised April 2015 C28x Assembly Language Instructions 147

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

AND ACC, loc16 —

13 TEXAS
INSTRUMENTS

Bitwise AND www.ti.com

AND ACC, loc16
Syntax Options
Opcode

Objmode

RPT

cyC

Operands

Description

Flags and Modes

Bitwise AND

AND ACC, loc16
1000 1001 LLLL LLLL
1

Y

N+1

ACC — Accumulator register
loc16 — Addressing mode (see Chapter 5)

Perform a bitwise AND operation on the ACC register with the zero-extended content of
the location pointed to by the “loc16” address mode. The result is stored in the ACC
register:

ACC = ACC AND 0:[locl6];

Flags and Modes Description
N Clear flag.
7 The load to ACC is tested for a zero condition. The zero flag bit is set if the operation
generates ACC = 0; otherwise it is cleared.

Repeat This operation is repeatable. If the operation follows a RPT instruction, then the AND
instruction will be executed N+1 times. The state of the Z and N flags will reflect the final
result.

Example ; Calculate the 32-bit value: VarA = VarA AND O:VarB
MOVL ACC,@VarA ; Load ACC with contents of VarA
AND ACC,@VarB ; AND ACC with contents of 0:VarB
MOVL @VarA,ACC ; Store result in VarA

148 C28x Assembly Language Instructions SPRU430F-August 2001 —Revised April 2015

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

www.ti.com AND AX, loc16, #16bit — Bitwise AND

AND AX, loc16, #16bit Bitwise AND

Syntax Options AND AX, loc16, #16bit
Opcode 1100 110A LLLL LLLL
CCCC CCCC Ceee ccce
Objmode X
RPT -
CcYC 1
Operands AX — Accumulator high (AH) or accumulator low (AL) register

loc16 — Addressing mode (see Chapter 5)
#16bit — 16-bit immediate constant value

Description Perform a bitwise AND operation on the 16-bit contents of the location pointed to by the
“loc16” addressing mode with the specified 16-bit immediate constant. The result is
stored in the specified AX register:

AX = [loc16] AND 16bit;

Flags and Modes

Flags and Modes Description

N The load to AX is tested for a negative condition. If bit 15 of AX is 1, then the negative
flag bit is set; otherwise it is cleared.

7 The load to AX is tested for a zero condition. The zero flag bit is set if the operation
generates AX = 0; otherwise it is cleared.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Branch if either of Bits 2 and 7 of VarA are non-zero:
AND AL,@VarA,#0x0084 ; AL = VarA AND 0x0084
SB Dest,NEQ ; Branch if result is non-zero

; Merge Bits 0,1,2 of VarA with Bits 8,9,10 of VarB and store in
; varC in bit locations 0,1,2,3,4,5:

AND AL,@VarA,#0x0007 ; Keep bits 0,1,2 of VarA

AND AH,@VarB,#0x0700 ; Keep bits 8,9,10 of VarB

LSR AH,#5 ; Scale back bits 8,9,10 to bits 3,4.,5
OR AL,@AH ; Merge bits
MOV @varC,AL ; Store result in VarC
SPRU430F—August 2001 —-Revised April 2015 C28x Assembly Language Instructions 149

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

AND IER,#16bit — Bitwise AND to Disable Specified CPU Interrupts

13 TEXAS
INSTRUMENTS

www.ti.com

AND IER,#16bit

Syntax Options

Opcode

Objmode
RPT
CcYc

Operands

Description

Flags and Modes

Repeat

Example

Bitwise AND to Disable Specified CPU Interrupts

AND IER,#16bit

0111 0110 0010 0110
CCCC CCCC ccce ccee

X

2

IER — Interrupt enable register
#16bit — 16-bit immediate constant value (0x0000 to OxFFFF)

Disable specific interrupts by performing a bitwise AND operation with the IER register
and the 16-bit immediate value. The result is stored in the IER register. Any changes
take effect before the next instruction is processed.

IER = IER AND #16bit;
None

This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

; Disable INT1 and INT6 only. Do not modify state of other
; interrupts enable:
AND 1ER,#OXFFDE ; Disable INT1 and INT6

150 C28x Assembly Language Instructions

SPRU430F—August 2001 —Revised April 2015

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS

INSTRUMENTS

www.ti.com AND IFR,#16bit — Bitwise AND to Clear Pending CPU Interrupts

AND IFR #16bit Bitwise AND to Clear Pending CPU Interrupts

Syntax Options AND IFR,#16bit

Opcode 0111 0110 0010 1111
CCCC CCCC CCCC CCCe

Objmode X

RPT -

CcyC 2

Operands IFR — Interrupt flag register
#16bit — 16-bit immediate constant value (0x0000 to OxFFFF)

Description Clear specific pending interrupts by performing a bitwise AND operation with the IFR
register and the 16-bit immediate value. The result of the AND operation is stored in the
IFR register:
IFR = IFR AND #16bit;
Note: Interrupt hardware has priority over CPU instruction operation in cases where the
interrupt flag is being simultaneously modified by the hardware and the instruction.

Flags and Modes None

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Clear the contents of the IFR register. Disables all
; pending interrupts:
AND IFR,#0x0000 ; Clear IFR register

SPRU430F—August 2001 —-Revised April 2015 C28x Assembly Language Instructions 151

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

AND loc16, AX —

13 TEXAS

AND loc16, AX

Syntax Options
Opcode
Objmode

RPT

cyC

Operands

Description

Flags and Modes

INSTRUMENTS
Bitwise AND www.ti.com
Bitwise AND
AND loc16, AX

1100 OOOA LLLL LLLL

X

1

loc16 — Addressing mode (see Chapter 5)
AX — Accumulator high (AH) or accumulator low (AL) register
Perform a bitwise AND operation on the contents of the location pointed to by the “loc16”

addressing mode with the specified AX register. The result is stored in location pointed
to by "loc16™:

[locl6] = [locl6] AND AX;

This is a read-modify-write operation.

Flags and Modes Description

N The load to [loc16] is tested for a negative condition. If bit 15 of [loc16] is 1, then the

negative flag bit is set; otherwise it is cleared.

7 The load to [loc16] is tested for a zero condition. The zero flag bit is set if the operation

generates ([loc16] = 0); otherwise it is cleared.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; AND the contents of VarA with VarB and store in VarB:
MOV AL,@VarA ; Load AL with contents of VarA
AND @VarB,AL ; VarB = VarB AND AL

152 C28x Assembly Language Instructions SPRU430F-August 2001 —Revised April 2015

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS

INSTRUMENTS
www.ti.com AND AX, loc16 — Bitwise AND
AND AX, locl6 Bitwise AND
Syntax Options AND AX, loc16
Opcode 1100 111A LLLL LLLL
Objmode X
RPT -
cyC 1
Operands AX — Accumulator high (AH) or accumulator low (AL) register

loc16 — Addressing mode (see Chapter 5)

Description Perform a bitwise AND operation on the contents of the specified AX register with the

16-bit contents of the location pointed to by the “loc16” addressing mode. The result is
stored in the AX register:

AX = AX AND 16bit;

Flags and Modes

Flags and Modes Description

N The load to AX is tested for a negative condition. If bit 15 of AX is 1, then the negative
flag bit is set; otherwise it is cleared.

7 The load to AX is tested for a zero condition. The zero flag bit is set if the operation
generates AX = 0; otherwise it is cleared.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; AND the contents of VarA and VarB and branch if non-zero:
MOV AL,@VarA ; Load AL with contents of VarA
AND AL,@vVarB ; AND AL with contents of VarB
SB Dest,NEQ ; Branch if result is non-zero

SPRU430F—August 2001 —-Revised April 2015 C28x Assembly Language Instructions 153

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

AND loc16,#16bitSigned — Bitwise AND www.ti.com

AND loc16,#16bitSigned Bitwise AND

Syntax Options

Opcode

Objmode
RPT
CcYc

Operands

Description

Flags and Modes

AND loc16,#16bitSigned

0001 1000 LLLL LLLL
CCCC CCCC ccce ccee

X

1

loc16 — Addressing mode (see Chapter 5)
#16bitsigned — 16-bit signed immediate constant value

Perform a bitwise AND operation on the 16-bit content of the location pointed to by the
“loc16” addressing mode and the specified 16-bit immediate constant. The result is
stored in the location pointed to by “loc16”:

[locl16] = [locl6] AND 16bit;
Smart Encoding:

If loc16 = AH or AL and #16bitSigned is an 8-bit number, then the assembler will encode
this instruction as ANDB AX, #8-bit to improve efficiency. To override this, use the
ANDW AX, #16bitSigned instruction alias.

Flags and Modes Description
N After the operation if bit 15 of [loc16] 1, set N; otherwise, clear N.
z After the operation if [loc16] is zero, set Z; otherwise, clear Z.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Clear Bits 3 and 11 of VarA:
; VarA = VarA AND #~(1 << 3 | 1 << 11)
AND @VarA,#~(1 << 3] 1 ; Clear bits 3 and 11 of VarA << 11)

154 C28x Assembly Language Instructions SPRU430F-August 2001 —Revised April 2015

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS

INSTRUMENTS

www.ti.com

ANDB AX, #8bit — Bitwise AND 8-bit Value

ANDB AX, #8bit

Syntax Options
Opcode
Objmode

RPT

cyC

Operands

Description

Flags and Modes

Bitwise AND 8-bit Value

ANDB AX, #8bit

1001 O00A CCCC ccccC

X

1

AX — Accumulator high (AH) or accumulator low (AL) register

#8bit — 8-bit immediate constant value

Perform a bitwise AND operation with the content of the specified AX register (AH or AL)
with the given 8-bit unsigned immediate constant zero extended. The result is stored in

AX:

AX = AX AND 0:8bit;

Flags and Modes

Description

N

The load to AX is tested for a negative condition. If bit 15 of AX is 1, then the negative
flag bit is set; otherwise it is cleared.

z

The load to AX is tested for a zero condition. The zero flag bit is set if the operation
generates AX = 0; otherwise it is cleared.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.
Example ; Add VarA to VarB, keep LSByte and store result in VarC:
MOV AL,@VarA ; Load AL with contents of VarA
ADD AL,@VarB ; Add to AL contents of VarB
ANDB AL,#OxFF ; AND contents of AL with OxOOFF
MOV @varC,AL ; Store result in VarC
SPRU430F—August 2001 —-Revised April 2015 C28x Assembly Language Instructions 155

Submit Documentation Feedback

Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

ASP — Align Stack Pointer www.ti.com

ASP

Syntax Options
Opcode
Objmode

RPT

CYC

Operands

Description

Flags and Modes

Align Stack Pointer

ASP
0111 0110 0001 1011

X

1
None

Ensure that the stack pointer (SP) is aligned to an even address. If the least significant
bit of SP is 1, SP points to an odd address and must be moved by incrementing SP by
1. The SPA bit is set as a record of this alignment. If instead the ASP instruction finds
that the SP already points to an even address, SP is left unchanged and the SPA bit is
cleared to indicate that no alignment has taken place. In either case, the change to the
SPA bit is made in the decode 2 phase of the pipeline.

iT(SP = odd)
SP = SP + 1;
SPA = 1;else
SPA = 0;

To undo a previous alignment by the ASP instruction, use the NASP instruction.

Flags and Modes Description
SPA If SP holds an odd address before the operation, SPA is set; otherwise, SPA is
cleared.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.
Example ; Alignment of stack pointer in interrupt service routine:
; Vector table:
INTx: .long INTxService ; INTx interrupt vector
INTxService:
ASP ; Align stack pointer
NASP ; Re-align stack pointer
IRET ; Return from interrupt.
156 C28x Assembly Language Instructions SPRU430F-August 2001 —Revised April 2015

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS

INSTRUMENTS

www.ti.com

ASR AX#1...16 — Arithmetic Shift Right

ASR AX#1...16

Syntax Options
Opcode
Objmode

RPT

cyC

Operands

Description

Flags and Modes

Arithmetic Shift Right

ASR AX,#1...16

1111 1111 101A SHFT

X

1

AX — Accumulator high (AH) or accumulator low (AL) register
#1-16 — Shift value

Perform an arithmetic right shift on the content of the specified AX register (AH or AL) by
the amount given in the “shift value” field. During the shift, the value is sign extended
and the last bit to be shifted out of the AX register is stored in the carry status flag bit:

SIGN Right shift
(Immediate value)

AX Last bit out

|

l Discard other bits
AX

Flags and Modes

Description

N After the shift, if bit 15 of AX is 1 then the negative flag bit is set; otherwise it is cleared.
z After the shift, if AX is 0, then the Z bit is set; otherwise it is cleared.
C The last bit to be shifted out of AH or AL is stored in C.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.
Example ; Calculate signed value: VarC = (VarA + VarB) >> 2
MOV AL,@varA ; Load AL with contents of VarA
ADD AL,@VarB ; Add to AL contents of VarB
ASR AL,#2 ; Scale result by 2
MOV @varC,AL ; Store result in VarC
SPRU430F—August 2001 —-Revised April 2015 C28x Assembly Language Instructions 157

Submit Documentation Feedback

Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

ASR AX,T — Arithmetic Shift Right www.ti.com

ASR AX, T

Syntax Options
Opcode
Objmode

RPT

cyC

Operands

Description

Flags and Modes

Arithmetic Shift Right

ASR AX, T
1111 1111 0110 O10A

X

1

AX — Accumulator high (AH) or accumulator low (AL) register
T — Upper 16 bits of the multiplicand (XT) register

Perform an arithmetic shift right on the content of the specified AX register as specified
by the four least significant bits of the T register, T(3:0) = shift value = 0...15. The
contents of higher order bits are ignored. During the shift, the value is sign extended. If
the T(3:0) register bits specify a shift of 0, then C is cleared; otherwise, C is filled with
the last bit to be shifted out of AX:

AX Last bit out or cleared

i [c]
SIGN Right shift
(Contents of T [3:0])

l Discard other bits

AX

Flags and Modes Description

Atfter the shift, if bit 15 of AX is 1 then the negative flag bit is set; otherwise it is cleared.
N Even if the T(3:0) register bits specify a shift of 0, the value of AH or AL is still tested
for the negative condition and N is affected.

After the shift, if AX is 0, then the Z bit is set, otherwise it is cleared. Even if the T(3:0)
z register bits specify a shift of 0, the value of AH or AL is still tested for the zero
condition and Z is affected.

c If T(3:0) specifies a shift of 0, then C is cleared; otherwise, C is filled with the last bit to
be shifted out of AH or AL.

Repeat

Example

This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

; Calculate signed value: VarC = VarA >> VarB;

MOV T,@VarB ; Load T with contents of VarB

MOV AL,@VarA ; Load AL with contents of VarA

ASR AL,T ; Scale AL by value in T bits 0 to 3
MOV @vVarC,AL ; Store result in VarC

158 C28x Assembly Language Instructions SPRU430F-August 2001 —Revised April 2015

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

www.ti.com ASR64 ACC:P,#1..16 — Arithmetic Shift Right of 64-bit Value

ASR64 ACC:P,#1..16 Arithmetic Shift Right of 64-bit Value

Syntax Options ASR64 ACC:P#1..16

Opcode 0101 0110 1000 SHFT

Objmode 1

RPT -

CYC 1

Operands ACC:P — Accumulator register (ACC) and product register (P)

#1..16 — Shift value

Description Arithmetic shift right the 64-bit combined value of the ACC:P registers by the amount
specified in the shift value field. As the value is shifted, the most significant bits are sign
extended and the last bit shifted out is stored in the carry bit flag:

ACC:P Last bit out

i [c]
SIGN Right shift
(Immediate value)

l Discard other bits
ACC:P
Flags and Modes
Flags and Modes Description
N After the shift, if bit 31 of the ACC register is 1 then ACC:P is negative and the N bit is
set; otherwise N is cleared.
7 After the shift, the Z flag is set if the combined 64-bit value of the ACC:P is zero;
otherwise, Z is cleared.
C The last bit shifted out of the combined 64-bit value is loaded into the C bit.
Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets

the repeat counter (RPTC) and executes only once.

Example ; Arithmetic shift right the 64-bit Var64 by 10:
MOVL ACC,@Var64+2 ; Load ACC with high 32 bits of Var64
MOVL P,@Var64+0 ; Load P with low 32 bits of Var64
ASR64 ACC:P,#10 ; Arithmetic shift right ACC:P by 10
MOVL @Var64+2,ACC ; Store high 32-bit result into Var64
MOVL @Var64+0,P ; Store low 32-bit result into Var64

SPRU430F—August 2001 —-Revised April 2015 C28x Assembly Language Instructions 159

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS

INSTRUMENTS
ASR64 ACC:P,T — Arithmetic Shift Right of 64-bit Value www.ti.com
ASR64 ACC:P, T Arithmetic Shift Right of 64-bit Value
Syntax Options ASR64 ACC:P,T
Opcode 0101 0110 0010 1100
Objmode 1
RPT -
cyC 1
Operands ACC:P — Accumulator register (ACC) and product register (P)
T — Upper 16 bits of the multiplicand register (XT)
Description Arithmetic shift right the 64-bit combined value of the ACC:P registers by the amount

specified in six least significant bits of the T register, T(5:0) = 0...63. Higher order bits
are ignored. As the value is shifted, the most significant bits are sign extended. If T
specifies a shift of 0, then C is cleared; otherwise, C is filled with the last bit to be shifted
out of the ACC:P registers:

ACC:P Last bit out or cleared

i []
SIGN Right shift
(Contents of T [5:0])

l Discard other bits
ACC:P
Flags and Modes
Flags and Modes Description
N After the shift, if bit 31 of the ACC register is 1 then ACC:P is negative and the N bit is
set; otherwise N is cleared.
7 After the shift, the Z flag is set if the combined 64-bit value of the ACC:P is zero;
otherwise, Z is cleared.
c If (T[5:0] = 0) clear C; otherwise, the last bit shifted out of the combined 64-bit value is
loaded into the C bit.
Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets

the repeat counter (RPTC) and executes only once.

Example ; Arithmetic shift right the 64-bit Var64 by contents of Varl6:
MOVL ACC,@Var64+2 ; Load ACC with high 32 bits of Var64
MOVL P,@Var64+0 ; Load P with low 32 bits of Var64
MOV T,@Varlé ; Load T with shift value from Varl6
ASR64 ACC:P,T ; Arithmetic shift right ACC:P by T(5:0)
MOVL @Var64+2,ACC ; Store high 32-bit result into Var64
MOVL @Var64+0,P ; Store low 32-bit result into Var64

160 C28x Assembly Language Instructions SPRU430F-August 2001 —Revised April 2015

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS

INSTRUMENTS
www.ti.com ASRL ACC,T — Arithmetic Shift Right of Accumulator
ASRL ACC,T Arithmetic Shift Right of Accumulator
Syntax Options ASRL ACC,T
Opcode 0101 0110 0001 0000
Objmode 1
RPT -
cyC 1
Operands ACC — Accumulator register

T — Upper 16 bits of the multiplicand (XT) register

Description Perform an arithmetic shift right on the content of the ACC register as specified by the

five least significant bits of the T register, T(4:0) = 0...31. Higher order bits are ignored.
During the shift, the value is sign extended. If T specifies a shift of 0, then C is cleared;
otherwise, C is filled with the last bit to be shifted out of the ACC register:

ACC Last bit out or cleared

|
SIGN Right shift
(Contents of T [4:0])

l Discard other bits

ACC

Flags and Modes

Flags and Modes Description

After the shift, the Z flag is set if the ACC value is zero, else Z is cleared. Even if the T
z register specifies a shift of 0, the content of the ACC register is still tested for the zero
condition and Z is affected.

After the shift, the N flag is set if bit 31 of the ACC is 1, else N is cleared. Even if the T

N register specifies a shift of 0, the content of the ACC register is still tested for the
negative condition and N is affected.
c If (T(4:0) = 0) then C is cleared; otherwise, the last bit shifted out is loaded into the C
flag bit.
Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.
Example ; Arithmetic shift right contents of VarA by VarB:
MOVL ACC,@varA ; ACC = VarA
MOV T,@varB ; T = VarB (shift value)
ASRL ACC,T ; Arithmetic shift right ACC by T(4:0)

MOVL @VarA,ACC ; Store result into VarA

SPRU430F—August 2001 —-Revised April 2015 C28x Assembly Language Instructions 161

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

B 16bitOffset, COND —

Branch

13 TEXAS
INSTRUMENTS

www.ti.com

B 16bitOffset, COND Branch

Syntax Options

B 16bitOffset, COND

Opcode 1111 1111 1110 COND
CCCC CccccC ccee ccee

Objmode X

RPT -

CcYC 714

Operands 16bit-offset — 16-bit signed immediate constant offset value (—-32768 to +32767 range)

COND - Conditional codes:

COND Syntax Description Flags Tested
0000 NEQ Not Equal To Z=0
0001 EQ Equal To zZ=1
0010 GT Greater Than Z=0ANDN=0
0011 GEQ Greater Than or Equal To N=0
0100 LT Less Than N=1
0101 LEQ Less Than or Equal To Z=10RN=1
0110 Hi Higher C=1ANDZ=0
0111 HIS, C Higher or Same, Carry Set c=1
1000 LO, NC Lower, Carry Clear CcC=0
1001 LOS Lower or Same C=00RZ=1
1010 NOV No Overflow V=0
1011 ov Overflow V=1
1100 NTC Test Bit Not Set TC=0
1101 TC Test Bit Set TC=1
1110 NBIO BIO Input Equal To Zero BIO=0
1111 UNC Unconditional -

Description Conditional branch. If the specified condition is true, then branch by adding the signed

Flags and Modes

16-bit constant value to the current PC value; otherwise continue execution without

branching:

If (COND
If (COND

true) PC = PC + signed 16-bit offset;
false) PC = PC + 2;

Note: If (COND = true) then the instruction takes 7 cycles. If (COND = false) then the

instruction takes 4 cycles.

Flags and Modes

Description

\Y

If the V flag is tested by the condition, then V is cleared.

Repeat

the repeat counter (RPTC) and executes only once.

This instruction is not repeatable. If this instruction follows the RPT instruction, it resets

162 C28x Assembly Language Instructions

SPRU430F—August 2001 —Revised April 2015

Copyright © 2001-2015, Texas Instruments Incorporated

Submit Documentation Feedback

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

www.ti.com BANZ 16bitOffset,ARn— — — Branch if Auxiliary Register Not Equal to Zero

BANZ 16bitOffset,ARn= = Branch if Auxiliary Register Not Equal to Zero

Syntax Options BANZ 16bitOffset, ARn— -
Opcode 0000 0000 0000 1nhnn
CCCC CCCC Ceee ccce
Objmode X
RPT -
CcYC 4/2
Operands 16bit-offset — 16-bit signed immediate constant value

ARnN — Lower 16 bits of auxiliary registers XARO to XAR7

Description If the 16-bit content of the specified auxiliary register is not equal to 0, then the 16-bit
sign offset is added to the PC value. This forces program control to the new address (PC
+ 16bitOffset). The 16-bit offset is sign extended to 22 bits before the addition. Then, the
content of the auxiliary register is decremented by 1. The upper 16 bits of the auxiliary
register (ARnH) is not used in the comparison and is not affected by the post decrement:
if(ARn 1= 0)

PC = PC + signed 16-bit offset;

ARNn = ARn - 1;
ARNH = unchanged;

Note: If branch is taken, then the instruction takes 4 cycles If branch is not taken, then
the instruction takes 2 cycles

Flags and Modes None

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Copy the contents of Arrayl to Array2:

; Int32 Arrayl[N];

; Int32 Array2[N];

; For(i=0; 1 < N; i++)

; Array2[i] = Arrayl[i];
MOVL XAR2,#Arrayl ; XAR2 = pointer to Arrayl
MOVL XAR3,#Array2 ; XAR3 = pointer to Array2
MOV @ARO,#(N-1) ; Repeat loop N times

Loop:
MOVL ACC,*XAR2++ ; ACC = Arrayl[i]
MOVL *XAR3++,ACC ; Array2[i] = ACC
BANZ Loop,ARO-- ; Loop if ARO != O, ARO--

SPRU430F—August 2001 —-Revised April 2015 C28x Assembly Language Instructions 163

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS

INSTRUMENTS
BAR 16bitOffset,ARn,ARmM,EQ/NEQ — Branch on Auxiliary Register Comparison www.ti.com
BAR 16bitOffset,ARN,ARM,EQ/NEQ Branch on Auxiliary Register Comparison
Syntax Options
Syntax Options Opcode Objmode RPT CcYyc
BAR 16bitOffset, ARNn,ARM,EQ 1000 1111 10nn nmmm 1 — 4/2
CCCC CCcC ccee ccce
BAR 16bitOffset, ARn,ARmM,NEQ 1000 1111 11nn nmmm 1 — 4/2
CCCC CCcC ccee cccee

Operands 16bit-offset — 16-bit signed immediate constant offset value (—-32768 to +32767 range)
ARN — Lower 16 bits of auxiliary registers XARO to XAR7
ARmM — Lower 16 bits of auxiliary registers XARO to XAR7
Syntax Description Condition Tested
NEQ Not Equal To ARnN = ARmM
EQ Equal To ARN = ARmM
Description Compare the 16-bit contents of the two auxiliary registers ARn and ARm registers and

Flags and Modes

branch if the specified condition is true; otherwise continue execution without branching:

IT (tested condition = true) PC = PC + signed 16-bit offset;
IT (tested condition = false) PC = PC + 2;

Note: If (tested condition = true) then the instruction takes 4 cycles. If (tested condition =
false) then the instruction takes 2 cycles.

None

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.
Example ; String compare:
MOVL XAR2,#StringA ; XAR2 points to StringA
MOVL XAR3,#StringB ; XAR3 points to StringB
MOV @AR4,#0 ; AR4 =0
Loop:
MOVZ ARO,*XAR2++ ; ARO = StringA[i]
MOVZ AR1,*XAR3++ ; ARL = StringB[i], i++
BAR Exit,ARO,AR4,EQ ; Exit if StringA[i] = 0
BAR Loop,ARO,AR1,EQ ; Loop if StringA[i1] = StringB[i]
NotEqual: ; StringA and B not the same
Exit: ; StringA and B the same
164 C28x Assembly Language Instructions SPRU430F-August 2001 —Revised April 2015

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS

INSTRUMENTS

www.ti.com

BF 16bitOffset, COND — Branch Fast

BF 16bitOffset, COND Branch Fast

Syntax Options

BF 16bitOffset, COND

Opcode 0101 0110 1100 COND
CCCC CccccC ccee ccee

Objmode 1

RPT -

CcYC 4/4

Operands 16bit-offset — 16-bit signed immediate constant offset value (—-32768 to +32767 range)

COND - Conditional codes:

COND Syntax Description Flags Tested
0000 NEQ Not Equal To Z=0
0001 EQ Equal To zZ=1
0010 GT Greater Than Z=0ANDN=0
0011 GEQ Greater Than or Equal To N=0
0100 LT Less Than N=1
0101 LEQ Less Than or Equal To Z=10RN=1
0110 Hi Higher C=1ANDZ=0
0111 HIS, C Higher or Same, Carry Set c=1
1000 LO, NC Lower, Carry Clear CcC=0
1001 LOS Lower or Same C=00RZ=1
1010 NOV No Overflow V=0
1011 ov Overflow V=1
1100 NTC Test Bit Not Set TC=0
1101 TC Test Bit Set TC=1
1110 NBIO BIO Input Equal To Zero BIO=0
1111 UNC Unconditional -

Description Fast conditional branch. If the specified condition is true, then branch by adding the

Flags and Modes

signed 16-bit constant value to the current PC value; otherwise continue execution

without branching:
If (COND

= true) PC = PC + signed 16-bit offset;
IT (COND = false) PC = PC + 2;

Note: The branch fast (BF) instruction takes advantage of dual prefetch queue on the

C28x core that reduces the cycles for a taken branch from 7 to 4:

If (COND
If (COND

true) then the instruction takes 4 cycles.
false) then the instruction takes 4 cycles.

Flags and Modes

Description

\%

If the V flag is tested by the condition, then V is cleared.

Repeat

This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

SPRU430F—August 2001 —-Revised April 2015

Submit Documentation Feedback

Copyright © 2001-2015, Texas Instruments Incorporated

C28x Assembly Language Instructions 165

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

C27MAP — Set the MOM1MAP Bit

13 TEXAS
INSTRUMENTS

www.ti.com

C27MAP

Syntax Options
Opcode
Objmode

RPT

CyC

Operands

Description

Flags and Modes

Set the MOM1MAP Bit

C27MAP

0101 0110 0011 1111

X

5

Note: This instruction is an alias for the “CLRC MOM1MAP” operation.

None

Clear the MOM1MAP status bit, configuring the mapping of the MO and M1 memory
blocks for C27x object-compatible operation. The memory blocks are mapped as follows:

C28 at Reset C27x Compatible Mapping
(MOM1MAP = 1) (MOM1MAP = 0)
Program Space Data Space Program Space Data Space

T 00 0000 00 0000
MO MO M1 MO

) 00 0400 00 0400
M1 M1 MO M1

- 00 07FF 00 O7FF

Note: The pipeline is flushed when this instruction is executed.

Note: The pipeline is flushed when this instruction is executed.

Flags and Modes

Description

MOM1MAP

The MOM1MARP bit is cleared.

Repeat

Example

This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

; Set the device mode from reset to C27x object-compatible mode: Reset:

C270BJ
C28ADDR

.c28_amode

C27MAP

; Enable C27x Object Mode

; Enable C27x/C28x Address Mode

; Tell assembler we are using C27x/C28x addressing
; Enable C27x Mapping Of MO and M1 blocks

166 C28x Assembly Language Instructions

SPRU430F—August 2001 —Revised April 2015

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS

INSTRUMENTS

www.ti.com

C270BJ — Clear the Objmode Bit

C270BJ

Syntax Options
Opcode
Objmode

RPT

CyC

Operands

Description

Flags and Modes

Repeat

Example

Clear the Objmode Bit

C270BJ
0101 0110 0011 0110
X

5

Note: This instruction is an alias for the “CLRC Objmode” operation.
None

Clear the Objmode status bit in Status Register ST1, configuring the device to execute
C27x object code. This is the default mode of the processor after reset.

Note: The pipeline is flushed when this instruction is executed.
Clear the Objmode bit.

This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

; Set the device mode from reset to C27x:

Reset:

C270BJ ; Enable C27x Object Mode

C28ADDR ; Enable C27x/C28x Address Mode

.c28_amode ; Tell assembler we are in C27x/C28x addr mode
C27MAP ; Enable C27x Mapping Of MO and M1 blocks

SPRU430F—August 2001 —-Revised April 2015

C28x Assembly Language Instructions 167

Submit Documentation Feedback

Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS

INSTRUMENTS
C28ADDR — Clear the AMODE Status Bit www.ti.com
C28ADDR Clear the AMODE Status Bit
Syntax Options C28ADDR
Opcode 0101 0110 0001 0110
Objmode X
RPT -
CyC 1
Note: This instruction is an alias for the “CLRC AMODE" operation.
Operands None
Description Clear the AMODE status bit in Status Register ST1, putting the device in C27x/C28x
addressing mode (see Chapter 5).
Note: This instruction does not flush the pipeline.
Flags and Modes
Flags and Modes Description
AMODE The AMODE bit is cleared.
Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.
Example ; Execute the operation VarC = VarA + VarB written in
; C2XLP syntax:
LPADDR ; Full C2xLP address compatible mode
-Ip_amode ; Tell assembler we are in C2xLP mode
LDP #VarA ; Initialize DP (low 64K only)
LACL VarA ; ACC = VarA (ACC high = 0)
ADDS VarB ; ACC = ACC + VarB (unsigned)
SACL VarC ; Store result into VarC
C28ADDR ; Return to C28x address mode
.c28 _amode ; Tell assembler we are in C28x mode
168 C28x Assembly Language Instructions SPRU430F-August 2001 —Revised April 2015

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS

INSTRUMENTS
www.ti.com C28MAP — Set the MOM1MAP Bit
C28MAP Set the MOM1MAP Bit
Syntax Options C28MAP
Opcode 0101 0110 0001 1010
Objmode X
RPT -
CYC 5
Note: This instruction is an alias for the “SETC MOM1MAP” instruction.
Operands None
Description Set the MOM1MAP status bit in Status register ST1, configuring the mapping of the MO
and M1 memory blocks for C28x operation. The memory blocks are mapped as follows:
C28 at Reset C27x Compatible Mapping
(MOM1MAP = 1) (MOM1MAP = 0)
Program Space Data Space Program Space Data Space
o 00 0000 00 0000
MO MO M1 MO
o 00 0400 00 0400
M1 M1 MO M1
—_— 00 07FF 00 07FF

Note: The pipeline is flushed when this instruction is executed.
Note: The pipeline is flushed when this instruction is executed.

Flags and Modes

Flags and Modes Description
MOM1MAP The MOM1MAP bit is set.
Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.
Example ; Set the device mode from reset to C28x mode: Reset:
C280BJ ; Enable C28x Object Mode
C28ADDR ; Enable C28x Address Mode
.c28 amode ; Tell assembler we are in C28x address mode
C28MAP ; Enable C28x Mapping Of MO and M1 blocks
SPRU430F—August 2001 —-Revised April 2015 C28x Assembly Language Instructions 169

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

C280BJ — Set the Objmode Bit www.ti.com

C280BJ

Syntax Options

Set the Objmode Bit

C280BJ

Opcode 0101 0110 0001 1111
Objmode X
RPT -
CYC 5

Note: This instruction is an alias for the “SETC Objmode” instruction.
Operands None
Description Set the Objmode status bit, putting the device in C28x object mode (supports C2xLP

source).
Flags and Modes

Flags and Modes Description
Objmode Set the Objmode bit.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.
Example ; Set the device mode from reset to C28x: Reset:
C280BJ ; Enable C28x Object Mode
C28ADDR ; Enable C27x/C28x Address Mode
.c28_amode ; Tell assembler we are in C27x/C28x address mode
C28MAP ; Enable C28x Mapping Of MO and M1 blocks
170 C28x Assembly Language Instructions SPRU430F-August 2001 —Revised April 2015

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS

INSTRUMENTS
www.ti.com CLRC AMODE — Clear the AMODE Bit
CLRC AMODE Clear the AMODE Bit
Syntax Options CLRC AMODE
Opcode 0101 0110 0001 0110
Objmode X
RPT -
cyC 1
Operands AMODE - Status bit
Description Clear the AMODE status bit in Status Register ST1, enabling C27x/C28x addressing.

Note: This instruction does not flush the pipeline.

Flags and Modes

Flags and Modes Description
AMODE The AMODE bit is cleared.
Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.
Example ; Execute the operation VarC = VarA + VarB written in C2xLP
> syntax:

SETC AMODE ; Full C2xLP address-compatible mode
- Ip_amode ; Tell assembler we are in C2xLP mode
LDP #VarA ; Initialize DP (low 64K only)

LACL VarA ; ACC = VarA (ACC high = 0)

ADDS VarB ; ACC = ACC + VarB (unsigned)

SACL VarC ; Store result into VarC

CLRC AMODE ; Return to C28x address mode
.c28_amode ; Tell assembler we are in C28x mode

SPRU430F-August 2001 —-Revised April 2015 C28x Assembly Language Instructions 171

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS

INSTRUMENTS
CLRC MOM1IMAP — Clear the MOM1MAP Bit www.ti.com
CLRC MOM1MAP Clear the MOM1MAP Bit
Syntax Options CLRC MOM1MAP
Opcode 0101 0110 0011 1111
Objmode X
RPT -
CYC 5
Operands MOM1MAP — Status bit
Description Clear the MOM1MAP status bit in Status Register ST1, configuring the mapping of the
MO and M1 memory blocks for C27x operation. The memory blocks are mapped as
follows:
C28 at Reset C27x Compatible Mapping
(MOM1MAP = 1) (MOM1MAP = 0)
Program Space Data Space Program Space Data Space
o 00 0000 00 0000
MO MO M1 MO
o 00 0400 00 0400
M1 M1 MO M1
- 00 07FF 00 07FF

Note: The pipeline is flushed when this instruction is executed.

Note: The pipeline is flushed when this instruction is executed. This bit is provided for
compatibility for users migrating from C27x. The MOM1MAP bit should always remain set
to 1 for users operating in C28x mode and C2xLP source-compatible mode.

Flags and Modes

Flags and Modes Description
MOM1MAP The MOM1MAP bit is cleared
Example ; Set the device mode from reset to C27x object-compatible mode:
Reset:

CLRC Objmode ; Enable C27x Object Mode

CLRC AMODE ; Enable C27x/C28x Address Mode

.c28_amode ; Tell assembler we are in C27x/C28x addr mode
CLRC MOM1MAP ; Enable C27x Mapping Of MO and M1 blocks

172 C28x Assembly Language Instructions SPRU430F—-August 2001 —Revised April 2015

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

www.ti.com CLRC Objmode — Clear the Objmode Bit

CLRC Objmode Clear the Objmode Bit

Syntax Options CLRC Objmode

Opcode 0101 0110 0011 0110

Objmode X

RPT -

CYC 5

Operands Objmode — Status bit

Description Clear the Objmode status bit, enabling the device to execute C27x object code.

Note: The pipeline is flushed when this instruction is executed.

Flags and Modes

Table 6-4. Flags and Modes

Flags and Modes Description
Objmode The Objmode bit is cleared.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Set the device mode from reset to C27x object-compatible mode:
Reset:
CLRC Objmode ; Enable C27x Object Mode
CLRC AMODE ; Enable C27x/C28x Address Mode
.Cc28_amode ; Tell assembler we are in C27x/C28x addr mode
CLRC MOM1MAP ; Enable C27x Mapping Of MO and M1 blocks

SPRU430F—August 2001 —-Revised April 2015 C28x Assembly Language Instructions 173

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS

INSTRUMENTS

CLRC OVC — Clear Overflow Counter www.ti.com
CLRC ovC Clear Overflow Counter
Syntax Options CLRC OVC
Opcode 0101 0110 0101 1100
Objmode 1
RPT —
CYC 1

Note: This instruction is an alias for the “ZAP OVC” operation.
Operands OVC - Overflow counter bits in Status Register 0 (STO)
Description Clear the overflow counter (OVC) bits in STO.
Flags and Modes

Flags and Modes Description
ovCe The 6-bit overflow counter bits (OVC) are cleared.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets

the repeat counter (RPTC) and executes only once.
Example ; Calculate: VarD = sat(vVarA + VarB + VarC)

CLRC oOvC ; Zero overflow counter

MOVL ACC,@VarA ; ACC = VarA

ADDL ACC,@VarB ; ACC = ACC + VarB

ADDL ACC,@VarC ; ACC = ACC + VarC

SAT ACC ; Saturate if OVC I= 0

MOVL @VarD,ACC ; Store saturated result into VarD
174 C28x Assembly Language Instructions SPRU430F-August 2001 —Revised April 2015

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS

INSTRUMENTS
www.ti.com CLRC XF — Clear XF Status Bit
CLRC XF Clear XF Status Bit
Syntax Options CLRC XF
Opcode 0101 0110 0001 1011
Objmode X
RPT -
cyC 1
Operands XF — XF status bit and output signal
Description Clear the XF status bit and pull the corresponding output signal low.

Flags and Modes

Flags and Modes Description
XF The XF status bit is cleared.
Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets

the repeat counter (RPTC) and executes only once.

Example ; Pulse XF signal high if branch not taken:
MOV AL,@VarA ; Load AL with contents of VarA
SB Dest,NEQ ; ACC = VarA

SETC XF ; Set XF bit and signal high
CLRC XF ; Clear XF bit and signal low
. Dest:
SPRU430F—August 2001 —-Revised April 2015 C28x Assembly Language Instructions 175

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

CLRC Mode — Clear Status Bits

13 TEXAS
INSTRUMENTS

www.ti.com

CLRC Mode

Syntax Options

Clear Status Bits

Syntax Options Opcode Objmode RPT CcYyCc
CLRC mode 0010 1001 CCCC ccce X - 1,2
CLRC SXM 0010 1001 0000 0001 X - 1
CLRC OVM 0010 1001 0000 0010 X - 1
CLRC TC 0010 1001 0000 0100 X - 1
CLRC C 0010 1001 0000 1000 X - 1
CLRC INTM 0010 1001 0001 0000 X - 2
CLRC DBGM 0010 1001 0010 0000 X - 2
CLRC PAGEO 0010 1001 0100 0000 X - 1
CLRC VMAP 0010 1001 1000 0000 X - 1
Description Clear the specified status bits. Any change affects the next instruction in the pipeline.
The mode operand is a mask value that relates to the status bits in this way:
Mode bit Status Register Flag Cycles
0 STO SXM 1
1 STO OVM 1
2 STO TC 1
3 STO c 1
4 ST1 INTM 2
5 ST1 DBGM 2
6 ST1 PAGEO 1
7 ST1 VMAP 1

Flags and Modes

Note: The assembler accepts any number of flag names in any order.

Flags and Modes

Description

PAGEO

SXM
OoVvM
TCC

INTM Any of the specified bits can be cleared by the instruction.

DBGM

VMAP

Repeat

Example

This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

; Modify flag settings:

SETC INTM,DBGM ; Set INTM and DBGM bits to 1
CLRC TC,C,SXM,0VM ; Clear TC, C, SXM, OVM bits to O

CLRC #OxFF

; Clear all bits to 0O
SETC #OXFF ; Set all bits to 1

SETC C,SXM,TC,OVM ; Set TC, C, SXM, OVM bits to 1

CLRC DBGM, INTM

; Clear INTM and DBGM bits to O

176 C28x Assembly Language Instructions

SPRU430F—August 2001 —Revised April 2015

Copyright © 2001-2015, Texas Instruments Incorporated

Submit Documentation Feedback

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS

INSTRUMENTS
www.ti.com CMP AX, locl6 — Compare
CMP AX, loc16 Compare
Syntax Options CMP AX, locl6
Opcode 0101 O10A LLLL LLLL
Objmode X
RPT -
cyC 1
Operands AX — Accumulator high (AH) or accumulator low (AL) register

loc16 — Addressing mode (see Chapter 5)

Description The content of the specified AX register (AH or AL) is compared with the 16-bit content

of the location pointed to by the “loc16” addressing mode. The result of (AX-- [loc16]) is
evaluated and the status flag bits set accordingly. The AX register and content of the
location pointed to by “loc16” are left unchanged:

Set Flags On (AX - [locl6]);

Flags and Modes

Flags and Modes Description

If the result of the operation is negative, then N is set; otherwise it is cleared. The CMP
instruction assumes infinite precision when it determines the sign of the result. For

N example, consider the subtraction 0x8000 — 0x0001. If the precision were limited to 16
bits, the result would cause an overflow to the positive number Ox7FFF and N would be
cleared. However, because the CMP instruction assumes infinite precision, it would set
N to indicate that 0x8000 — 0x0001 actually results in a negative number.

7 The comparison is tested for a zero condition. The zero flag bit is set if the operation (
AX - [loc16]) = 0, otherwise it is cleared.

C If the subtraction generates a borrow, then C is cleared; otherwise C is set.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets

the repeat counter (RPTC) and executes only once.

Example ; Branch if VarA is higher then VarB:
MOV AL,@VarA ; Load AL with contents of VarA
CMPB AL,@varB ; Set Flags On (AL - VarB)
SB Dest,HI ; Branch if VarA higher then VarB

SPRU430F-August 2001 —-Revised April 2015 C28x Assembly Language Instructions 177

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

CMP loc16,#16bitSigned — Compare www.ti.com

CMP loc16,#16bitSigned Compare

Syntax Options

Opcode

Objmode
RPT
CcYc

Operands

Description

Flags and Modes

CMP loc16,#16bitSigned

0001 1011 LLLL LLLL
CCCC CCCC ccce ccee

X

1

loc16 — Addressing mode (see Chapter 5)
#16bitsigned — 16-bit immediate signed constant value

Compare the 16-bit contents of the location pointed to by the “loc16” addressing mode to
the signed 16-bit immediate constant value. To perform the comparison, the result of
([locl6] - #16hitSigned) is evaluated and the status flag bits are set accordingly. The
content of “loc16” is left unchanged:

Modify flags on ([locl6] - 16bitSigned);
Smart Encoding:

If loc16 = AL or AH and #16bitSigned is an 8-bit number, then the assembler will encode
this instruction as CMPB AX, #8bit, to override this encoding, use the CMPW AX,
#16bitSigned instruction alias.

Flags and Modes Description

If the result of the operation is negative, then N is set; otherwise it is cleared. The CMP
instruction assumes infinite precision when it determines the sign of the result. For

N example, consider the subtraction 0x8000 — 0x0001. If the precision were limited to 16
bits, the result would cause an overflow to the positive number Ox7FFF and N would be
cleared. However, because the CMP instruction assumes infinite precision, it would set
N to indicate that 0x8000 — 0x0001 actually results in a negative number.

7 The comparison is tested for a zero condition. The zero flag bit is set if the operation
([loc16] - 16bitSigned) = 0, otherwise it is cleared.

C If the subtraction generates a borrow, then C is cleared; otherwise C is set.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example The examples in this chapter assume that the device is already operating in C28x Mode
(Objmode = 1, AMODE = 0). To put the device into C28x mode following a reset, you
must first set the Objmode bit in ST1 by executing the “C280BJ” (or “SETC Objmode”)
instruction.

; Calculate:
; ifC VarA > 20)
; vVarA = 0;
CMP @varA,#20 ; Set flags on (VarA - 20)
MOVB @VarA,#0,GT ; Zero VarA if greater then
178 C28x Assembly Language Instructions SPRU430F-August 2001 —Revised April 2015

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS

INSTRUMENTS

www.ti.com

CMP64 ACC:P — Compare 64-bit Value

CMP64 ACC:P

Syntax Options
Opcode
Objmode

RPT

cyC

Operands

Description

Flags and Modes

Compare 64-bit Value
CMP64 ACC:P
0101 0110 0101 1110

1

1
ACC:P — Accumulator register (ACC) and product register (P)

The 64-bit content of the combined ACC:P registers is compared against zero and the
flags are set appropriately:

if((V = 1) & (ACC(bit 31) = 1))
N = 0;

else
N =1;

if((V = 1) & (ACC(bit 31) = 0))
N =1;

else
N = 0;

iT(ACC:P = 0x8000 0000 0000 0000)
Z =1;

else
Z = 0;

V = 0;

Note: This operation should be used as follows:

CMP64 ACC:P ; Clear V flag perform 64-bit operation
CMP64 ACC:P ; Set Z,N flags, V=0 conditionally branch

Flags and Modes Description

The content of the ACC register is tested to determine if the 64-bit ACC:P value is
negative. The CMP64 instruction takes into account the state of the overflow flag (V) to
increase precision when determining if ACC is negative. For example, consider the
subtraction on ACC of 0x8000 0000 - 0x0000 0001. This results in an overflow to a

N positive number (0x7FFF FFFF) and V would be set. Because the CMP64 instruction
takes into account the overflow, it would interpret the result as a negative number and
not a positive number. If the value is ACC is found to be negative, then N is set;
otherwise N is cleared.

z The zero flag bit is set if the combined 64 bits of ACC:P is zero, otherwise it is cleared.

vV The state of the V flag is used along with bit 31 of the ACC register to determine if the

value in the ACC:P register is negative. V is cleared by the operation.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.
Example ; If 64-bit VarA > 64-bit VarB, branch:
MOVL P,@VarA+0 ; Load P with low 32 bits of VarA
MOVL ACC,@VarA+2 ; Load ACC with high 32 bits of VarA
SUBUL P,@VarB+0 ; Sub from P unsigned low 32 bits of VarB
CMP64 ACC:P ; Clear V flag
SUBBL ACC,@VarB+2 ; Sub from ACC with borrow high 32 bits of VarB
CMP64 ACC:P ; Set Z,N flags appropriately for ACC:P
SB Dest,GT ; branch if VarA > VarB
SPRU430F-August 2001 —-Revised April 2015 C28x Assembly Language Instructions 179

Submit Documentation Feedback

Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

CMPB AX, #8bit — Compare 8-bit Value www.ti.com

CMPB AX, #8bit

Syntax Options
Opcode
Objmode

RPT

cyC

Operands

Description

Flags and Modes

Compare 8-bit Value

CMPB AX, #8bit

0101 001A CCCC cccC

X

1

AX — Accumulator high (AH) or accumulator low (AL) register

#8bit — 8-bit immediate constant value

Compare the content of the specified AX register (AH or AL) with the zero-extended 8-bit
unsigned immediate constant. The result of (AX — 0:8bit) is evaluated and the status flag
bits are set accordingly. The content of the AX register is left unchanged:

Set Flags On (AX - 0:8bit);

Flags and Modes

Description

If the result of the operation is negative, then N is set; otherwise it is cleared. The
CMPB instruction assumes infinite precision when it determines the sign of the result.
For example, consider the subtraction 0x8000 — 0x0001. If the precision were limited to

N 16 bits, the result would cause an overflow to the positive number 0x7FFF and N would
be cleared. However, because the CMPB instruction assumes infinite precision, it
would set N to indicate that 0x8000 — 0x0001 actually results in a negative number.

7 The comparison is tested for a zero condition. The zero flag bit is set if the operation
(AX - [0:8bit]) = O, otherwise it is cleared.

C If the subtraction generates a borrow, then C is cleared; otherwise C is set.

Repeat

Example

This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

; Check if VarA is within range 0x80 <= VarA <= OxFO:

MOV AL,@VarA ; Load AL with contents of VarA

CMPB AL,#0xFO ; Set Flags On (AL - OxO0O0FO0)

SB OutOfRange,GT ; Branch if VarA greater then OxOOFF
CMPB AL,#0x80 ; Set Flags On (AL - 0x0080)

SB OutOfRange,LT ; Branch if VarA less then 0x0080

180 C28x Assembly Language Instructions

SPRU430F—August 2001 —Revised April 2015

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

www.ti.com CMPL ACC,loc32 — Compare 32-bit Value

CMPL ACC,loc32 Compare 32-bit Value

Syntax Options CMPL ACC,loc32

Opcode 0000 1111 LLLL LLLL
Objmode X

RPT -

cyC 1

Operands ACC - Accumulator register

loc32 — Addressing mode (see Chapter 5)

Description The content of the ACC register is compared with the 32-bit location pointed to by the
“loc32” addressing mode. The status flag bits are set according to the result of (ACC -
[loc32]). The ACC register and the contents of the location pointed to by “loc32” are left
unchanged:

Modify flags on (ACC - [loc32]);

Flags and Modes

Flags and Modes Description

If the result of the operation is negative, then N is set; otherwise it is cleared. The
CMPL instruction assumes infinite precision when it determines the sign of the result.
For example, consider the subtraction 0x8000 0000 — 0x0000 0001. If the precision

N were limited to 32 bits, the result would cause an overflow to the positive number
0x7FFF FFFF and N would be cleared. However, because the CMPL instruction
assumes infinite precision, it would set N to indicate that 0x8000 0000 — 0x0000 0001
actually results in a negative number.

7 The comparison is tested for a zero condition. The zero flag bit is set if the operation
(AX - [loc32]) = 0, otherwise it is cleared.
C If the subtraction generates a borrow, C is cleared; otherwise C is set.
Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once
Example ; Swap the contents of 32-bit VarA and VarB if VarB is higher:
MOVL ACC,@VarB ; ACC = VarB
MOVL P,@VarA ; P = VarA
CMPL ACC,@P ; Set flags on (VarB - VarA)
MOVL @VarA,ACC,HI ; VarA = ACC if higher
MOVL @P,ACC,HI ; P = ACC if higher
MOVL @VarA,P ; VarA = P
SPRU430F—August 2001 —-Revised April 2015 C28x Assembly Language Instructions 181

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

CMPL ACC,P << PM — Compare 32-bit Value www.ti.com

CMPL ACC,P << PM Compare 32-bit Value

Syntax Options
Opcode
Objmode

RPT

cyC

Operands

Description

Flags and Modes

CMPL ACC,P << PM
1111 1111 0101 1001

X

1

ACC — Accumulator register
P — Product register
<<PM - Product shift mode

The content of the ACC register is compared with the content of the P register, shifted by
the amount specified by the product shift mode (PM). The status flag bits are set
according to the result of (ACC -[P << PM]). The content of the ACC register and the P
register are left unchanged:

Modify flags on (ACC - [P << PM]);

Flags and Modes Description

If the result of the operation is negative, then N is set; otherwise it is cleared. The
CMPL instruction assumes infinite precision when it determines the sign of the result.
For example, consider the subtraction 0x8000 0000 — 0x0000 0001. If the precision

N were limited to 32 bits, the result would cause an overflow to the positive number
0x7FFF FFFF and N would be cleared. However, because the CMPL instruction
assumes infinite precision, it would set N to indicate that 0x8000 0000 - 0x0000 0001
actually results in a negative number.

The comparison is tested for a zero condition. The zero flag bit is set if the operation

z (AX - [P<<PM)]) = 0, otherwise, it is cleared.
C If the subtraction generates a borrow, C is cleared; otherwise C is set.

The value in the PM bits sets the shift mode for the output operation from the product
PM register. If the product shift value is positive (logical left shift operation), then the low

bits are zero filled. If the product shift value is negative (arithmetic right shift operation),
the upper bits are sign extended.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.
Example ; Compare the following (VarA - VarB << 4):
MOVL ACC,@VvarA ; ACC = VarA
SPM -4 ; Set the product shift mode to << 4"
MOVL P,@VarB ; P = VarB
CMPL ACC,P << PM ; Compare (VarA - VarB << 4)
182 C28x Assembly Language Instructions SPRU430F-August 2001 —Revised April 2015

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

www.ti.com

CMPR 0/1/2/3 — Compare Auxiliary Registers

CMPR 0/1/2/3

Syntax Options

Compare Auxiliary Registers

Syntax Options Opcode Objmode RPT Ccyc
CMPR 0 0101 0110 0001 1101 1 - 1
CMPR 1 0101 0110 0001 1001 1 - 1
CMPR 2 0101 0110 0001 1000 1 - 1
CMPR 3 0101 0110 0001 1100 1 - 1

determined by the instruction.

Operands None
Description
CMPR O:
CMPR 1:
CMPR 2:
CMPR 3:

Flags and Modes

if(ARO = AR[ARP]) TC = 1, else TC
if(ARO > AR[ARP]) TC = 1, else TC
if(ARO > AR[ARP]) TC = 1, else TC =
if(ARO != AR[ARP]) TC = 1, else TC = 0

0
0
0

Compare ARO to the 16-bit auxiliary register pointed to by ARP. The comparison type is

Flags and Modes

Description

ARP

The 3-bit ARP points to the current valid Auxiliary Register, XARO to XAR7. This
pointer determines which Auxiliary register is compared to ARO.

TC

If the test is true, TC is set, else TC is cleared.

Repeat

Example

This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

TableA:

-word Ox1111

-word 0x2222

FuncA:

MOVL XAR1,#VarA ; Initialize XAR1l Pointer
MOVZ ARO,*XAR1++ ; Load ARO with 0x1111, clear AROH,

; ARP = 1

MOVZ AR1,*XAR1 ; Load AR1 with 0x2222, clear AR1H

CMPR O ; ARO = AR1? No, clear TC
B Equal,TC ; Don”t branch

CMPR 2 ; AR1 > AR2? Yes, set TC
B Less,TC ; Branch to '"'Less"

SPRU430F—August 2001 —-Revised April 2015

Submit Documentation Feedback

C28x Assembly Language Instructions

Copyright © 2001-2015, Texas Instruments Incorporated

183

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

CSB ACC — Count Sign Bits www.ti.com

CSB ACC

Syntax Options
Opcode
Objmode

RPT

cyC

Operands

Description

Flags and Modes

Count Sign Bits

CSB ACC
0101 0110 0011 0101

1

1
ACC — Accumulator register

Count the sign bits in the ACC register by determining the number of leading Os or 1s in
the ACC register and storing the result, minus one, in the T register:

T =0, 1 sign bit

T 1, 2 sign bits

T = 31, 32 sign bits

Note: The count sign bit operation is often used in normalization operations and is
particularly useful for algorithms such as; calculating Square Root of a humber,
calculating the inverse of a number, searching for the first "1” bit in a word.

Flags and Modes Description
N N is set if bit 31 of ACC is 1, else N is cleared.
z Zis setif ACCis 0, else Z is cleared.
TC The TC bit will reflect the state of the sign bit after the operation (TC=1 for negative).

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once
Example ; Normalize the contents of VarA:
MOVL ACC,@VarA ; Load ACC with contents of VarA
CSB ACC ; Count sign bits
LSLL ACC,T ; Logical shift left ACC by T(4:0)
MOVL @VarA,ACC ; Store result into VarA
184 C28x Assembly Language Instructions SPRU430F-August 2001 —Revised April 2015

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

www.ti.com

DEC loc16 — Decrement by 1

DEC loc16 Decrement by 1

Syntax Options DEC locl16

Opcode 0000 1011 LLLL LLLL

Objmode X

RPT -

cyC 1

Operands loc16 — Addressing mode (see Chapter 5)

Description Sutijtract 1 from the signed content of the location pointed to by the “loc16” addressing
mode.

Flags and Modes

Flags and Modes Description
N After the operation if bit 15 of [loc16] is 1, set N; otherwise, clear N.
VA After the operation if [loc16] is zero, set Z; otherwise, clear Z.
C If the subtraction generates a borrow, C is cleared; otherwise C is set.
\% If an overflow occurs, V is set; otherwise V is not affected.
Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.
Example ; VarA = VarA - 1;
DEC @varA ; Decrement contents of VarA

SPRU430F—August 2001 —-Revised April 2015 C28x Assembly Language Instructions

Submit Documentation Feedback

Copyright © 2001-2015, Texas Instruments Incorporated

185

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

DINT — Disable Maskable Interrupts (Set INTM Bit) www.ti.com

DINT

Syntax Options
Opcode
Objmode

RPT

CyC

Operands

Description

Flags and Modes

Disable Maskable Interrupts (Set INTM Bit)

DINT
0011 1011 0001 0000

X

2

Note: This instruction is an alias for the “SETC mode” operation with the "mode” field =
INTM.

None

Disable all maskable CPU interrupts by setting the INTM status bit. Any change affects
the next instruction in the pipeline. DINT has no effect on the unmaskable reset or NMI
interrupts.

Flags and Modes Description

INTM The instruction sets this bit to disable interrupts.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.
Example ; Make the operation "VarC = VarA + VarB" atomic:
DINT ; Disable interrupts (INTM = 1)
MOVL ACC,@varA ; ACC = VarA
ADDL ACC,@varB ; ACC = ACC + VarB
MOVL @varC,ACC ; Store result into VarC
EINT ; Enable interrupts (INTM = 0)
186 C28x Assembly Language Instructions SPRU430F-August 2001 —Revised April 2015

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

www.ti.com

DMAC ACC:P,loc32,*XAR7/++ — 16-Bit Dual Multiply and Accumulate

DMAC ACC:P,loc32,*XAR7/++ 16-Bit Dual Multiply and Accumulate

Syntax Options

Syntax Options Opcode Objmode RPT Ccyc
DMAC 0101 0110 0100 1011 1 Y N+2
ACC:P,l0c32,XAR7 | 1100 0111 LLLL LLLL
DMAC 0101 0110 0100 1011 1 Y N+2
ACC:P,loc32,*XAR7+ | 1000 0111 LLLL LLLL
+

ACC:P — Accumulator register (ACC) and product register (P)

Note: The @ACC and @P register addressing modes cannot be used. No illegal

*XARTY /++ — Indirect program-memory addressing using auxiliary register XAR7, can

Operands
loc32 — Addressing mode (see Chapter 5)
instruction trap will be generated if used (assembler will flag an error).
access full 4M x 16 program space range (0x000000 to Ox3FFFFF)
Description

Dual 16-bit x 16-bit signed multiply and accumulate. The first multiplication takes place
between the upper words of the 32-bit locations pointed to by the “loc32” and *XAR7/++
addressing modes and second multiplication takes place with the lower words.

' 16-bits ' ¢ 16-bits ’
loc32—p| VarA_1 XAR7—»{ VarB_1
VarA_2 VarB_2
XT JL Temp JL
| VarA_1 | VarA 2 | | VaB_t | VaB 2 |
: —~ P
A 4 a“ h 4

| VarA_1*VarB_1<<PM | VarA 2 *VarB_ 2 <<PM |
ACC P

After the operation the ACC contains the result of multiplying and adding the upper word
of the addressed 32-bit operands. The P register contains the result of multiplying and
adding the lower word of the addressed 32-bit operands.

XT = [loc32];

Temp = Prog[*XAR7 or *XAR7++];

ACC = ACC + (XT.MSW * Temp.MSW) << PM;
P =P + (XT.LSW * Temp.LSW) << PM;

Z, N, V, C flags and OVC counter are affected by the operation on ACC only. The PM
shift affects both the ACC and P operations.

On the C28x devices, memory blocks are mapped to both program and data space
(unified memory), hence the "*XAR7/++” addressing mode can be used to access data
space variables that fall within the program space address range.

With some addressing mode combinations, you can get conflicting references. In such
cases, the C28x will give the “loc16/loc32" field priority on changes to XAR7. For
example:

DMAC ACC:P,*--XAR7,*XAR7++
DMAC ACC:P,*XAR7++,*XAR7
DMAC ACC:P,*XAR7,*XAR7++

Flags and Modes

; ——XAR7 given priority
; *XAR7++ given priority
; *XAR7++ given priority

SPRU430F—August 2001 —-Revised April 2015
Submit Documentation Feedback

Copyright © 2001-2015,

C28x Assembly Language Instructions

Texas Instruments Incorporated

187

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

DMAC ACC:P,loc32,*XAR7/++ — 16-Bit Dual Multiply and Accumulate www.ti.com

Flags and Modes

Description

z

After the addition, the Z flag is set if the ACC value is zero, else Z is cleared.

After the addition, the N flag is set if bit 31 of the ACC is 1, else N is cleared.

If the addition generates a carry of the ACC register, C is set; otherwise C is cleared.

N
C
\%

If an overflow of the ACC register occurs, V is set; otherwise V is not affected.

ovC

If overflow mode is disabled; and if the operation generates a positive overflow of the
ACC register, then the counter is incremented. If overflow mode is disabled; and if the
operation generates a negative overflow of the ACC register, then the counter is
decremented.

OovVM

If overflow mode bit is set; then the ACC value will saturate maximum positive
(0x7FFFFFFF) or maximum negative (0x80000000) if the operation overflowed. Note
that OVM only affects the ACC operation.

PM

The value in the PM bits sets the shift mode for the output operation from the product
register. The PM mode affects both the ACC and P register accumulates. If the product
shift value is positive (logical left shift operation), then the low bits are zero filled. If the
product shift value is negative (arithmetic right shift operation), the upper bits are sign
extended.

Repeat This instruction is repeatable. If the operation follows a RPT instruction, then it will be
executed N+1 times. The state of the Z, N, C and OVC flags will reflect the final result in
the ACC. The V flag will be set if an intermediate overflow occurs in the ACC.

Example ; Calculate sum of product using dual 16-bit multiply:

; intl6 X[N] ; Data information
; intl6 C[N] ; Coefficient information (located in low 4M)
; ; Data and Coeff must be aligned to even address
; ; N must be an even number
; sum = 0;
; For(i=0; 1 < N; i++)
; sum = sum + (X[i] * C[i]) >> 5;
MOVL XAR2,#X ; XAR2 = pointer to X
MOVL XAR7,#C ; XAR7 = pointer to C
SPM -5 ; Set product shift to ">> 5"
ZAPA ; Zero ACC, P, OVC
RPT #(N/2)-1 ; Repeat next instruction N/2 times
| IDMAC P,*XAR2++,*XAR7++ ; ACC = ACC + (X[i+1] * C[i+1]) >> 5
; P=P + (X[i] * CLi]) >> 5 i++
ADDL ACC,@P ; Perform final accumulate
MOVL @sum,ACC ; Store final result into sum
188 C28x Assembly Language Instructions SPRU430F-August 2001 —Revised April 2015

Submit Documentation Feedback

Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS

INSTRUMENTS

www.ti.com

DMOV loc16 — Data Move Contents of 16-bit Location

DMOV loc16

Syntax Options
Opcode
Objmode

RPT

CYC

Operands

Description

Flags and Modes

Repeat

Example

Data Move Contents of 16-bit Location

DMOV locl6

1010 0101 LLLL LLLL

1
Y
N+1

loc16 — Addressing mode (see Chapter 5)

Note: For this operation, register—addressing modes cannot be used. The modes are:
@ARN, @AH, @AL, @PH, @PL, @SP, @T. An illegal instruction trap will be generated.

Copy the contents pointed to by "loc16” into the next highest address:
locl6 + 1] = [locl6];

None

This instruction is repeatable. If the operation is follows a RPT instruction, then it will be

executed N+1 times.

; Calculate using 16-bit multiply:

; intle X[3];
; intlé C[3];

; Y = (X[0]*C[0] >> 2) + (X[1]*C[1] >> 2) + (X[2]*C[2] >>2);

; X[21 = X[11;
; X[11 = X[0];
SPM -2

MOVP T,@X+2
MPYS P,T,@C+2
MOVA T,@X+1
MPY P,T,@C+1
MOVA T,@X+0
MPY P,T,@C+O
ADDL ACC,P << PM
DMOV @X+1
DMOV @X+0
MOVL @Y,ACC

U4 UT4HW

T

product shift to >> 2

X[2]

T*C[2], ACC = 0

X[1]. ACC = X[2]*C[2] >> 2
T*C[1]

X[0], ACC = ACC + X[1]*C[1] >> 2
T*C[0]

D
L T 1 B R { I

" ACC = ACC + X[0]*C[0] >> 2
; X[2]1 = X[1]
; X[11 = X[o]

; Store result into Y

SPRU430F—August 2001 —-Revised April 2015
Submit Documentation Feedback

C28x Assembly Language Instructions 189

Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

EALLOW — Enable Write Access to Protected Space www.ti.com

EALLOW

Syntax Options
Opcode
Objmode

RPT

cyC

Operands

Description

Flags and Modes

Enable Write Access to Protected Space

EALLOW
0111 0110 0010 0010

X

4
None

Enable access to emulation space and other protected registers.

This instruction sets the EALLOW bit in status register ST1. When this bit is set, the
C28x CPU allows write access to the memory-mapped registers as well as other
protected registers. See the data sheet for your particular device to determine which
registers the EALLOW bit protects.

To again protect against writes to the registers, use the EDIS instruction.

EALLOW only controls write access; reads are allowed even if EALLOW has not been
executed.

On an interrupt or trap, the current state of the EALLOW bit is saved off onto the stack
within ST1 and the EALLOW bit is autocratically cleared. Therefore, at the start of an
interrupt service routine access to the protected registers is disabled. The IRET
instruction will restore the current state of the EALLOW bit saved on the stack.

The EALLOW bit is overridden via the JTAG port, allowing full control of register
accesses during debug from Code Composer Studio.

Flags and Modes Description

EALLOW The EALLOW flag is set.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.
Example ; Enable access to RegA and RegB which are EALLOW protected:
EALLOW ; Enable access to selected registers
AND @RegA,#0x4000 ; RegA = RegA AND 0x0400
MOV @RegB,#0 : RegB = 0
EDIS ; Disable access to selected registers
190 C28x Assembly Language Instructions SPRU430F-August 2001 —Revised April 2015

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS

INSTRUMENTS
www.ti.com EDIS — Disable Write Access to Protected Registers
EDIS Disable Write Access to Protected Registers
Syntax Options EDIS
Opcode 0111 0110 0001 1010
Objmode X
RPT -
CYC 4
Operands None
Description Disable access to emulation space and other protected registers.

This instruction clears the EALLOW bit in status register ST1. When this bit is clear, the
C28x CPU does not allow write access to the memory—mapped emulation registers and
other protected registers. See the data sheet for your particular device to determine
which registers the EALLOW bit protects.

To allow write access to the registers, use the EALLOW instruction.

Flags and Modes

Flags and Modes Description
EALLOW The EALLOW flag is cleared.
Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.
Example ; Enable access to RegA and RegB which are EALLOW protected:
EALLOW ; Enable access to selected registers
NOP ; Wait 2 cycles for enable to take

; effect. The number of cycles is device
; and/or register dependant.

NOP
AND @RegA,#0x4000 ; RegA = RegA AND 0x0400
MOV @RegB,#0 ; RegB = 0
EDIS ; Disable access to selected registers
SPRU430F—August 2001 —-Revised April 2015 C28x Assembly Language Instructions 191

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

EINT — Enable Maskable Interrupts (Clear INTM Bit)

13 TEXAS
INSTRUMENTS

www.ti.com

EINT

Syntax Options EINT

Enable Maskable Interrupts (Clear INTM Bit)

Note: This instruction is an alias for the “CLRC mode” operation with the "mode” field =

Opcode 0010 1001 0001 0000
Objmode X
RPT -
cyC 2
INTM.
Operands None
Description

in the pipeline.

Flags and Modes

Enable interrupts by clearing the INTM status bit. Any change affects the next instruction

Flags and Modes

Description

INTM

This bit is cleared by the instruction to enable interrupts.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.
Example ; Make the operation "VarC = VarA + VarB" atomic:
DINT ; Disable interrupts (INTM = 1)
MOVL ACC,@varA ; ACC = VarA
ADDL ACC,@varB ; ACC = ACC + VarB
MOVL @varC,ACC ; Store result into VarC
EINT ; Enable interrupts (INTM = 0)
192 C28x Assembly Language Instructions SPRU430F-August 2001 —Revised April 2015

Submit Documentation Feedback

Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS

INSTRUMENTS

www.ti.com

ESTOPO — Emulation Stop 0

ESTOPO

Syntax Options
Opcode
Objmode

RPT

cyC

Operands

Description

Flags and Modes

Emulation Stop 0

ESTOPO
0111 0110 0010 0101

X

4
None

Emulation Stop 0

This instruction is available for emulation purposes. It is used to create a software
breakpoint.

When an emulator is connected to the C28x and emulation is enabled, this instruction
causes the C28x to halt, regardless of the state of the DBGM bit in status register ST1
In addition, ESTOPO does not increment the PC.

When an emulator is not connected or when a debug program has disabled emulation,
the ESTOPO instruction is treated the same way as a NOP instruction. It simply
advances the PC to the next instruction.

None

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.
SPRU430F—August 2001 —-Revised April 2015 C28x Assembly Language Instructions 193

Submit Documentation Feedback

Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

ESTOP1 — Emulation Stop 1 www.ti.com

ESTOP1

Syntax Options
Opcode
Objmode

RPT

cyC

Operands

Description

Flags and Modes

Emulation Stop 1

ESTOP1
0111 0110 0010 0100

X

1
None

Emulation Stop 1

This instruction is available for emulation purposes. It is used to create an embedded
software breakpoint.

When an emulator is connected to the C28x and emulation is enabled, this instruction
causes the C28x to halt, regardless of the state of the DBGM bit in status register ST1.
Before halting the processor, ESTOPL1 increments the PC so that it points to the
instruction following the ESTOPL1.

When an emulator is not connected or when a debug program has disabled emulation,
the ESTOPO instruction is treated the same way as a NOP instruction. It simply
advances the PC to the next instruction.

None

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.
194 C28x Assembly Language Instructions SPRU430F-August 2001 —Revised April 2015

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

www.ti.com

FFC XAR7,22bit — Fast Function Call

FFC XAR7,22bit

Syntax Options

Opcode

Objmode
RPT
CcYc

Operands

Description

Flags and Modes

Fast Function Call

FFC XAR7,22bit

0000 0000 11CC CCCC
CCCC CCCC ccce ccee

X

4

XAR7 — Auxiliary register XAR7
22bit — 22-bit program-address (0x00 0000 to Ox3F FFFF range)

Fast function call. The return PC value is stored into the XAR7 register and the 22-bit
immediate destination address is loaded into the PC:

XAR7(21:0) = PC + 2;

XAR7(31:22) = 0;

PC = 22 bit;

None

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.
Example ; Fast function call of FuncA:
FFC XAR7,FuncA ; Call FuncA, return address in XAR7
FuncA: ; Function A:
LB *XAR7 ; Return: branch to address in XAR7
SPRU430F—August 2001 —-Revised April 2015 C28x Assembly Language Instructions 195

Submit Documentation Feedback

Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

FLIP AX — Flip Order of Bits in AX Register www.ti.com

FLIP AX

Syntax Options
Opcode
Objmode

RPT

CYC

Operands

Description

Flags and Modes

Flip Order of Bits in AX Register
FLIP AX
0101 0110 0111 OOOA

1

1
AX — Accumulator high (AH) or accumulator low (AL) register

Bit reverse the contents of the specified AX register (AH or AL):

temp = AX;

AX(bit 0) = temp(bit 15);
AX(bit 1) = temp(bit 14);
AX(bit 14) temp(bit 1);

AX(bit 15) = temp(bit 0);

Flags and Modes Description
N After the operation, if bit 15 of AX is 1 then the negative flag bit is set; otherwise it is
cleared.
z After the operation, if AX is 0, then the Z bit is set, otherwise it is cleared.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.
Example ; Flip the contents of 32-bit variable VarA:
MOV AH,@VarA+0 ; Load AH with low 16 bits of VarA
MOV AL,@VarA+1 ; Load AL with high 16 bits of VarA
FLIP AL ; Flip contents of AL
FLIP AH ; Flip contents of AH
MOVL @VarA,ACC ; Store 32-bit result in VarA
196 C28x Assembly Language Instructions SPRU430F-August 2001 —Revised April 2015

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS

INSTRUMENTS

www.ti.com

IACK #16bit — Interrupt Acknowledge

IACK #16bit

Syntax Options

Opcode

Objmode
RPT
CYC
Operands

Description

Flags and Modes

Interrupt Acknowledge

IACK #16bit

0111 0110 0011 1111
CCCC CCCC ccce ccee

X
1
#16bit — 16-bit constant immediate value (0x0000 to OxFFFF range)

Acknowledge an interrupt by outputting the specified 16-bit constant on the low 16 bits of
the data bus. Certain peripherals will provide the capability to capture this value to
provide low-cost trace. See the data sheet for details for your device.

data_bus(15:0) = 16bit;

None

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.
SPRU430F—August 2001 —-Revised April 2015 C28x Assembly Language Instructions 197

Submit Documentation Feedback

Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

IDLE — Put Processor in Idle Mode www.ti.com

IDLE

Syntax Options
Opcode
Objmode

RPT

cyC

Operands

Description

Flags and Modes

Put Processor in Idle Mode

IDLE
0111 0110 0010 0001

X

5
None

Put the processor into idle mode and wait for enabled or nonmaskable interrupt. Devices
using the 28x CPU may use the IDLE instruction in combination with external logic to
achieve different low-power modes. See the device-specific datasheets for more detail.
The idle instruction causes the following sequence of events:

1. The pipeline is flushed.

2. All outstanding memory cycles are completed.
3. The IDLESTAT bit of status register ST1 is set.
4

. Clocks to the CPU are stopped after the entire instruction buffer is full, placing the
device in the idle state. In the idle state, CLKOUT (the clock output from the CPU)
and all clocks to blocks outside the CPU (including the emulation block) continue to
operate as long as CLKIN (the clock input to the CPU) is driven. The PC continues to
hold the address of the IDLE instruction; the PC is not incremented before the CPU
enters the idle state.

5. The IDLE output CPU signal is activated (driven high).

6. The device waits for an enabled or nonmaskable hardware interrupt. If such an
interrupt occurs, the IDLESTAT bit is cleared, the PC is incremented by 1, and the
device exits the idle state.

If the interrupt is maskable, it must be enabled in the interrupt enable register (IER).
However, the device exits the idle state regardless of the value of the interrupt global
mask bit (INTM) of status register ST1.

After the device exits the idle mode, the CPU must respond to the interrupt request. If
the interrupt can be disabled by the INTM bit in status register ST1, the next event
depends on INTM:

e If (INTM = 0), then the interrupt is enabled, and the CPU executes the corresponding
interrupt service routine. On return from the interrupt, execution begins at the
instruction following the IDLE instruction.

o If INTM = 1), then the interrupt is blocked and program execution continues at the
instruction immediately following the IDLE.

If the interrupt cannot be disabled by INTM, the CPU executes the corresponding
interrupt service routine. On return from the interrupt, execution begins at the instruction
following the IDLE.

Flags and Modes Description
IDLESTAT Eeggsrggtermg the idle mode, IDLESTAT is set; after exiting the idle mode IDLESTAT

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.
198 C28x Assembly Language Instructions SPRU430F-August 2001 —Revised April 2015

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS

INSTRUMENTS

www.ti.com

IMACL P,loc32,*XAR7/++ — Signed 32 X 32-Bit Multiply and Accumulate (Lower Half)

IMACL P,loc32,*XAR7/++ Signed 32 X 32-Bit Multiply and Accumulate (Lower Half)

Syntax Options

Syntax Options Opcode Objmode RPT Ccyc

IMACL P,loc32,*XAR7 | 0101 0110 0100 1101 1 Y N+2
1100 0111 LLLL LLLL

IMACL 0101 0110 0100 1101 1 Y N+2
P,loc32,*XAR7++ 1000 0111 LLLL LLLL

Operands

Description

Flags and Modes

P — Product register
loc32 — Addressing mode (see Chapter 5)

Note: The @ACC addressing mode cannot be used when the instruction is repeated. No
illegal instruction trap will be generated if used (assembler will flag an error).

*XAR7/++ — Indirect program-memory addressing using auxiliary register XAR7; can
access full 4Mx16 program space range (0x000000 to Ox3FFFFF)

32-bit x 32-bit signed multiply and accumulate. First, add the unsigned previous product
(stored in the P register), ignoring the product shift mode (PM), to the ACC register.
Then, multiply the signed 32-bit content of the location pointed to by the “loc32”
addressing mode by the signed 32-bit content of the program-memory location pointed
to by the XARY7 register. The product shift mode (PM) then determines which part of the
lower 38 bits of the 64-bit result are stored in the P register. If specified, post-increment
the XARY register by 1:

ACC = ACC + unsigned P;
temp(37:0) = lower_38 bits(signed [loc32]
* signed Prog[*XAR7 or XAR7++]);
if(PM = +4 shift)
P(31:4) = temp(27:0), P(3:0) = 0;
if(PM = +1 shift)
P(31:1) = temp(30:0), P(0) = 0O;
if(PM = 0 shift)
P(31:0) = temp(31:0);
if(PM = -1 shift)
P(31:0) = temp(32:1);
if(PM = -2 shift)
P(31:0) = temp(33:2);
if(PM = -3 shift)
P(31:0) = temp(34:3);
if(PM = -4 shift)
P(31:0) = temp(35:4);
if(PM = -5 shift)
P(31:0) = temp(36:5);
if(PM = -6 shift)
P(31:0) = temp(37:6);

On the C28x devices, memory blocks are mapped to both program and data space
(unified memory), hence the "*XAR7/++” addressing mode can be used to access data
space variables that fall within the program space address range. With some addressing
mode combinations, you can get conflicting references. In such cases, the C28x will give
the “loc16/loc32” field priority on changes to XAR7. For example:

IMACL P,*--XAR7,*XAR7++

IMACL P,*XAR7++,*XAR7
IMACL P,*XAR7,*XAR7++

; ——XAR7 given priority
; *XAR7++ given priority
; *XAR7++ given priority

SPRU430F—August 2001 —-Revised April 2015

C28x Assembly Language Instructions 199

Submit Documentation Feedback

Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

IMACL P,loc32*XAR7/++ — Signed 32 X 32-Bit Multiply and Accumulate (Lower Half)

13 TEXAS
INSTRUMENTS

www.ti.com

Flags and Modes Description

VA After the addition, the Z flag is set if the ACC value is zero, else Z is cleared.

N After the addition, the N flag is set if bit 31 of the ACC is 1, else N is cleared.

C If the addition generates a carry, C is set; otherwise C is cleared.

\Y If an overflow occurs, V is set; otherwise V is not affected.

ovCuU The_ overflow counter is incremented when the addition operation generates an

unsigned carry. The OVM mode does not affect the OVCU counter.

PM The _value in the PM bits sets the shift _mode that c_ietermines which portion of the lower
38 bhits of the 64-bit results are stored in the P register.

Repeat This instruction is repeatable. If the operation follows a RPT instruction, then it will be
executed N+1 times. The state of the Z, N, C and OVC flags will reflect the final result in
the ACC. The V flag will be set if an intermediate overflow occurs in the ACC.

Example ; Calculate sum of product using 32-bit multiply and retain
; 64-bit result:

; Int32 X[N]; 7/ Data information
; int32 C[N]; // Coefficient information (located in
/7 low 4M)
; int64 sum = 0;
; For(i=0; 1 < N; i++)
; sum = sum + (X[i] * C[i]) >> 5;
; Calculate low 32 bits:
MOVL XAR2,#X ; XAR2 = pointer to X
MOVL XAR7,#C ; XAR7 = pointer to C
SPM -5 ; Set product shift to '">> 5"
ZAPA ; Zero ACC, P, OVCU
RPT #(N-1) ; Repeat next instruction N times
| | IMACL P,*XAR2++,*XAR7++ ;0OVCU:ACC = OVCU:ACC + P,
;P = (X[i]1 * CL[i]) << 5
i+t
ADDUL ACC,@P ; OVCU:ACC = OVCU:ACC + P
MOVL @sum+0,ACC ; Store low 32 bits result into sum
; Calculate high 32 bits:
MOVU @AL,OVC ; ACC = OVCU (carry count)
MOVB AH,#0
MPYB P,T,#0 s P=0
MOVL XAR2,#X ; XAR2 = pointer to X
MOVL XAR7,#C ; XAR7 = pointer to C
RPT #(N-1) ; Repeat next instruction N times
| IQMACL P,*XAR2++,*XAR7++ ; ACC = ACC + P >> 5,
; P = (X[i1 * CLiD) >> 32,
; I++
ADDL ACC,P << PM ; ACC = ACC + P >> 5
MOVL @sum+2,ACC ; Store high 32 bits result into sum
200 C28x Assembly Language Instructions SPRU430F-August 2001 —Revised April 2015

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

www.ti.com

IMPYAL P,XT,loc32 — Signed 32-Bit Multiply (Lower Half) and Add Previous P

IMPYAL P,XT,loc32 Signed 32-Bit Multiply (Lower Half) and Add Previous P

Syntax Options

Opcode

Objmode
RPT
CcYc

Operands

Description

Flags and Modes

IMPYAL P,XT,loc32

0101 0110 0100 1100
0000 0000 LLLL LLLL

1

1

P — Product register
XT — Multiplicand register.
loc32 — Addressing mode (see Chapter 5)

Add the unsigned content of the P register, ignoring the product shift mode (PM), to the
ACC register. Multiply the signed 32-bit content of the XT register by the signed 32-bit
content of the location pointed to by the “loc32” addressing mode. The product shift
mode (PM) then determines which part of the lower 38 bits of the 64-bit result are stored
in the P register:

ACC = ACC + unsigned P;

temp(37:0) = lower_38 bits(signed XT * signed [loc32]);

if(PM = +4 shift)
P(31:4) = temp(27:0), P(3:0) = 0;
if(PM = +1 shift)
P(31:1) = temp(30:0), P(0) = 0;
if(PM = 0 shift)
P(31:0) = temp(31:0);
if(PM = -1 shift)
P(31:0) = temp(32:1);
if(PM = -2 shift)
P(31:0) = temp(33:2);
if(PM = -3 shift)
P(31:0) = temp(34:3);
if(PM = -4 shift)
P(31:0) = temp(35:4);
if(PM = -5 shift)
P(31:0) = temp(36:5);
if(PM = -6 shift)
P(31:0) = temp(37:6);
Flags and Modes Description
z After the addition, the Z flag is set if the ACC value is zero, else Z is cleared.
N After the addition, the N flag is set if bit 31 of the ACC is 1, else N is cleared.
C If the addition generates a carry, C is set; otherwise C is cleared.
\Y, If an overflow occurs, V is set; otherwise V is not affected.

OvCu

The overflow counter is incremented when the addition operation generates an
unsigned carry. The OVM mode does not affect the OVCU counter.

The value in the PM bits sets the shift mode that determines which portion of the lower
38 hits of the 64-bit results are stored in the P register.

SPRU430F—August 2001 —-Revised April 2015

C28x Assembly Language Instructions 201

Submit Documentation Feedback

Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS

INSTRUMENTS
IMPYAL P,XT,loc32 — Signed 32-Bit Multiply (Lower Half) and Add Previous P www.ti.com
Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.
Example ; Calculate signed result:
; Y64 = (X0*CO + X1*C1l + X2*C2) >> 2
SPM -2 ; Set product shift mode to ">> 2"
ZAPA ; Zero ACC, P, OVCU
MOVL XT,@X0 ; XT = X0
IMPYL P,XT,@CO ; P = low 32 bits of (X0*CO << 2)
MOVL XT,@X1 ; XT = X1
IMPYAL P,XT,@C1 ; OVCU:ACC = OVCU:ACC + P,
; P = low 32 bits of (X1*C1 << 2)
MOVL XT,@X2 5 XT = X2
IMPYAL P,XT,@C2 ; OVCU:ACC = OVCU:ACC + P,
; P = low 32 bits of (X2*C2 << 2)
ADDUL ACC,@P ; OVCU:ACC = OVCU:ACC + P
MOVL @Y64+0,ACC ; Store low 32-bit result into Y64
MOVU @AL,OVC ; ACC = OVCU (carry count)
MOVB AH,#0
QMPYL P,XT,@C2 ; P = high 32 bits of (X2*C2)
MOVL XT,@X1 ; XT = X1
QMPYAL P,XT,@C1 ; ACC = ACC + P >> 2,
; P = high 32 bits of (X1*C1)
MOVL XT,@X0 ; XT = X0
QMPYAL P,XT,@CO ; ACC = ACC + P >> 2,
; P = high 32 bits of (X0*CO)
ADDL ACC,P << PM ; ACC = ACC + P >> 2
MOVL @Y64+2,ACC ; Store high 32-bit result into Y64
202 C28x Assembly Language Instructions SPRU430F-August 2001 —Revised April 2015

Submit Documentation Feedback

Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

www.ti.com IMPYL ACC,XT,loc32 — Signed 32 X 32-Bit Multiply (Lower Half)

IMPYL ACC,XT,loc32 Signed 32 X 32-Bit Multiply (Lower Half)

Syntax Options IMPYL ACC,XT,loc32
Opcode 0101 0110 0100 0100

0000 0000 LLLL LLLL
Objmode 1
RPT -
CcYC 2
Operands ACC - Accumulator register

XT — Multiplicand register
loc32 — Addressing mode (see Chapter 5)

Description Multiply the signed 32-bit content of the XT register by the signed 32-bit content of the
location pointed to by the “loc32” addressing mode and store the lower 32 bits of the 64-
bit result in the ACC register:

ACC = signed XT * signed [loc32];

Flags and Modes

Flags and Modes Description
z After the operation, the Z flag is set if the ACC value is zero, else Z is cleared.
N After the operation, the N flag is set if bit 31 of the ACC is 1, else N is cleared.
Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets

the repeat counter (RPTC) and executes only once.

Example ; Calculate result: Y32 = M32*X32 + B32
MOVL XT,@M32 ; XT = M32
IMPYL ACC,XT,@X32 ; ACC = low 32 bits of (M32*X32)
ADDL ACC,@B32 ; ACC = ACC + B32
MOVL @Y32,ACC ; Store result into Y32
SPRU430F—August 2001 —-Revised April 2015 C28x Assembly Language Instructions 203

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS

INSTRUMENTS

IMPYL P,XT,loc32 — Signed 32 X 32-Bit Multiply (Lower Half) www.ti.com
IMPYL P,XT,loc32 Signed 32 X 32-Bit Multiply (Lower Half)
Syntax Options IMPYL P,XT,loc32
Opcode 0101 0110 0000 0101

0000 0000 LLLL LLLL
Objmode 1
RPT -
CcyC 1
Operands P — Product register

XT — Multiplicand register.

loc32 — Addressing mode (see Chapter 5)
Description Multiply the signed 32-bit content of the XT register by the signed 32-bit content of the

location pointed to by the “loc32” addressing mode. The product shift mode (PM) then
determines which part of the lower 38 bits of the 64-bit result gets stored in the P
register as shown in the diagram below:

temp(37:0) = lower_38 bits(signed XT * signed [loc32]);
if(PM = +4 shift)
P(31:4) = temp(27:0), P(3:0) = 0;
if(PM = +1 shift)
P(31:1) = temp(30:0), P(0) = 0O;
if(PM = 0 shift)
P(31:0) = temp(31:0);
if(PM = -1 shift)
P(31:0) = temp(32:1);
if(PM = -2 shift)
P(31:0) = temp(33:2);
if(PM = -3 shift)
P(31:0) = temp(34:3);
if(PM = -4 shift)
P(31:0) = temp(35:4);
if(PM = -5 shift)
P(31:0) = temp(36:5);
if(PM = -6 shift)
P(31:0) = temp(37:6);

Flags and Modes

Flags and Modes Description

PM The value in the PM bits sets the shift mode that determines which portion of the lower
38 bits of the 64-bit results are stored in the P register.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Calculate signed result: Y64 = M32*X32
MOVL XT,@M32 ; XT = M32
IMPYL P,XT,@X32 ; P = low 32 bits of (M32*X32)
QMPYL ACC,XT,@X32 ; ACC = high 32 bits of (M32*X32)
MOVL @Y64+0,P ; Store result into Y64
MOVL @Y64+2,ACC

204 C28x Assembly Language Instructions SPRU430F-August 2001 —Revised April 2015

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

www.ti.com

IMPYSL P,XT,loc32 — Signed 32-Bit Multiply (Low Half) and Subtract P

IMPYSL P,XT,loc32

Syntax Options

Opcode

Objmode
RPT
CcYc

Operands

Description

Flags and Modes

Signed 32-Bit Multiply (Low Half) and Subtract P

IMPYSL P,XT,loc32

0101 0110 0100 0011
0000 0000 LLLL LLLL

1

1

P — Product register
XT — Multiplicand register.
loc32 — Addressing mode (see Chapter 5)

Subtract the unsigned content of the P register, ignoring the product shift mode (PM),
from the ACC register. Multiply the signed 32-bit content of the XT register by the signed
32-bit content of the location pointed to by the “loc32” addressing mode. The product
shift mode (PM) then determines which part of the lower 38 bits of the 64-bit result are
stored in the P register:

ACC = ACC - unsigned P;

temp(37:0) = lower_38 bits(signed XT * signed [loc32]);

if(PM = +4 shift)
P(31:4) = temp(27:0), P(3:0) = 0;
if(PM = +1 shift)
P(31:1) = temp(30:0), P(0) = 0;
if(PM = 0 shift)
P(31:0) = temp(31:0);
if(PM = -1 shift)
P(31:0) = temp(32:1);
if(PM = -2 shift)
P(31:0) = temp(33:2);
if(PM = -3 shift)
P(31:0) = temp(34:3);
if(PM = -4 shift)
P(31:0) = temp(35:4);
if(PM = -5 shift)
P(31:0) = temp(36:5);
if(PM = -6 shift)
P(31:0) = temp(37:6);
Flags and Modes Description
z After the subtraction, the Z flag is set if the ACC value is zero, else Z is cleared.
N After the subtraction, the N flag is set if bit 31 of the ACC is 1, else N is cleared.
C If the subtraction generates a borrow, C is cleared; otherwise C is set.
\Y, If an overflow occurs, V is set; otherwise V is not affected.

OvCu

The overflow counter is decremented when the subtraction operation generates an
unsigned borrow. The OVM mode does not affect the OVCU counter.

The value in the PM bits sets the shift mode that determines which portion of the lower
38 hits of the 64-bit results are stored in the P register.

SPRU430F—August 2001 —-Revised April 2015

C28x Assembly Language Instructions 205

Submit Documentation Feedback

Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

IMPYSL P,XT,loc32 — Signed 32-Bit Multiply (Low Half) and Subtract P

13 TEXAS
INSTRUMENTS

www.ti.com

Repeat

Example

This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

; Calculate signed r

SPM -2

ZAPA

MOVL XT,@X0
IMPYL P,XT,@CO
MOVL XT,@X1
IMPYSL P,XT,@C1

MOVL XT,@X2
IMPYSL P,XT,@C2

SUBUL ACC,@P
MOVL @Y64+0,ACC
MOVU @AL,0VC
MOVB AH,#0

NEG ACC

QMPYL P,XT,@C2
MOVL XT,@X1
QMPYSL P,XT,@C1

MOVL XT,@X0
QMPYSL P,XT,@CO

SUBL ACC,P << PM
MOVL @Y64+2,ACC

esult:

Y64 = (-XO*CO - X1*C1l - X2*C2) >> 2
Set product shift mode to ''>> 2"
Zero ACC, P, OVvCU

XT = X0

P = low 32 bits of (X0*CO << 2)
XT = X1

OVCU:ACC = OVCU:ACC - P,

P = low 32 bits of (X1*C1l << 2)
XT = X2

OVCU:ACC = QVCU:ACC - P,

P = low 32 bits of (X2*C2 << 2)
OVCU:ACC = OVCU:ACC - P

Store low 32-bit result into Y64
ACC = 0OVCU (borrow count)

Negate borrow
P = high 32 bits of (X2*C2)

ACC - P >> 2,]
h 32 bits of (X1*C1)

¢}

(0]

= ACC - P >> 2,

high 32 bits of (X0*C0)

= ACC - P >> 2

Store high 32-bit result into Y64

206 C28x Assembly Language Instructions

SPRU430F—August 2001 —Revised April 2015
Submit Documentation Feedback

Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

www.ti.com IMPYXUL P,XT,loc32 — Signed 32 X Unsigned 32-Bit Multiply (Lower Half)

IMPYXUL P,XT,loc32 Signed 32 X Unsigned 32-Bit Multiply (Lower Half)

Syntax Options IMPYXUL P,XT,loc32

Opcode 0101 0110 0110 0101
0000 0000 LLLL LLLL

Objmode 1

RPT -

CcyC 1

Operands P — Product register

XT — Multiplicand register.
loc32 — Addressing mode (see Chapter 5)

Description Multiply the signed 32-bit content of the XT register by the unsigned 32-bit content of the
location pointed to by the “loc32” addressing mode. The product shift mode (PM) then
determines which part of the lower 38 bits of the 64-bit result are stored in the P register:

temp(37:0) = lower_38 bits(signed XT * unsigned [loc32]);
if(PM = +4 shift)
P(31:4) = temp(27:0), P(3:0) = 0;
if(PM = +1 shift)
P(31:1) = temp(30:0), P(0) = 0;
if(PM = 0 shift)
P(31:0) = temp(31:0);
if(PM = -1 shift)
P(31:0) = temp(32:1);
if(PM = -2 shift)
P(31:0) = temp(33:2);
if(PM = -3 shift)
P(31:0) = temp(34:3);
if(PM = -4 shift)
P(31:0) = temp(35:4);
if(PM = -5 shift)
P(31:0) = temp(36:5);
if(PM = -6 shift)
P(31:0) = temp(37:6);

Flags and Modes

Flags and Modes Description
PM The value in the PM bits sets the shift mode that determines which portion of the lower
38 bits of the 64-bit results are stored in the P register.
Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets

the repeat counter (RPTC) and executes only once.

SPRU430F—August 2001 —-Revised April 2015 C28x Assembly Language Instructions 207

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

IMPYXUL P,XT,loc32 — Signed 32 X Unsigned 32-Bit Multiply (Lower Half)

13 TEXAS
INSTRUMENTS

www.ti.com

Example ; Calculate result: Y64 = M64*X64 + B64
; Y64 = Y1:Y0, M64 = M1:MO, X64 = X1:X0, B64 = B1:BO
MOVL XT,@X0 ; XT = X0
IMPYL P,XT,@MO0 ; P = low 32 bits of (uns MO * uns X0)
MOVL ACC,@BO ; ACC = BO
ADDUL ACC,@P ; ACC = ACC + P
MOVL @YO,ACC ; Store result into YO
QMPYUL P,XT,@MO ; P = high 32 bits of (uns MO * uns XO0)
MOVL XT,@X1 ; XT = X1
MOVL ACC,@P ; ACC =P
IMPYXUL P,XT,@MO0 ; P = low 32 bits of (uns MO * sign X1)
MOVL XT,@M™M1 ; XT = M1
ADDCL ACC,@P ; ACC = ACC + P + carry
IMPYXUL P,XT,@X0 ; P = low 32 bits of (sign M1 * uns X0)
ADDUL ACC,@P ; ACC = ACC + P
ADDUL ACC,@B1 ; ACC = ACC + B1
MOvL @Y1,P ; Store result into Y1
208 C28x Assembly Language Instructions SPRU430F-August 2001 —Revised April 2015

Submit Documentation Feedback

Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

www.ti.com

IN loc16,*(PA) — Input Data From Port

IN loc16,*(PA)
Syntax Options

Opcode

Objmode
RPT
CcYc

Operands

Description

Flags and Modes

Input Data From Port

IN loc16,*(PA)

1011 0100 LLLL LLLL
CCCC CCCC ccce ccee

1
Y
N+2

loc16 — Addressing mode (see Chapter 5)
*(PA) — Immediate /O space memory address

Load the location pointed to by the “loc16” addressing mode with the content of the
specified I/O location pointed to by "*(PA)™:

[locl1l6] = l10space[PA];

I/O Space is limited to 64K range (0x0000 to OxFFFF). On the external interface
(XINTF), the I/O strobe signal (XIS), if available on your particular device, is toggled
during the operation. The 1/0O address appears on the lower 16 XINTF address lines
(XA[15:0]) and the upper address lines are zeroed. The data is read on the lower 16
data lines (XD[15:0]).

Note: 1/0O space may not be implemented on all C28x devices. See the data sheet for
your particular device for details.

Flags and Modes Description
N If (loc16 = @AX), then after the move AX is tested for a negative condition. The
negative flag bit is set if bit 15 of AX is 1, otherwise it is cleared.
7 If (loc16 = @AX), then after the move, AX is tested for a zero condition. The zero flag

bit is set if AX = 0, otherwise it is cleared.

Repeat This instruction is repeatable. If the operation follows a RPT instruction, then it will be
executed N+1 times. When repeated, the “(PA)” I/O space address is post-incremented
by 1 during each repetition.

SPRU430F—August 2001 —-Revised April 2015 C28x Assembly Language Instructions 209

Submit Documentation Feedback

Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

IN loc16,*(PA) — Input Data From Port

13 TEXAS
INSTRUMENTS

www.ti.com

Example ;

10RegA
10REgB
10REQC

I10RegA =

10RegB
10RegC

address

address =
address =

0x0000;
0x0400;
VarA;

0x0300;
0x0301;
0x0302;

if(10RegC = 0x2000)

I0ORegA .set 0x0300

I0ORegB .set 0x0301
I0RegC .set 0x0302

MOV @AL,#0
UOUT *(10RegA) , @AL
MOV @AL ,#0x0400
UOUT *(I0RegB),@AL

OUT *(I10RegC),@varA
IN @AL,*(10RegC)
CMP @AL ,#0x2000

SB $10,NEQ

MOV @AL,#0

UOUT *(I0RegC),@AL
$10:

10RegC = 0x0000;

Define I0RegA address

; AL=0

10space[10RegA]
AL = 0x0400

10space[10RegB]
10space[10RegC]

; Define 10RegB address
; Define I10RegC address

AL

AL
VarA

; AL = l0space[10RegC]

; Set flags on (AL - 0x2000)
Branch if not equal

AL =0

10space[[10RegC] = AL

210

C28x Assembly Language Instructions

SPRU430F—August 2001 —Revised April 2015
Submit Documentation Feedback

Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

www.ti.com

INC loc16 — Increment by 1

INC loc16

Syntax Options
Opcode
Objmode

RPT

cyC

Operands

Description

Flags and Modes

Increment by 1

INC loc16

0000 1010 LLLL LLLL

X

1

loc16 — Addressing mode (see Chapter 5)

Add 1 to the signed content of the location pointed to by the “loc16” addressing mode:

[locl6] = [locl6] + 1;

Flags and Modes

Description

N After the operation if bit 15 of [loc16] 1, set N; otherwise, clear N.
z After the operation if [loc16] is zero, set Z; otherwise, clear Z.

C If the addition generates a carry, C is set; otherwise C is cleared.
\% If an overflow occurs, V is set; otherwise V is not affected.

Repeat

Example

This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

; VarA = VarA + 1;

INC @varA

; Increment contents of VarA

SPRU430F—August 2001 —-Revised April 2015

Submit Documentation Feedback

C28x Assembly Language Instructions

Copyright © 2001-2015, Texas Instruments Incorporated

211

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

INTR — Emulate Hardware |

nterrupt

13 TEXAS
INSTRUMENTS

www.ti.com

INTR Emulate Hardware Interrupt

Syntax Options

Syntax Options Opcode Objmode RPT Ccyc
INTR INTx 0000 0000 0001 CCCC X - 8
INTR DLOGINT | 0000 0000 0001 CCCC - 8
INTR RTOSINT | 0000 0000 0001 CCCC X - 8
INTR NMI 0111 0110 0001 0110 X - 8
INTR EMUINT 0111 0110 0001 1100 X - 8
Operands INTx — Maskable CPU interrupt vector name, x = 1 to 14
DLOGINT — Maskable CPU datalogging interrupt
RTOSINT — Maskable CPU real-time operating system interrupt
NMI — Nonmaskable interrupt
EMUINT — Maskable emulation interrupt
Description Emulate an interrupt. The INTR instruction transfers program control to the interrupt

service routine that corresponds to the vector specified by the instruction. The INTR
instruction is not affected by the INTM bit in status register ST1. It is also not affected by
enable bits in the interrupt enable register (IER) or the debug interrupt enable register
(DBGIER). Once the INTR instruction reaches the decode 2 phase of the pipeline,
hardware interrupts cannot be serviced until the INTR instruction is finished executing
(until the interrupt service routine begins).

INTX, where x = Interrupt Vector INTX, where x = Interrupt Vector

0 RESET 8 INT8
1 INT1 9 INT9
2 INT2 10 INT10
3 INT3 11 INT11
4 INT4 12 INT12
5 INT5 13 INT13
6 INT6 14 INT14
7 INT7

Part of the operation involves saving pairs of 16-bit CPU registers onto the stack pointed
to by the SP register. Each pair of registers is saved in a single 32-bit operation. The
register forming the low word of the pair is saved first (to an even address); the register
forming the high word of the pair is saved next (to the following odd address). For
example, the first value saved is the concatenation of the T register and the status
register STO (T:STO0). STO is saved first, then T.

This instruction should not be used with vectors 1-12 when the peripheral interrupt

expansion (PIE) block is enabled.

212 C28x Assembly Language Instructions

SPRU430F—August 2001 —Revised April 2015
Submit Documentation Feedback

Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

www.ti.com INTR — Emulate Hardware Interrupt

if(not the NMI vector)

Clear the corresponding IFR bit;
Flush the pipeline;

temp = PC + 1;

Fetch specified vector;

SP = SP + 1;

[SP] = T:STO;

SP = SP + 2;
[SP] = AH:AL;
SP = SP + 2;

[SP] = PH:PL;
SP = SP + 2;
[SP] = AR1:ARO;

SP = SP + 2;
[SP] = DP:ST1;
SP = SP + 2;

[SP] = DBGSTAT:IER;
SP = SP + 2;

[SP] = temp;

Clear corresponding IER bit;

INTM = O; // disable INT1-INT14, DLOGINT, RTOSINT
DBGM = 1; // disable debug events

EALLOW = 0; // disable access to emulation registers
LOOP = 0; // clear loop flag

IDLESTAT = 0; //clear idle flag
PC = fetched vector;

Flags and Modes

Flags and Modes Description
DBGM Debug events are disabled by setting the DBGM bit.
INTM Setting the INTM bit disables maskable interrupts.
EALLOW EALLOW is cleared to disable access to protected registers.
LOOP The loop flag is cleared.
IDLESTAT The idle flag is cleared.
Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets

the repeat counter (RPTC) and executes only once.

SPRU430F—August 2001 —-Revised April 2015 C28x Assembly Language Instructions 213

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

IRET — Interrupt Return

13 TEXAS
INSTRUMENTS

www.ti.com

IRET

Syntax Options
Opcode
Objmode

RPT

cyC

Operands

Description

Flags and Modes

Interrupt Return

IRET
0111 0110 0000 0010

X

8
None

Return from an interrupt. The IRET instruction restores the PC value and other register
values that were automatically saved by an interrupt operation. The order in which the
values are restored is opposite to the order in which they were saved. All values are
popped from the stack using 32-bit operations. The stack pointer is not forced to align to
an even address during the register restore operations:

SP = SP - 2;

PC = [SP];

SP = SP - 2;

DBGSTAT:1ER = [SP];
SP = SP - 2;
DP:ST1 = [SP];

SP = SP - 2;
AR1:ARO = [SP];

SP = SP - 2;
PH:PL = [SP];

SP = SP - 2;
AH:AL = [SP1;
SP = SP - 2;

T:STO = [SP];:
SP = SP - 1;

Note: Interrupts cannot be serviced until the IRET instruction completes execution.

Flags and Modes Description

SXM The operation restores the state of all flags and modes of the STO register.

OovVM

TC
C
z
NV
PM
ovc
INTM
DBGM
PAGEO
VMAP
SPA
EAL-
LOW
AMODE
OBJ-
MODE
XF
ARP

The operation restores the state of the specified flags and modes of the ST1 register.
The following bits are not affected: LOOP, IDLESTAT, MOM1MAP

214 C28x Assembly Language Instructions

SPRU430F—August 2001 —Revised April 2015
Submit Documentation Feedback

Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS

INSTRUMENTS
www.ti.com IRET — Interrupt Return
Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.
Example ; Full interrupt context Save and Restore:
; Vector table:
INTx: .long INTxService ; INTx interrupt vector
; Interrupt context save:
INTxService: ; ACC, P, T, STO, ST1, DP, ARO,
; AR1, IER, DPGSTAT registers saved
; on stack.
; Return PC saved on stack.
; 1ER bit corresponding to INTx
; is disabled.
; ST1(EALLOW bit = 0).
; ST1(LOOP bit = 0).
; ST1(DBGM bit = 1).
; STLI(INTM bit = 1).
PUSH AR1H:AROH ; Save remaining registers. PUSH XAR2
PUSH XAR3
PUSH XAR4
PUSH XARS5
PUSH XAR6
PUSH XAR7
PUSH XT
; Interrupt user code:
; Interrupt context restore:
POP XT ; Restore registers.
POP XAR7
POP XARG6
POP XAR5
POP XAR4
POP XAR3
POP XAR2
POP AR1H:AROH
IRET ; Return from interrupt.
SPRU430F—August 2001 —-Revised April 2015 C28x Assembly Language Instructions 215

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

LB *XAR7 — Long Indirect Branch

13 TEXAS
INSTRUMENTS

www.ti.com

LB *XAR7Y Long Indirect Branch

Syntax Options LB *XAR7

*XAR7 — Indirect program-memory addressing using auxiliary register XAR7, can access

full 4AMx16 program space range (0x000000 to Ox3FFFFF)

Opcode 0111 0110 0010 0000
Objmode X

RPT -

cyC 4

Operands

Description

PC = XAR7(21:0);

Flags and Modes None

Long branch indirect. Load the PC with the lower 22 bits of the XAR?7 register:

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.
Example ; Branch to subroutines in SwitchTable selected by Switch value: SwitchTable:
; Switch address table:
-long SwitchO ; SwitchO address
-long Switchl ; Switchl address
MOVL XAR2,#SwitchTable ; XAR2 = pointer to SwitchTable
MOVZ ARO,@Switch ; ARO = Switch index
MOVL XAR7,*+XAR2[ARO] ; XAR7 = SwitchTable[Switch]
LB *XAR7 ; Indirect branch using XAR7
SwitchReturn:
SwitchO: ; Function A:
LB SwitchReturn ; Return: long branch
Switchl: ; Function B:
LB SwitchReturn ; Return: long branch
216 C28x Assembly Language Instructions SPRU430F-August 2001 —Revised April 2015

Submit Documentation Feedback

Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS

INSTRUMENTS
www.ti.com LB 22bit — Long Branch
LB 22bit Long Branch
Syntax Options LB 22bit
Opcode 0000 0000 01CC cccc
CCCC CCcC ccce cccee
Objmode X
RPT -
CcyC 4
Operands 22bit — 22-bit program-address (0x000000 to Ox3FFFFF range)
Description Long branch. Load the PC with the selected 22-bit program address:
PC = 22bit;
Flags and Modes None
Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.
Example ; Branch to subroutines in SwitchTable selected by Switch
; value:
SwitchTable: ; Switch address table:
-long SwitchO ; SwitchO address
-long Switchl ; Switchl address
MOVL XAR2,#SwitchTable ; XAR2 = pointer to SwitchTable
MOVZ ARO,@Switch ; ARO = Switch index
MOVL XAR7,*+XAR2[ARO] ; XAR7 = SwitchTable[Switch]
LB *XAR7 ; Indirect branch using XAR7
SwitchReturn:
SwitchO: ; Function A:
LB SwitchReturn ; Return: long branch
Switchl: ; Function B:
LB SwitchReturn ; Return: long branch
SPRU430F—August 2001 —-Revised April 2015 C28x Assembly Language Instructions 217

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

LC *XAR7 — Long Indirect Call www.ti.com

LC *XAR7Y

Syntax Options
Opcode
Objmode

RPT

CYC

Operands

Description

Flags and Modes

Long Indirect Call

LC *XAR7
0111 0110 0000 0100

X

4

*XAR7 — Indirect program-memory addressing using auxiliary register XAR7, can access
full 4AMx16 program space range (0x000000 to Ox3FFFFF)

Indirect long call. The return PC value is pushed onto the software stack, pointed to by
SP register, in two 16-bit operations. Next, the destination address stored in the XAR7
register is loaded into the PC:

temp(21:0) = PC + 1;

[SP] = temp(15:0);

SP = SP + 1;

[SP] = temp(21:16);
SP = SP + 1;

PC = XAR7(21:0);

Note: For more efficient function calls when operating with Objmode = 1, use the LCR
and LRETR instructions instead of the LC and LRET instructions.

None

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.
Example ; Call to subroutines in SwitchTable selected by Switch value:
SwitchTable: ; Switch address table:
-long SwitchO ; SwitchO address
-long Switchl ; Switchl address
MOVL XAR2,#SwitchTable ; XAR2 = pointer to SwitchTable
MOVZ ARO,@Switch ; ARO = Switch index
MOVL XAR7,*+XAR2[ARO] ; XAR7 = SwitchTable[Switch]
LC *XAR7 ; Indirect call using XAR7
SwitchO: ; Subroutine O:
LRET ; Return
Switchl: ; Subroutine 1:
LRET ; Return
218 C28x Assembly Language Instructions SPRU430F-August 2001 —Revised April 2015

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

www.ti.com

LC 22bit — Long Call

LC 22bit

Syntax Options

Opcode

Objmode
RPT
CYC
Operands

Description

Flags and Modes

Long Call

LC 22bit

0000 0000 10CC cccC
CCCC CCCC ccce ccee

X

4
22bit — 22-bit program-address (0x00 0000 to Ox3F FFFF range)

Long function call. The return PC value is pushed onto the software stack, pointed to by
SP register, in two 16-bit operations. Next, the immediate 22-bit destination address is
loaded onto the PC:

temp(21:0) = PC + 2;

[SP] = temp(15:0);

SP = SP + 1;

[SP] = temp(21:16)

SP = SP + 1;

PC = 22bit;

Note: For more efficient function calls when operating with Objmode = 1, use the LCR
and LRETR instructions instead of the LC and LRET instructions.

None

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.
Example ; Standard function call of FuncA:
LC FuncA ; Call FuncA, return address on stack
FuncA: ; Function A:
LRET ; Return from address on stack
SPRU430F—August 2001 —-Revised April 2015 C28x Assembly Language Instructions 219

Submit Documentation Feedback

Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

LCR #22bit — Long Call Using RPC www.ti.com

LCR #22bit

Syntax Options

Opcode

Objmode
RPT
CYC
Operands

Description

Flags and Modes

Long Call Using RPC

LCR #22bit

0111 0110 O1CC CCCC
CCCC CCCC ccce ccee

1

4
22bit — 22-bit program-address (0x00 0000 to Ox3F FFFF range)

Long call using return PC pointer (RPC). The current RPC value is pushed onto the
software stack, pointed to by SP register, in two 16-bit operations. Next, the RPC
register is loaded with the return address. Next, the 22-bit immediate destination address
is loaded into the PC:

[SP] = RPC(15:0);
SP = SP + 1;

[SP] = RPC(21:16);
SP = SP + 1;

RPC = PC + 2;

PC = 22bit;

Note: The LCR and LRETR operations, enable 4 cycle call and 4 cycle return. The
standard LC and LRET operations only enable a 4 cycle call and 8 cycle return. The
LCR and LRETR operations can be nested and can freely replace the LC and LRET
operations. This is the case on interrupts also. Only on a task switch operation, does the
RPC need to be manually saved and restored.

None

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.
Example ; RPC call of FuncA:
LCR FuncA ; Call FuncA, return address in RPC
FuncA: ; Function A:
LRETR ; RPC return
220 C28x Assembly Language Instructions SPRU430F-August 2001 —Revised April 2015

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

i3 TEXAS
INSTRUMENTS

www.ti.com

LCR *XARn — Long Indirect Call Using RPC

LCR *XARN

Syntax Options
Opcode
Objmode

RPT

CYC

Operands

Description

Flags and Modes

Long Indirect Call Using RPC

LCR *XARn
0011 1110 0110 ORRR

1

4

*XARnN — Indirect program-memory addressing using auxiliary register XARO to XAR7,
can access full 4Mx16 program space range (0x000000 to Ox3FFFFF)

Long indirect call using return PC pointer (RPC). The current RPC value is pushed onto
the software stack, pointed to by SP register, in two 16-bit operations. Next, the RPC
register is loaded with the return address. Next, the destination address stored in the
XARnN register is loaded into the PC:

[SP] = RPC(15:0);

SP = SP + 13

[SP] = C(21 16);

SP = SP + 1;

RPC = PC + 1;

PC = XARN(21:0);

Note: The LCR and LRETR operations, enable 4 cycle call and 4 cycle return. The
standard LC and LRET operations only enable a 4 cycle call and 8 cycle return. The
LCR and LRETR operations can be nested and can freely replace the LC and LRET
operations. This is the case on interrupts also. Only on a task switch operation, does the
RPC need to be manually saved and restored.

None

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.
Example ; Call to subroutines in SW|tchTabIe selected by Switch value:
SwitchTable: ; Switch address table:
-long SwitchO ; SwitchO address
-long Switchl ; Switchl address
MOVL XAR2,#SwitchTable ; XAR2 = pointer to SwitchTable
MOVZ ARO,@Switch ; ARO = Switch index
MOVL XARG6,*+XAR2[ARO] ; XAR6 = SwitchTable[Switch]
LCR *XAR6 ; Indirect RPC call using XAR6
SwitchO: ; Subroutine O:
LRETR ; RPC Return
Switchl: ; Subroutine 1:
LRETR ; RPC Return
SPRU430F—August 2001 —-Revised April 2015 C28x Assembly Language Instructions 221

Submit Documentation Feedback

Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

LOOPNZ loc16,#16bit — Loop While Not Zero www.ti.com

LOOPNZ loc16,#16bit Loop While Not Zero

Syntax Options

Opcode

Objmode
RPT
CcYc

Operands

Description

Flags and Modes

LOOPNZ loc16,#16bit

0010 1110 LLLL LLLL
CCCC CCCC ccce ccee

X

5N+5

loc16 — Addressing mode (see Chapter 5)
#16bit — 16-bit immediate value (0x0000 to OXFFFF range)

Loop while not zero.
while([locl6] & 16bit != 0);

The LOOPNZ instruction uses a bitwise AND operation to compare the value referenced
by the “loc16” addressing mode and the 16-bit mask value. The instruction performs this
comparison repeatedly for as long as the result of the operation is not 0. The process
can be described as follows:

1. Set the LOOP bit in status register ST1.
2. Generate the address for the value referenced by the “loc16” addressing mode.

3. If “loc16” is an indirect-addressing operand, perform any specialized modification to
the SP or the specified auxiliary register and/or the ARPn pointer.

4. Compare the addressed value with the mask value by using a bitwise AND operation.

5. If the result is O, clear the LOOP bit and increment the PC by 2. If the result is not 0,
then return to step 1.

The loop created by steps 1 through 5 can be interrupted by hardware interrupts. When

an interrupt occurs, if the LOOPNZ instruction is still active, the return address saved on
the stack points to the LOOPNZ instruction. Therefore, upon return from the interrupt the
LOOPNZ instruction is fetched again.

While the result of the AND operation is not 0, the LOOPNZ instruction begins again
every five cycles in the decode 2 phase of the pipeline. Thus the memory location or
register is read once every five cycles. If you use an indirect addressing mode for the
“loc16” operand, you can specify an increment or decrement for the pointer (SP or
auxiliary register). If you do, the pointer is modified each time in the decode 2 phase of
the pipeline. This means that the mask value is compared with a new data-memory
value each time.

The LOOPNZ instruction does not flush prefetched instructions from the pipeline.
However, when an interrupt occurs, prefetched instructions are flushed.

When any interrupt occurs, the current state of the LOOP bit is saved as ST1 is saved
on the stack. The LOOP bit in ST1 is then cleared by the interrupt. The LOOP bit is a
passive status bit. The LOOPNZ instruction changes LOOP, but LOOP does not affect
the instruction.

You can abort the LOOPNZ instruction within an interrupt service routine. Test the LOOP
bit saved on the stack. If it is set, then increment (by 2) the return address on the stack.
Upon return from the interrupt, this incremented address is loaded into the PC and the
instruction following the LOOPNZ is executed.

222 C28x Assembly Language Instructions SPRU430F—-August 2001 —Revised April 2015

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS

INSTRUMENTS
www.ti.com LOOPNZ loc16,#16bit — Loop While Not Zero
Flags and Modes Description
N If bit 15 of the result of the AND operation is 1, set N; otherwise, clear N.
VA If the result of the AND operation is 0, set Z; otherwise, clear Z.
LOOP is repeatedly set while the result of the AND operation is not 0. LOOP is cleared
LOOP when the result is 0. If an interrupt occurs before the LOOPNZ instruction enters the
decode 2 phase of the pipeline, the instruction is flushed from the pipeline and, thus,
does not affect the LOOP bit.
Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.
Example ; Wait until bit 3 in RegA is cleared before writing to RegB:
LOOPNZ @RegA,#0x0004 ; Loop while (RegA AND 0x0004 != 0)
[0)% @RegB, #0x8000 ; RegB = 0x8000
SPRU430F—August 2001 —-Revised April 2015 C28x Assembly Language Instructions 223

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

LOOPZ loc16,#16bit — Loop While Zero www.ti.com

LOOPZ loc16,#16bit Loop While Zero

Syntax Options

Opcode

Objmode
RPT
CcYc

Operands

Description

Flags and Modes

LOOPZ loc16,#16bit

0010 1100 LLLL LLLL
CCCC CCCC ccce ccee

X

5N+5

loc16 — Addressing mode (see Chapter 5)
#16bit — 16-bit immediate value (0x0000 to OXFFFF range)

Loop while zero.
while([locl6] & 16bit = 0);

The LOOPZ instruction uses a bitwise AND operation to compare the value referenced
by the “loc16” addressing mode and the 16-bit mask value. The instruction performs this
comparison repeatedly for as long as the result of the operation is 0. The process can be
described as follows:

1. Set the LOOP bit in status register ST1.
2. Generate the address for the value referenced by the “loc16” addressing mode.

3. If “loc16” is an indirect-addressing operand, perform any specialized modification to
the SP or the specified auxiliary register and/or the ARPn pointer.

4. Compare the addressed value with the mask value by using a bitwise AND operation.

5. If the result is not 0, clear the LOOP bit and increment the PC by 2. If the result is 0,
then return to step 1.

The loop created by steps 1 through 5 can be interrupted by hardware interrupts. When
an interrupt occurs, if the LOOPZ instruction is still active, the return address saved on

the stack points to the LOOPZ instruction. Therefore, upon return from the interrupt the
LOOPZ instruction is fetched again.

While the result of the AND operation is 0, the LOOPZ instruction begins again every
five cycles in the decode 2 phase of the pipeline. Thus the memory location or register is
read once every five cycles. If you use an indirect addressing mode for the “loc16”
operand, you can specify an increment or decrement for the pointer (SP or auxiliary
register). If you do, the pointer is modified each time in the decode 2 phase of the
pipeline. This means that the mask value is compared with a new data-memory value
each time.

The LOOPZ instruction does not flush prefetched instructions frdom the pipeline.
However, when an interrupt occurs, prefetched instructions are flushed.

When any interrupt occurs, the current state of the LOOP bit is saved as ST1 is saved
on the stack. The LOOP bit in ST1 is then cleared by the interrupt. The LOOP bit is a
passive status bit. The LOOPZ instruction changes LOOP, but LOOP does not affect the
instruction.

You can abort the LOOPZ instruction within an interrupt service routine. Test the LOOP
bit saved on the stack. If it is set, then increment (by 2) the return address on the stack.
Upon return from the interrupt, this incremented address is loaded into the PC and the
instruction following the LOOPZ is executed.

224 C28x Assembly Language Instructions SPRU430F—-August 2001 —Revised April 2015

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

www.ti.com

LOOPZ loc16,#16bit — Loop While Zero

Flags and Modes Description
N If bit 15 of the result of the AND operation is 1, set N; otherwise, clear N.
VA If the result of the AND operation is 0, set Z; otherwise, clear Z.
LOORP is repeatedly set while the result of the AND operation is 0. LOOP is cleared
LOOP when the result is not 0. If an interrupt occurs before the LOOPZ instruction enters the
decode 2 phase of the pipeline, the instruction is flushed from the pipeline and, thus,
does not affect the LOOP bit.
Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.
Example ; Wait until bit 3 in RegA is set before writing to RegB:
LOOPZ @RegA,#0x0004 ; Loop while (RegA AND 0x0004 = 0)
MOV @RegB,#0x8000 ; RegB = 0x8000
SPRU430F—August 2001 —-Revised April 2015 C28x Assembly Language Instructions 225

Submit Documentation Feedback

Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

LPADDR — Set the AMODE Bit

13 TEXAS
INSTRUMENTS

www.ti.com

LPADDR

Syntax Options LPADDR

Set the AMODE Bit

Opcode 0101 0110 0001 1110
Objmode X

RPT -

cyC 1

Operands None

Description

Set the AMODE status bit, putting the device in C2xLP compatible addressing mode
(see Chapter 5).

Note: This instruction does not flush the pipeline.

Flags and Modes

Flags and Modes

Description

AMODE

The AMODE bit is set.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.
Example ; Execute the operation "VarC = VarA + VarB" written in C2xLP syntax:
LPADDR ; Full C2xLP address compatible mode
- Ip_amode ; Tell assembler we are in C2XLP mode
LDP #VarA ; Initialize DP (low 64K only)
LACL VarA ; ACC = VarA (ACC high = 0)
ADDS VarB ; ACC = ACC + VarB (unsigned)
SACL VarC ; Store result into VarC
C28ADDR ; Return to C28x address mode
.c28 amode ; Tell assembler we are in C28x mode
226 C28x Assembly Language Instructions SPRU430F-August 2001 —Revised April 2015

Submit Documentation Feedback

Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS

INSTRUMENTS

www.ti.com

LRET — Long Return

LRET

Syntax Options
Opcode
Objmode

RPT

cyC

Operands

Description

Flags and Modes

Repeat

Example

Long Return

LRET

0111 0110 0001 0100
X

8

None

Long return. The return address is popped, from the software stack into the PC, in two
16-bit operations:

SP = SP - 1;
temp(31:16) = [SP];
SP = SP - 1;

temp(15:0) = [SP]:
PC = temp(21:0);

None

Note: For more efficient function calls when operating with Objmode = 1, use the LCR
and LRETR instructions in place of the LC and LRET instructions.

This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

; Standard function call of FuncA:

LC FuncA ; Call FuncA, return address on stack
FuncA: ; Function A:
LRET ; Return from address on stack

SPRU430F—August 2001 —-Revised April 2015

Submit Documentation Feedback

Copyright © 2001-2015, Texas Instruments Incorporated

C28x Assembly Language Instructions 227

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

LRETE — Long Return and Enable Interrupts www.ti.com

LRETE

Syntax Options
Opcode
Objmode

RPT

CYC

Operands

Description

Flags and Modes

Long Return and Enable Interrupts

LRETE

0111 0110 0001 0000

X

8

None

Long return and enable interrupts. The return address is popped, from the software stack
into the PC, in two 16-bit operations. Next, the global interrupt flag (INTM) is cleared.
This enables global maskable interrupts:

SP=5P -1

temp(31:16) = [SP]:

SP=5SP -1

temp(15:0) = [SP];
PC = temp(21:0);

INTM = 0;

Flags and Modes

Description

INTM

This instruction enables interrupts by clearing the INTM bit.

Repeat

Example

This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

; Standard function call of FuncA. Disable interrupts on entry and
; enable interrupts on exit:

LC FuncA

FuncA:
SETC INTM

LRETE

; Call FuncA, return address on stack

; Function A:
; Disable interrupts

; Return from address on stack,
; Enable interrupts

228 C28x Assembly Language Instructions

SPRU430F—August 2001 —Revised April 2015
Submit Documentation Feedback

Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS

INSTRUMENTS

www.ti.com

LRETR — Long Return Using RPC

LRETR

Syntax Options
Opcode
Objmode

RPT

CYC

Operands

Description

Flags and Modes

Long Return Using RPC

LRETR

0000 0000 0000 0110
1

4

None

Long return using return PC pointer (RPC). The return address stored in the RPC
register is loaded onto the PC. Next, the RPC register is loaded from the software stack
in two 16-bit operations:

PC = RPC;

SP = SP - 1;
temp(31:16) = [SP];
SP = SP - 1;

temp(15:0) = [SP];
RPC = temp(21:0);

Note: The LCR and LRETR operations, enable 4 cycle call and 4 cycle return. The
standard LC and LRET operations only enable a 4 cycle call and 8 cycle return. The
LCR and LRETR operations can be nested and can freely replace the LC and LRET
operations. This is the case on interrupts also. Only on a task switch operation, does the
RPC need to be manually saved and restored.

None

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.
Example ; RPC call of FuncA:
LCR FuncA ; Call FuncA, return address in RPC
FuncA: ; Function A:
LRETR ; RPC return
SPRU430F—August 2001 —-Revised April 2015 C28x Assembly Language Instructions 229

Submit Documentation Feedback

Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

LSL ACC,#1..16 — Logical Shift Left www.ti.com

LSL ACC,#1..16

Syntax Options
Opcode
Objmode

RPT

cyC

Operands

Description

Logical Shift Left

LSL ACC#1..16
1111 1111 0011 SHFT
X

Y

N+1

ACC — Accumulator register
#1..16 — Shift value

Perform a logical shift left on the content of the ACC register by the amount specified by
the shift value. During the shift, the low order bits of the ACC register are zero filled and
the last bit shifted out is stored in the carry flag bit:

Last bit out ACC

C i
Left shift
(Immediate value)

Discard other bits ¢— l
ACC
Flags and Modes
Flags and Modes Description
N After the shift, if bit 31 of ACC is 1 then the negative flag bit is set; otherwise it is
cleared.
z After the shift, if ACC is 0, then the Z bit is set, otherwise it is cleared.
C The last bit to be shifted out of ACC is stored in C.

Repeat This instruction is repeatable. If the operation follows a RPT instruction, then the LSL
instruction will be executed N+1 times. The state of the Z, N, and C flags will reflect the
final result.

Example ; Logical shift left contents of VarA by 4:

MOVL ACC,@varA ; ACC = VarA
LSL ACC,#4 ; Logical shift left ACC by 4
MOVL @VarA,ACC ; Store result into VarA
230 C28x Assembly Language Instructions SPRU430F-August 2001 —Revised April 2015

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

www.ti.com

LSL ACC, T — Logical Shift Left by T(3:0)

LSL ACC,T

Syntax Options
Opcode
Objmode

RPT

cyC

Operands

Description

Flags and Modes

Logical Shift Left by T(3:0)

LSL ACC,T
1111 1111 0101 0000

X

1

ACC — Accumulator register
T — Upper 16 bits of the multiplicand (XT) register

Perform a logical shift left on the content of the ACC register by the amount specified by
the four least significant bits of the T register, T(3:0) = 0...15. Higher order bits are
ignored. During the shift, the low order bits of the ACC register are zero filled. If T
specifies a shift of 0, then C is cleared; otherwise, C is filled with the last bit to be shifted
out of the ACC register:

Last bit out or cleared ACC

C l
Left shift E
(Contents T [3:0])

Discard other bits ¢— l
ACC

Flags and Modes Description

After the shift, the Z flag is set if the ACC value is zero, else Z is cleared. Even if the T
z register specifies a shift of 0, the content of the ACC register is still tested for the zero
condition and Z is affected.

After the shift, the N flag is set if bit 31 of the ACC is 1, else N is cleared. Even if the T
N register specifies a shift of 0, the content of the ACC register is still tested for the
negative condition and N is affected.

If (T(3:0) = 0) then C is cleared; otherwise, the last bit shifted out is loaded into the C
flag bit.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.
Example ; Logical shift left contents of VarA by VarB:
MOVL ACC,@VarA ; ACC = VarA
MOV T,@VarB ; T = VarB (shift value)
LSL ACC,T ; Logical shift left ACC by T(3:0)
MOVL @varA,ACC ; Store result into VarA
SPRU430F-August 2001 —-Revised April 2015 C28x Assembly Language Instructions 231

Submit Documentation Feedback

Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

LSL AX,#1...16 — Logical Shift Left www.ti.com

LSL AX#1...16

Syntax Options
Opcode
Objmode

RPT

cyC

Operands

Description

Flags and Modes

Logical Shift Left

LSL AX,#1...16

1111 1111 100A SHFT
X

1

AX — Accumulator high (AH) or accumulator low (AL) register
#1..16 — Shift value

Perform a logical shift left on the content of the specified AX register (AH or AL) by the
amount given “shift value” field. During the shift, the low order bits of the AX register are
zero filled and the last bit to be shifted out is stored in the carry bit flag:

Last bit out AX

C i
Left shift
(Immediate value)

Discard other bits ¢— l
AX
Flags and Modes Description
N After the shift, if bit 15 of AX is 1 then the negative flag bit is set; otherwise it is cleared.
z After the shift, if AX is O, then the Z bit is set, otherwise it is cleared.
C The last bit to be shifted out of AH or AL is stored in C.

Repeat

Example

This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

; Multiply index register ARO by 2:

MOV AL,@ARO ; Load AL with contents of ARO
LSL AL,#1 ; Scale result by 1 (*2)

MOV @ARO,AL ; Store result back in ARO

232 C28x Assembly Language Instructions SPRU430F-August 2001 —Revised April 2015

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

www.ti.com

LSL AX,T — Logical Shift Left by T(3:0)

LSL AX,T

Syntax Options
Opcode
Objmode

RPT

cyC

Operands

Description

Flags and Modes

Logical Shift Left by T(3:0)

LSL AX,T
1111 1111 0110 O11A

X

1

AX — Accumulator high (AH) or accumulator low (AL) register
T — Upper 16 bits of the multiplicand (XT) register

Perform a logical shift left on the content of the specified AX register by the amount
specified by the four least significant bits of the T register, T(3:0). The contents of higher
order bits are ignored. During the shift, the low order bits of the AX register are zero
filled. If the T(3:0) register bits specify a shift of 0, then C is cleared; otherwise, C is filled
with the last bit to be shifted out of AX:

Last bit out or cleared AX

C i
Left shift
(Contents of T [3:0])

Discard other bits ¢— l
AX

Flags and Modes Description

After the shift, if bit 15 of AX is 1 then the negative flag bit is set; otherwise it is cleared.
N Even if the T(3:0) register bits specify a shift of 0, the value of AH or AL is still tested
for the negative condition and N is affected.

After the shift, if AX is 0, then the Z bit is set, otherwise it is cleared. Even if the T(3:0)
z register bits specify a shift of 0, the value of AH or AL is still tested for the zero
condition and Z is affected.

If T(3:0) specifies a shift of 0, then C is cleared; otherwise, C is filled with the last bit to
be shifted out of AH or AL.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.
Example ; Calculate value: VarC = VarA << VarB;
MOV T,@VarB ; Load T with contents of VarB
MOV AL,@VarA ; Load AL with contents of VarA
LSL AL, T ; Scale AL by value in T bits 0 to 3
MOV @varC,AL ; Store result in VarC
SPRU430F-August 2001 —-Revised April 2015 C28x Assembly Language Instructions 233

Submit Documentation Feedback

Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS

INSTRUMENTS

LSL64 ACC:P,#1..16 — Logical Shift Left www.ti.com
LSL64 ACC:P,#1..16 Logical Shift Left
Syntax Options LSL64 ACC:P#1..16
Opcode 0101 0110 1010 SHFT
Objmode 1
RPT -
cyC 1
Operands ACC:P — Accumulator register (ACC) and product register (P)

#1..16 — Shift value
Description Logical shift left the 64-bit combined value of the ACC:P registers by the amount

specified in the shift value field. During the shift, the low order bits are zero-filled and the
last bit shifted out is stored in the carry bit flag:

Last bit out ACC:P

C i
Left shift
(Immediate value)

Discard other bits ¢— l
ACC:P

Flags and Modes

Flags and Modes Description

After the shift, if bit 31 of the ACC register is 1 then ACC:P is negative and the N bit is
set; otherwise N is cleared.

After the shift, the Z flag is set if the combined 64-bit value of the ACC:P is zero;

n

z otherwise, Z is cleared.
C The last bit shifted out of the combined 64-bit value is loaded into the C bit.
Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets

the repeat counter (RPTC) and executes only once.

Example ; Logical shift left the 64-bit Var64 by 10:
MOVL ACC,@Var64+2 ; Load ACC with high 32 bits of Var64
MOVL P,@Var64+0 ; Load P with low 32 bits of VvVar64
LSL64 ACC:P,#10 ; Logical shift left ACC:P by 10
MOVL @Var64+2,ACC ; Store high 32-bit result into Var64
MOVL @Var64+0,P ; Store low 32-bit result into Var64

234 C28x Assembly Language Instructions SPRU430F-August 2001 —Revised April 2015

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

www.ti.com

LSL64 ACC:P,T — 64-Bit Logical Shift Left by T(5:0)

LSL64 ACC:P,T

Syntax Options
Opcode
Objmode

RPT

cyC

Operands

Description

Flags and Modes

64-Bit Logical Shift Left by T(5:0)

LSL64 ACC:P, T

0101 0110 0101 0010

1

1

ACC:P — Accumulator register (ACC) and product register (P)

T — Upper 16 bits of the multiplicand register (XT)

Logical shift left the 64-bit combined value of the ACC:P registers by the amount

specified in the six least significant bits of the T register, T(5:0) = 0...63. Higher order

bits are ignored. During the shift, the low order bits are zero-filled. If T specifies a shift of
0, then C is cleared; otherwise, C is filled with the last bit to be shifted out of the ACC:P
registers:

Last bit out or cleared

ACC:P

I

Discard other bits «—

Left shift E
(Contents of T [5:0])

ACC:P

Flags and Modes

Description

After the shift, if bit 31 of the ACC register is 1 then ACC:P is negative and the N bit is

N set; otherwise N is cleared.

7 After the shift, the Z flag is set if the combined 64-bit value of the ACC:P is zero;
otherwise, Z is cleared.

c If (T(5:0) = 0) clear C; otherwise, the last bit shifted out of the combined 64-bit value is

loaded into the C bit.

Repeat

Example

This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

; Logical shift left

MOVL ACC,@Var64+2 ;
MOVL P,@Var64+0 ;
MOV T,@Varl6 ;
LSL64 ACC:P,T ;
MOVL @Var64+2,ACC ;
MOVL @Var64+0,P ;

the 64-bit Var64 by contents of Varl6:

Load ACC with high 32 bits of Var64
Load P with low 32 bits of Var64
Load T with shift value from Varl6
Logical shift left ACC:P by T(5:0)
Store high 32-bit result into Var64
Store low 32-bit result into Var64

SPRU430F—August 2001 —-Revised April 2015
Submit Documentation Feedback

C28x Assembly Language Instructions

Copyright © 2001-2015, Texas Instruments Incorporated

235

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS

INSTRUMENTS
LSLL ACC,T — Logical Shift Left by T (4:0) www.ti.com
LSLL ACC,T Logical Shift Left by T (4:0)
Syntax Options LSLL ACC,T
Opcode 0101 0110 0011 1011
Objmode 1
RPT -
cyC 1
Operands ACC — Accumulator register
T — Upper 16 bits of the multiplicand (XT) register
Description Perform a logical shift left on the content of the ACC register by the amount specified by

the five least significant bits of the T register, T(4:0) = 0...31. Higher order bits are
ignored. During the shift, the low order bits of the ACC register are zero filled. If T
specifies a shift of 0, then C is cleared; otherwise, C is filled with the last bit to be shifted
out of the ACC register:

Last bit out or cleared ACC

C l
Left shift E
(Contents of T [4:0])

Discard other bits ¢— l
ACC
Flags and Modes
Flags and Modes Description
After the shift, the Z flag is set if the ACC value is zero, else Z is cleared. Even if the T
z register specifies a shift of 0, the content of the ACC register is still tested for the zero

condition and Z is affected.

After the shift, the N flag is set if bit 31 of the ACC is 1, else N is cleared. Even if the T
N register specifies a shift of 0, the content of the ACC register is still tested for the
negative condition and N is affected.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Logical shift left contents of VarA by VarB:

MOVL ACC,@VarA ; ACC = VarA

MOV T,@VarB ; T = VarB (shift value)

LSLL ACC,T ; Logical shift left ACC by T(4:0)
MOVL @VarA,ACC ; Store result into VarA

236 C28x Assembly Language Instructions SPRU430F-August 2001 —Revised April 2015

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

www.ti.com

LSR AX,#1...16 — Logical Shift Right

LSR AX,#1...16

Syntax Options
Opcode
Objmode

RPT

cyC

Operands

Description

Logical Shift Right

LSR AX#1...16
1111 1111 110A SHFT
X

1

AX — Accumulator high (AH) or accumulator low (AL) register
#1..16 — Shift value

Perform a logical right shift on the content of the specified AX register by the amount
given by the “shift value” field. During the shift, the high order bits of the AX register are
zero filled and the last bit to be shifted out is stored in the carry flag bit:

AX Last bit out

l []
|I'_> Right shift
(Immediate value)

l Discard other bits
AX
Flags and Modes
Flags and Modes Description
N After the shift, if bit 15 of AX is 1 then the negative flag bit is set; otherwise it is cleared.
z After the shift, if AX is 0, then the Z bit is set, otherwise it is cleared.
C The last bit to be shifted out of AH or AL is stored in C.

Repeat

Example

This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

; Divide index register ARO by 2:

MOV AL,@ARO ; Load AL with contents of ARO
LSR AL,#1 ; Scale result by 1 (/2)

MOV @ARO,AL ; Store result back in ARO

SPRU430F—August 2001 —-Revised April 2015 C28x Assembly Language Instructions 237
Submit Documentation Feedback

Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

LSR AX,T — Logical Shift Right by T(3:0) www.ti.com

LSR AX, T

Syntax Options
Opcode
Objmode

RPT

cyC

Operands

Description

Flags and Modes

Logical Shift Right by T(3:0)

LSR AX,T
1111 1111 0110 OO1A

X

1

AX — Accumulator high (AH) or accumulator low (AL) register
T — Upper 16 bits of the multiplicand (XT) register

Perform a logical shift right on the content of the specified AX register (AH or AL) as
specified by the four least significant bits of the T register, T(3:0). The contents of higher
order bits are ignored. During the shift, the high order bits of the AX register are zero
filled If the T(3:0) register bits specify a shift of 0, then C is cleared; otherwise, C is filled
with the last bit to be shifted out of AX:

AX Last bit out or cleared

i [c]
|I'_> Right shift
(Contents of T [3:0])

l Discard other bits

AX

Flags and Modes Description

Atfter the shift, if bit 15 of AX is 1 then the negative flag bit is set; otherwise it is cleared.
N Even if the T(3:0) register bits specify a shift of 0, the value of AH or AL is still tested
for the negative condition and N is affected.

After the shift, if AX is 0, then the Z bit is set, otherwise it is cleared. Even if the T(3:0)
z register bits specify a shift of 0, the value of AH or AL is still tested for the zero
condition and Z is affected.

If T(3:0) specifies a shift of 0, then C is cleared; otherwise, C is filled with the last bit to
be shifted out of AH or AL.

Repeat

Example

This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

; Calculate un-signed value: VarC = VarA >> VarB;
MOV T,@VarB ; Load T with contents of VarB

MOV AL,@VarA ; Load AL with contents of VarA

LSR AL, T ; Scale AL by value in T bits 0 to 3
MOV @vVarC,AL ; Store result in VarC

238 C28x Assembly Language Instructions SPRU430F-August 2001 —Revised April 2015

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

www.ti.com LSR64 ACC:P #1..16 — 64-Bit Logical Shift Right

LSR64 ACC:P,#1..16 64-Bit Logical Shift Right

Syntax Options LSR64 ACC:P#1..16

Opcode 0101 0110 1001 SHFT

Objmode 1

RPT -

CYC 1

Operands ACC:P — Accumulator register (ACC) and product register (P)

#1..16 — Shift value

Description Logical shift right the 64-bit combined value of the ACC:P registers by the amount
specified in the shift value field. As the value is shifted, the most significant bits are zero
filled and the last bit shifted out is stored in the carry bit flag:

ACC:P Last bit out

i [c]
(Immediate value)

l Discard other bits
ACC:P
Flags and Modes
Flags and Modes Description
N After the shift, if bit 31 of the ACC register is 1 then ACC:P is negative and the N bit is
set; otherwise N is cleared.
7 After the shift, the Z flag is set if the combined 64-bit value of the ACC:P is zero;
otherwise, Z is cleared.
C The last bit shifted out of the combined 64-bit value is loaded into the C bit.
Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets

the repeat counter (RPTC) and executes only once.

Example ; Logical shift right the 64-bit Var64 by 10:
MOVL ACC,@Var64+2 ; Load ACC with high 32 bits of Var64

MOVL P,@Var64+0 ; Load P with low 32 bits of VvVar64
LSR64 ACC:P,#10 ; Logical shift right ACC:P by 10
MOVL @Var64+2,ACC ; Store high 32-bit result into Var64
MOVL @Var64+0,P ; Store low 32-bit result into Var64

SPRU430F—August 2001 —-Revised April 2015 C28x Assembly Language Instructions 239

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

LSR64 ACC:P,T — 64-Bit Logical Shift Right by T(5:0) www.ti.com

LSR64 ACC:P,T

Syntax Options
Opcode
Objmode

RPT

cyC

Operands

Description

64-Bit Logical Shift Right by T(5:0)
LSR64 ACC:P, T

0101 0110 0101 1011

1

1

ACC:P — Accumulator register (ACC) and product register (P)
T — Upper 16 bits of the multiplicand register (XT)

Logical shift right the 64-bit combined value of the ACC:P registers by the amount
specified by the six least significant bits of the T register, T(5:0) = 0...63. Higher order
bits are ignored. As the value is shifted, the most significant bits are zero filled. If T
specifies a shift of 0, then C is cleared; otherwise, C is filled with the last bit to be shifted
out of the ACC:P registers:

ACC:P Last bit out or cleared

i []
|I'_> Right shift
(Contents of T [5:0])

l Discard other bits
ACC:P
Flags and Modes
Flags and Modes Description

N After the shift, if bit 31 of the ACC register is 1 then ACC:P is negative and the N bit is
set; otherwise N is cleared.

7 After the shift, the Z flag is set if the combined 64-bit value of the ACC:P is zero;
otherwise, Z is cleared.

c If (T(5:0) = 0) clear C; otherwise, the last bit shifted out of the combined 64-bit value is
loaded into the C bit.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.
Example ; Arithmetic shift right the 64-bit Var64 by contents of Varl6:
MOVL ACC,@Var64+2 ; Load ACC with high 32 bits of Var64
MOVL P,@Var64+0 ; Load P with low 32 bits of Var64
MOV T,@Varl6 ; Load T with shift value from Varl6é
LSR64 ACC:P,T ; Logical shift right ACC:P by T(5:0)
MOVL @Var64+2,ACC ; Store high 32-bit result into Var64
MOVL @vVar64+0,P ; Store low 32-bit result into Var64
240 C28x Assembly Language Instructions SPRU430F-August 2001 —Revised April 2015

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

www.ti.com

LSRL ACC,T — Logical Shift Right by T (4:0)

LSRL ACC,T Logical Shift Right by T (4:0)
Syntax Options LSRL ACC,T

Opcode 0101 0110 0010 0010

Objmode 1

RPT -

cyC 1

Operands ACC - Accumulator register

T — Upper 16 bits of the multiplicand (XT) register

Description Perform a logical shift right on the content of the ACC register as specified by the five
least significant bits of the T register, T(4:0) = 0...31. Higher order bits are ignored.
During the shift, the high order bits of ACC are zero-filled. If T specifies a shift of 0, then
C is cleared; otherwise, C is filled with the last bit to be shifted out of the ACC register:

(Contents of T [4:0])

ACC Last bit out or cleared

|

l Discard other bits
ACC
Flags and Modes
Flags and Modes Description
After the shift, the Z flag is set if the ACC value is zero, else Z is cleared. Even if the T
z register specifies a shift of 0, the content of the ACC register is still tested for the zero
condition and Z is affected.
After the shift, the N flag is set if bit 31 of the ACC is 1, else N is cleared. Even if the T
N register specifies a shift of 0, the content of the ACC register is still tested for the
negative condition and N is affected.
c If (T(4:0) = 0) then C is cleared; otherwise, the last bit shifted out is loaded into the C
flag bit.
Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.
Example ; Logical shift right contents of VarA by VarB:
MOVL ACC,@varA ; ACC = VarA
MOV T,@varB ; T = VarB (shift value)
LSRL ACC,T ; Logical shift right ACC by T(4:0)

MOVL @VarA,ACC ; Store result into VarA

SPRU430F-August 2001 —-Revised April 2015 C28x Assembly Language Instructions 241

Submit Documentation Feedback

Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

MAC P,loc16,0:pma — Multiply and Accumulate www.ti.com

MAC P,loc16,0:pma Multiply and Accumulate

Syntax Options

Opcode

Objmode
RPT
CcYc

Operands

Description

Flags and Modes

MAC P,loc16,0:pma

0001 0100 LLLL LLLL
CCCC CCCC ccce ccee

X
Y
N+2

P — Product register
loc16 — Addressing mode (see Chapter 5)

0:pma — Immediate program memory address, access low 64K range of program space
only (0x000000 to OXOOFFFF)

1. Add the previous product (stored in the P register), shifted as specified by the
product shift mode (PM), to the ACC register.

2. Load the T register with the content of the location pointed to by the “loc16”
addressing mode.

3. Multiply the signed 16-bit content of the T register by the signed 16-bit content of the
addressed program memory location and store the 32-bit result in the P register:
ACC = ACC + P << PM;

T [locl6];
P signed T * signed Prog[0x00:pma];

The C28x forces the upper 6 bits of the program memory address, specified by the
“0:pma” addressing mode, to 0x00 when using this form of the MAC instruction. This
limits the program memory address to the low 64K of program address space (0x000000
to OXOOFFFF). On the C28x devices, memory blocks are mapped to both program and
data space (unified memory), hence the “0:pma” addressing mode can be used to
access data space variables that fall within its address range.

Flags and Modes Description
z After the addition, the Z flag is set if the ACC value is zero, else Z is cleared.
N After the addition, the N flag is set if bit 31 of the ACC is 1, else N is cleared.
C If the addition generates a carry, C is set; otherwise C is cleared.
\Y If an overflow occurs, V is set; otherwise V is not affected.

If overflow mode is disabled; and if the operation generates a positive overflow, then

ovC the counter is incremented. If overflow mode is disabled; and if the operation generates

a negative overflow, then the counter is decremented.

If overflow mode bit is set; then the ACC value will saturate maximum positive

OvM (OX7FFFEFFF) or maximum negative (0x80000000) if the operation overflowed.
The value in the PM bits sets the shift mode for the output operation from the product
PM register. If the product shift value is positive (logical left shift operation), then the low

bits are zero filled. If the product shift value is negative (arithmetic right shift operation),
the upper bits are sign extended.

Repeat This instruction is repeatable. If the operation follows a RPT instruction, then it will be
executed N+1 times. The state of the Z, N, C and OVC flags will reflect the final result.
The V flag will be set if an intermediate overflow occurs. When repeated, the program-
memory address is incremented by 1 during each repetition.

242 C28x Assembly Language Instructions SPRU430F-August 2001 —Revised April 2015

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS

INSTRUMENTS
www.ti.com MAC P,loc16,0:pma — Multiply and Accumulate
Example ; Calculate sum of product using 16-bit multiply:
; intl6 X[N] ; Data information
; intl6é C[N] ; Coefficient information, located in low 64K
; sum = O;
; For(i=0; 1 < N; i++)
; sum = sum + (X[i] * C[i]) >> 5;
MOVL XAR2,#X ; XAR2 = pointer to X
SPM -5 ; Set product shift to ">> 5"
ZAPA ; Zero ACC, P, OVC
RPT #N-1 ; Repeat next instruction N times
| IMAC P,*XAR2++,0:C ; ACC = ACC + P >> 5,
; P = *XAR2++ * *C++
ADDL ACC,P << PM ; Perform final accumulate
MOVL @sum,ACC ; Store final result into sum
SPRU430F—August 2001 —-Revised April 2015 C28x Assembly Language Instructions 243

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS

INSTRUMENTS
MAC P ,loc16,*XAR7/++ — Multiply and Accumulate www.ti.com
MAC P ,loc16,*XAR7/++ Multiply and Accumulate
Syntax Options
Syntax Options Opcode Objmode RPT CcYyCc
MAC P, loc16, *XAR7 |[0101 0110 0000 0111 1 Y N+2
1100 0111 LLLL LLLL
MAC P, loc16, *XAR7++ | 0101 0110 0000 0111 1 Y N+2
1000 0111 LLLL LLLL

Operands

Description

Flags and Modes

P — Product register
loc16 — Addressing mode (see Chapter 5)

*XAR7/++ — Indirect program-memory addressing using auxiliary register XAR7, can
access full 4M x 16 program space range (0x000000 to Ox3FFFFF)

Use the following steps for this instruction:

1. Add the previous product (stored in the P register), shifted as specified by the
product shift mode (PM), to the ACC register.

2. Load the T register with the content of the location pointed to by the “loc16”
addressing mode.

3. Multiply the signed 16-bit content of the T register by the signed 16-bit content of the
program memory location pointed to by the XAR7 register and store the 32-bit result
in the P register. If specified, post-increment the XAR7 register by 1:
ACC = ACC + P << PM;
T = [locl6];
P = signed T * signed Prog[*XAR7 or *XAR7++];

On the C28x devices, memory blocks are mapped to both program and data space
(unified memory), hence the “XAR7/++” addressing mode can be used to access data
space variables that fall within the program space address range.

With some addressing mode combinations, you can get conflicting references. In such
cases, the C28x will give the “loc16/loc32” field priority on changes to XAR7. For
example:

MAC P,*--XAR7,*XAR7++ ; —--XAR7 given priority

MAC P,*XAR7++,*XAR7 ; *XAR7++ given priority
MAC P,*XAR7,*XAR7++ ; *XAR7++ given priority

Flags and Modes Description
z After the addition, the Z flag is set if the ACC value is zero, else Z is cleared.
N After the addition, the N flag is set if bit 31 of the ACC is 1, else N is cleared.
C If the addition generates a carry, C is set; otherwise C is cleared.
\% If an overflow occurs, V is set; otherwise V is not affected.

If overflow mode is disabled; and if the operation generates a positive overflow, then

ovC the counter is incremented. If overflow mode is disabled; and if the operation generates

a negative overflow, then the counter is decremented.

If overflow mode bit is set; then the ACC value will saturate maximum positive

OVM (Ox7FFFFFFF) or maximum negative (0x80000000) if the operation overflowed.
The value in the PM bits sets the shift mode for the output operation from the product
PM register. If the product shift value is positive (logical left shift operation), then the low
bits are zero filled. If the product shift value is negative (arithmetic right shift operation),
the upper bits are sign extended.
244 C28x Assembly Language Instructions SPRU430F-August 2001 —Revised April 2015

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

www.ti.com

MAC P ,loc16,*XAR7/++ — Multiply and Accumulate

This instruction is repeatable. If the operation follows a RPT instruction, then it will be

executed N+1 times. The state of the Z, N, C and OVC flags will reflect the final result.
The V flag will be set if an intermediate overflow occurs.

Repeat

Example ; Calculate sum of product
; intle X[N] ;
; intl6é C[N] ;
; sum = O;
; For(i=0; 1 < N; i++)
; sum = sum + (X[i] *

MOVL XAR2,#X
MOVL XAR7,#C
SPM -5
ZAPA
RPT #N-1
| IMAC P,*XAR2++,*XAR7++

ADDL ACC,P << PM
MOVL @sum,ACC

using 16-bit multiply:
Data information
Coefficient information (located in low 4M)

C[i]D) >> 5;

XAR2 = pointer to X

XAR7 = pointer to C

Set product shift to ">> 5"
Zero ACC, P, OVC

Repeat next instruction N times
ACC = ACC + P >> 5,

P = *XAR2++ * *XAR7++

Perform final accumulate

Store final result into sum

SPRU430F—August 2001 —-Revised April 2015
Submit Documentation Feedback

C28x Assembly Language Instructions 245

Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

MAX AX, loc16 — Find the Maximum

13 TEXAS
INSTRUMENTS

www.ti.com

MAX AX, locl6 Find the Maximum
Syntax Options MAX AX, loc16
Opcode 0101 0110 0111
001A 0000 0000 LLLL LLLL
Objmode 1
RPT Y
CcYC N+1
Operands AX — Accumulator high (AH) or accumulator low (AL) register

loc16 — Addressing modes (see Chapter 5)

Description Compare the signed contents of the specified AX register (AH or AL) with the signed
content of the location pointed to by the “loc16” addressing mode and load the AX
register with the larger of these two values:
if(AX < [loc16]), AX = [loclé6];
iT(AX >= [locl6]), AX = unchanged;

Flags and Modes

Flags and Modes Description

If AX is less than the contents of the addressed location (AX <[loc16]) then the
negative flag bit will be set; otherwise, it will be cleared.

7 If AX and the contents of the addressed location are equal (AX = [loc16]) then the zero
flag bit will be set; otherwise, it will be cleared.

vV If AX is less than the contents of the addressed location (AX <[loc16]) then the overflow
flag bit will be set. This instruction cannot clear the V flag.

Repeat If the operation is follows a RPT instruction, the instruction will be executed N+1 times.

The state of the N, Z, and V flags will reflect the final result.

Example ; Saturate VarA as follows:
; If(varA > 2000) VarA = 2000;
; if(varA < -2000) VarA = -2000;
MOV AL,@VarA ;
MOV @AH,#2000 ;

MIN AL,@AH
NEG AH
MAX AL, @AH

MOV @VarA,AL ;

Load AL with contents of VarA
Load AH with the value 2000
if(AL > AH) AL = AH

; AH = -2000

if(AL < AH) AL = AH
Store result into VarA

246 C28x Assembly Language Instructions

SPRU430F—August 2001 —Revised April 2015
Submit Documentation Feedback

Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

www.ti.com

MAXCUL P,loc32 — Conditionally Find the Unsigned Maximum

MAXCUL P,loc32

Syntax Options

Opcode

Objmode
RPT
CcYc

Operands

Description

Flags and Modes

Conditionally Find the Unsigned Maximum

MAXCUL P,loc32

0101 0110 0101 0001
0000 0000 LLLL LLLL

1

1

P — Product register
loc32 — Addressing mode (see Chapter 5)

Based on the state of the N and Z flags, conditionally compare the unsigned contents of
the P register with the 32-bit, unsigned content of the location pointed to by the “loc32”
addressing mode and load the P register with the larger of the two numbers:
if((N=1) & (Z=0))

P = [loc32];
if((N=0) & (Z=1) & (P < [1oc32]))

V=1, P = [loc32];
if((N=0) & (Z=0))

P = unchanged;

Note: The “P < [loc32]" operation is treated like a 32-bit unsigned compare.

This instruction is typically combined with the MAXL instruction to form a 64-bit
maximum function. It is assumed that the N and Z flags will first be set by using a MAXL
instruction to compare the upper 32 bits of a 64-bit value. The MAXCUL instruction is
then used to conditionally compare the lower 32 bits based on the results of the upper
32-bit comparison.

Flags and Modes Description
N If (N =1 and z = 0) then load P with [loc32].
If (N =0 and Z = 1) compare the unsigned content of the P with the unsigned [loc32]
z and load P with the larger of the two.
If (N =0 and Z = 0) do nothing.
\% If (N=0AND Z =1 AND P < [loc32]) then V is set; otherwise, V is unchanged.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.
Example ; Saturate 64-bit Var64 as follows:
; if(Var64 > MaxPos64) Var64 = MaxPos64
; if(Var64 < MaxNeg64) Var64 = MaxNeg64
MOVL ACC,@Var64+2 ; Load ACC:P with Var64
MOVL P,@Var64+0
MINL ACC,@WaxPos64+2 ; if(ACC:P > MaxPos64) ACC:P = MaxPos64
MINCUL P,@MaxPos64+0
SB saturate,OV
MAXL ACC,@VWaxNeg64+2 ; if(ACC:P < MaxNeg64) ACC:P = MaxNeg64
MAXCUL P,@MaxNeg64+0
Saturate:
MOVL @Var64+2,ACC ; Store result into Var64
MOVL @Var64,P
SPRU430F—August 2001 —-Revised April 2015 C28x Assembly Language Instructions 247

Submit Documentation Feedback

Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

MAXL ACC,loc32 —

13 TEXAS
INSTRUMENTS

Find the 32-bit Maximum www.ti.com

MAXL ACC,loc32

Find the 32-bit Maximum

loc32 — Addressing mode (see Chapter 5)

Syntax Options MAXL ACC,loc32
Opcode 0101 0110 0110 0001
0000 0000 LLLL LLLL
Objmode 1
RPT Y
CcyC N+1
Operands ACC - Accumulator register
Description

Compare the content of the ACC register with the location pointed to by the “loc32”

addressing mode and load the ACC register with the larger of these two values:

if(ACC < [loc32]), ACC = [loc32];
iT(ACC >= [loc32]), ACC = unchanged;

Flags and Modes

Flags and Modes

Description

z

If ACC is equal to the contents of the addressed location (ACC = [loc32]), set Z;
otherwise, clear Z.

If ACC is less than the contents of the addressed location, (ACC <[loc32]), set N;
otherwise clear N. The MAXL instruction assumes infinite precision when it determines
the sign of the result. For example, consider the subtraction 0x8000 0000 - 0x0000
0001. If the precision were limited to 32 bits, the result would cause an overflow to the
positive number Ox7FFF FFFF and N would be cleared. However, because the MAXL
instruction assumes infinite precision, it would set N to indicate that 0x8000 0000 —
0x0000 0001 actually results in a negative number.

If (ACC - [loc32]) generates a borrow, clear the C bit; otherwise set C.

If ACC is less than the contents of the addressed location (ACC <[loc32]), set V. This
instruction cannot clear the V flag.

Repeat This instruction is repeatable. If the operation follows a RPT instruction, then the MAXL
instruction will be executed N+1 times. The state of the Z, N, and C flags will reflect the
final result. The V flag will be set if an intermediate overflow occurs.

Example ; Saturate VarA as follows:

; if(VarA > MaxPos) VarA = MaxPos
; if(VarA < MaxNeg) VarA = MaxNeg
MOVL ACC,@VvarA ; ACC = VarA
MINL ACC,@MaxPos ; if(ACC > MaxPos) ACC = MaxPos
MAXL ACC,@MaxNeg ; 1F(ACC < MaxNeg) ACC = MaxNeg
MOVL @VarA,ACC ; Store result into VarA
248 C28x Assembly Language Instructions SPRU430F-August 2001 —Revised April 2015

Submit Documentation Feedback

Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

www.ti.com

MIN AX, loc16 — Find the Minimum

MIN AX, loc16 Find the Minimum
Syntax Options MIN AX, locl16
Opcode 0101 0110 0111 010A
0000 0000 LLLL LLLL
Objmode 1
RPT Y
CcYC N+1
Operands AX — Accumulator high (AH) or accumulator low (AL) register

loc16 — Addressing modes (see Chapter 5)

Description Compare the signed content of the specified AX register (AH or AL) with the content of
the signed location pointed to by the “loc16” addressing mode and load the AX register
with the smaller of these two values:

iT(AX > [locl6]), AX = [locl6];
iT(AX <=[locl6]), AX = unchanged;
Flags and Modes
Flags and Modes Description
N If AX is less than the contents of the addressed location (AX <[loc16]) then the
negative flag bit will be set; otherwise, it will be cleared.
7 If AX and the contents of the addressed location are equal (AX = [loc16]) then the zero
flag bit will be set; otherwise, it will be cleared.
vV If AX is greater then the contents of the addressed location (AX >[loc16]) then the
overflow flag bit will be set. This instruction cannot clear the V flag.
Repeat If the operation is follows a RPT instruction, the instruction will be executed N+1 times.

The state of the N, Z and V flags will reflect the final result.

Example ; Saturate VarA as follows:
; If(varA > 2000) VarA = 2000;
; if(varA < -2000) VarA = -2000;
MOV AL,@VarA ;
MOV @AH,#2000 ;

MIN AL,@AH
NEG AH
MAX AL, @AH

MOV @VarA,AL ;

Load AL with contents of VarA
Load AH with the value 2000
if(AL > AH) AL = AH

; AH = -2000

if(AL < AH) AL = AH
Store result into VarA

SPRU430F—August 2001 —-Revised April 2015

Submit Documentation Feedback

C28x Assembly Language Instructions 249

Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

MINCUL P,loc32 — Conditionally Find the Unsigned Minimum www.ti.com

MINCUL P,loc32

Syntax Options

Opcode

Objmode
RPT
CcYc

Operands

Description

Flags and Modes

Conditionally Find the Unsigned Minimum

MINCUL P,loc32

0101 0110 0101 1001
XXXX XXXX LLLL LLLL

1

1

P — Product register
loc32 — Addressing mode (see <CrossReference href="#SPRU4307810"/>)

Based on the state of the N and Z flags, conditionally compare the unsigned contents of
the P register with the 32-bit, unsigned content of the location pointed to by the “loc32”
addressing mode and load the P register with the smaller of the two numbers:
ifC (N =0) & (Z =0))

P = [loc32];
if((N =0) & (Z=1) & (P > [1oc32]))

V=1, P = [loc32];
if((N=1) & (Z =0))

P = unchanged;

Note: The “p < [loc32]" operation is treated like a 32-bit unsigned compare.

This instruction is typically combined with the MINL instruction to form a 64-bit minimum
function. It is assumed that the N and Z flags will first be set by using a MINL instruction
to compare the upper 32 bits of a 64-bit value. The MINCUL instruction is then used to
conditionally compare the lower 32 bits based on the results of the upper 32-bit
comparison.

Flags and Modes Description

N If (N =1 AND Z = 0), then load the P register with [loc32].

If (N =0 AND Z =1), compare unsigned and load P with the smaller P register to
z [loc32].
If (N =0 AND Z = 0), do nothing.

\% If (N=0AND Z =1 AND P <loc32]) then V is set; otherwise, V is unchanged.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.
Example ; Saturate 64-bit Var64 as follows:
; if(Var64 > MaxPos64) Var64 = MaxPos64
; if(Var64 < MaxNeg64) Var64 = MaxNeg64
MOVL ACC,@Var64+2 ; Load ACC:P with Var64
MOVL P,@Var64+0
MINL ACC,@MaxPos64+2 ; if(ACC:P > MaxPos64) ACC:P = MaxPos64
MINCUL P,@MaxPos64+0
MAXL ACC,@VWaxNeg64+2 ; if(ACC:P < MaxNeg64) ACC:P = MaxNeg64
MAXCUL P,@MaxNeg64+0
MOVL @Var64+2,ACC ; Store result into Var64
MOVL @Var64+0,P
250 C28x Assembly Language Instructions SPRU430F-August 2001 —Revised April 2015

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

www.ti.com MINL ACC,loc32 — Find the 32-bit Minimum

MINL ACC,loc32 Find the 32-bit Minimum

Syntax Options MINL ACC,loc32
Opcode 0101 0110 0101 0000
0000 0000 LLLL LLLL
Objmode 1
RPT Y
CcYC N+1
Operands ACC - Accumulator register

loc32 — Addressing mode (see Chapter 5)

Description Compare the content of the ACC register with the location pointed to by the “loc32”
addressing mode and load the ACC register with the smaller of these two values:

iT(ACC <= [loc32]), ACC = unchanged;
iT(ACC > [loc32]), ACC = [loc32];

Flags and Modes

Flags and Modes Description

If ACC is equal to the contents of the addressed location (ACC = [loc32]), set Z;
otherwise clear Z.

If ACC is less than the contents of the addressed location, (ACC <[loc32]), set N;
otherwise clear N. The MINL instruction assumes infinite precision when it determines
the sign of the result. For example, consider the subtraction 0x8000 0000 - 0x0000

N 0001. If the precision were limited to 32 bits, the result would cause an overflow to the
positive number Ox7FFF FFFF and N would be cleared. However, because the MINL
instruction assumes infinite precision, it would set N to indicate that 0x8000 0000 —
0x0000 0001 actually results in a negative number.

z

C If (ACC - [loc32]) generates a borrow, clear the C bit; otherwise set C.

If ACC is greater than the contents of the addressed location (ACC <[loc32]), set V.
This instruction cannot clear the V flag.

Repeat This instruction is repeatable. If the operation follows a RPT instruction, then the MINL
instruction will be executed N+1 times. The state of the Z, N, and C flags will reflect the
final result. The V flag will be set if an intermediate overflow occurs.

Example ; Saturate VarA as follows:
; if(VarA > MaxPos) VarA = MaxPos
; if(VarA < MaxNeg) VarA = MaxNeg
MOVL ACC,@VarA ; ACC = VarA
MINL ACC,@MaxPos ; if (ACC > MaxPos) ACC = MaxPos

MAXL ACC,@WaxNeg ; if (ACC < MaxNeg) ACC = MaxNeg
MOVL @VarA,ACC ; Store result into VarA
SPRU430F—August 2001 —-Revised April 2015 C28x Assembly Language Instructions 251

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

MOV *(0:16bit), loc16 — Move Value www.ti.com

MOV *(0:16bit), loc16 Move Value

Syntax Options

Opcode

Objmode
RPT
CcYc

Operands

Description

Flags and Modes

MOV *(0:16bit), loc16

1111 0100 LLLL LLLL
CCCC CCCC ccce ccee

X
Y
N+2

*(0:16bit) — Immediate direct memory address, access low 64K range of data space only
(0x00000000 to 0XO000FFFF)

loc16 — Addressing mode (see Chapter 5)

Move the content of the location pointed to by the “loc16” addressing mode to the
memory location specified by the "0:16bit” constant address:

[0x0000:16bit] = [locl6];

None

Repeat This instruction is repeatable. If the operation follows a RPT instruction, then it will be
executed N+1 times. When repeated, the “(0:16bit)” data-memory address is post-
incremented by 1 during each repetition. Only the lower 16 bits of the address is
affected.

; Copy the contents of Arrayl to Array2:

; intl6é Arrayl[N];

; Intl6é Array2[N]; // Located in low 64K of data space
; For(i=0; 1 < N; i++)

; Array2[i] = Arrayl[i];

Example
MOVL XAR2,#Arrayl ; XAR2 = pointer to Arrayl
RPT #(N-1) ; Repeat next instruction N times
| IMOV *(0:Array2),*XAR2++ ; Array2[i] = Arrayl[i],

;oi++
252 C28x Assembly Language Instructions SPRU430F-August 2001 —Revised April 2015

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

www.ti.com MOV ACC #16bit<<#0..15 — Load Accumulator With Shift

MOV ACC, #16bit<<#0..15 Load Accumulator With Shift

Syntax Options MOV ACC,#16bit<<#0..15
Opcode 1111 1111 0010 SHFT

CCCC CCCC Ceee ccce
Objmode X
RPT -
CcYC 1
Operands ACC - Accumulator register

#16bit — 16-bit immediate constant value
#0..15 — Shift value (default is "<< #0” if no value specified)

Description Load the ACC register with the left shifted contents of the 16-bit immediate value. The
shifted value is sign extended if sign extension mode is turned on (SXM = 1) else the
shifted value is zero extended (SXM = 0). The lower bits of the shifted value are zero
filled:
if(SXM = 1) // sign extension mode enabled

ACC = S:16bit << shift value;
else // sign extension mode disabled
ACC = 0:16bit << shift value;

Flags and Modes

Flags and Modes Description
N After the load, the N flag is set if bit 31 of the ACC is 1, else N is cleared.
z After the load, the Z flag is set if the ACC value is zero, else Z is cleared.
If sign extension mode bit is set; then the 16-bit constant operand will be sign extended
SXM .
before the load; else, the value will be zero extended.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Calculate signed value: ACC = -2010 << 10 + VarB << 6;
SETC SXM ; Turn sign extension mode on

MOV ACC,#-2010 << #10 ; Load ACC with -2010 left shifted by 10
ADD ACC,@VarB << #6 ; Add VarB left shifted by 6 to ACC

SPRU430F—August 2001 —-Revised April 2015 C28x Assembly Language Instructions 253

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

MOV ACC,loc16<<T —

13 TEXAS
INSTRUMENTS

Load Accumulator With Shift www.ti.com

MOV ACC,loc16<<T Load Accumulator With Shift

Syntax Options

Opcode

Objmode
RPT
CcYc

Operands

Description

Flags and Modes

MOV ACC,locl16<<T

0101 0110 0000 0110
0000 0000 LLLL LLLL

1

1

ACC - Accumulator register
loc16 — Addressing mode (see Chapter 5)
T — Upper 16 bits of the multiplicand register, XT(31:16)

Load the ACC register with the left-shifted contents of the 16-bit location pointed to by
the “loc16” addressing mode. The shift value is specified by the four least significant bits
of the T register, T(3:0) = shift value = 0..15. Higher order bits are ignored. The shifted
value is sign extended if sign extension mode is turned on (SXM = 1) else the shifted
value is zero extended (SXM = 0). The lower bits of the shifted value are zero filled:
if(SXM = 1) // sign extension mode enabled

ACC = S:[locl6] << T(3:0);
else // sign extension mode disabled

ACC = 0:[locl6] << T(3:0);
Flags and Modes Description
N After the load, the N flag is set if bit 31 of the ACC is 1, else N is cleared.
z After the load, the Z flag is set if the ACC value is zero, else Z is cleared.
SXM I_f sign (_extensi_on mode bit is set; then the 16-bit operand, addressed by the “loc16”
field, will be sign extended before the load; else the value will be zero extended.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.
Example ; Calculate signed value: ACC = (VarA << SB) + (VarB << SB)
SETC SXM ; Turn sign extension mode on
MOV T,@SA ; Load T with shift value in SA
MOV ACC,@VarA << T ; Load in ACC shifted contents of VarA MOV T,@SB
; Load T with shift value in SB
ADD ACC,@varB << T ; Add to ACC shifted contents of VarB
254 C28x Assembly Language Instructions SPRU430F-August 2001 —Revised April 2015

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

www.ti.com MOV ACC, loc16<<#0..16 — Load Accumulator With Shift

MOV ACC, loc16<<#0..16 Load Accumulator With Shift

Syntax Options

Syntax Options Opcode Obj- Mode RPT CcYyCc
MOV ACC,loc16<<#0 |1000 0101 LLLL LLLL 1 - 1
1110 0000 LLLL LLLL 0 - 1
MOV ACC, 0101 0110 0000 0011 1 - 1
loc16<<#1..15 0000 SHFT LLLL LLLL
1110 SHFT LLLL LLLL 0 - 1
MOV ACC, loc16<<#16 |0010 0101 LLLL LLLL X - 1
Operands ACC - Accumulator register

loc16 — Addressing mode (see Chapter 5)
#0..16 — Shift value (default is "<< #0” if no value specified)

Description Load the ACC register with the left shifted contents of the addressed location pointed to
by the “loc16” addressing mode. The shifted value is sign extended if sign extension
mode is turned on (SXM = 1) else the shifted value is zero extended (SXM = 0). The
lower bits of the shifted value are zero filled:
if(SXM = 1) // sign extension mode enabled

ACC = S:[locl6] << shift value;
else // sign extension mode disabled
ACC = 0:[locl6] << shift value;

Flags and Modes

Flags and Modes Description
N After the load, the N flag is set if bit 31 of the ACC is 1, else N is cleared.
z After the load, the Z flag is set if the ACC is zero, else Z is cleared.
SXM If sign extension mode bit is set; then the 16-bit operand, addressed by the "loc16”
field, will be sign extended before the load; else the value will be zero extended.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets

the repeat counter (RPTC) and executes only once.
Example ; Calculate signed value: ACC = VarA << 10 + VarB << 6;

SETC SXM ; Turn sign extension mode on

MOV ACC,@VarA << #10 ; Load ACC with VarA left shifted by 10
ADD ACC,@VarB << #6 ; Add VarB left shifted by 6 to ACC

SPRU430F—August 2001 —-Revised April 2015 C28x Assembly Language Instructions 255

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS

INSTRUMENTS
MOV ARG6/7, loc16 — Load Auxiliary Register www.ti.com
MOV ARG6/7,loc16 Load Auxiliary Register
Syntax Options
Syntax Options Opcode Objmode RPT Ccyc
MOV ARG, loc16 0101 1110 LLLL LLLL X - 1
MOV AR7, loc16 0101 1111 LLLL LLLL X - 1

Operands

Description

Flags and Modes

ARG6/7 — AR6 or AR7, auxiliary registers
loc16 — Addressing mode (see Chapter 5)

Load AR6 or AR7 with the contents of the 16-bit location and leave the upper 16 bits of
XARG6 and XAR7 unchanged:

AR6/7 = [locl6]; AR6/7H = unchanged;

None

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.
256 C28x Assembly Language Instructions SPRU430F-August 2001 —Revised April 2015

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

www.ti.com

MOV AX, loc16 — Load AX

MOV AX, loc16

Syntax Options
Opcode
Objmode

RPT

cyC

Operands

Description

Flags and Modes

Load AX

MOV AX, locl16

1001 OO1A LLLL LLLL

X

1

AX — Accumulator high (AH) or accumulator low (AL) register

loc16 — Addressing mode (see Chapter 5)

Load accumulator high register (AH) or accumulator low register (AL) register with the
16-bit contents of the location pointed to by the “loc16” addressing mode, leaving the
other half of the accumulator register unchanged:

AX = [locl6];

Flags and Modes

Description

N

The load to AX is tested for a negative condition. If bit 15 of AX is 1, then this flag is
set; otherwise it is cleared.

z

= 0, otherwise it is cleared.

The load to AX is tested for a zero condition. The bit is set if the operation results in AX

Repeat

Example

This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

MOV AH, *+XARO[0] ; Load AH with the 16-bit contents

; of location pointed to by XARO.
; AL is unchanged.

SB NotZero,NEQ ; Branch if contents of AH were non

> Zero.

SPRU430F—August 2001 —-Revised April 2015

Submit Documentation Feedback

C28x Assembly Language Instructions

Copyright © 2001-2015, Texas Instruments Incorporated

257

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS

INSTRUMENTS
MOV DP, #10bit — Load Data-Page Pointer www.ti.com
MOV DP, #10bit Load Data-Page Pointer
Syntax Options MOV DP, #10bit
Opcode 1111 10CC CCCC CCCC
Objmode X
RPT -
CYC 1
Operands DP — Data page register
#10bit — 10-bit immediate constant value
Description Load the data page register with a 10-bit constant leaving the upper 6 bits unchanged:
DP(9:0) = 10bit;
DP(15:10) = unchanged;
Flags and Modes None
Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.
Example MOV DP, #VarA ; Load DP with the data page that
; contains VarA. Assumes VarA is in
; the lower 0x0000 FFCO of memory.
; DP(15:10) is left unchanged.
258 C28x Assembly Language Instructions SPRU430F-August 2001 —Revised April 2015

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

www.ti.com

MOV IER,loc16 — Load the Interrupt-Enable Register

MOV IER,loc16

Syntax Options
Opcode
Objmode

RPT

cyC

Operands

Description

Flags and Modes

Load the Interrupt-Enable Register

MOV IER,loc16
0010 0011 LLLL LLLL
X

5

IER — Interrupt-enable register
loc16 — Addressing mode (see Chapter 5)

Enable and disable selected interrupts by loading the content of the location pointed to
by the “loc16” addressing mode into the IER register. Any changes take effect before the
next instruction is processed.

IER = [locl6];

None

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.
Example ; Push the contents of IER on the stack and load IER with the
; contents of VarA:
MOV *SP++,1ER ; Save IER on stack
MOV 1ER,@VarA ; Load IER with contents of VarA
SPRU430F—August 2001 —-Revised April 2015 C28x Assembly Language Instructions 259

Submit Documentation Feedback

Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

MOV loc16, #16bit — Save 16-bit Constant www.ti.com

MOV loc16, #16bit

Syntax Options

Opcode

Objmode
RPT
CcYc

Operands

Description

Flags and Modes

Save 16-bit Constant

MOV loc16, #16bit

0010 1000 LLLL LLLL
CCCC CCCC ccce ccee

X

Y

N+1

loc16 — Addressing mode (see Chapter 5)
#16bit — 16-bit constant immediate value

Load the location pointed to by the “loc16” addressing mode with the 16-bit constant
immediate value:

[locl6] = 16bit;

Note: For #16bit = #0, see the MOV loc16, #0 instruction on page 6-166.
Smart Encoding:

If loc16 = AL or AH and #16bit is an 8-bit number, then the assembler will encode this
instruction as MOVB AX, #8bit to improve efficiency. To override this, use the MOVW
AX, #16bit alias instruction.

Flags and Modes Description

N If (loc16 = @AX), then the load to AX is tested for a negative condition. The negative
flag bit is set if bit 15 of AX is 1, otherwise it is cleared.

If (loc16 = @AX), then the load to AX is tested for a zero condition. The bit is set if the

z result of the operation on the AX register generates a 0 value, otherwise it is cleared.

Repeat If this operation follows a RPT instruction, then it will be executed N+1 times. The state
of the N and Z flags will reflect the final result.
Example ; Initialize the contents of Arrayl with OxFFFF:
; intl6é Arrayl[N];
; For(i=0; 1 < N; i++)
; Arrayl[i] = OxFFFF;
MOVL XAR2,#Arrayl ; XAR2 = pointer to Arrayl
RPT #(N-1) ; Repeat next instruction N times
| IMOV *XAR2++,#0xFFFF ; Arrayl[i] = OxFFFF,
;oi++
260 C28x Assembly Language Instructions SPRU430F-August 2001 —Revised April 2015

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

www.ti.com MOV loc16, *(0:16bit) — Move Value

MOV loc16, *(0:16bit) Move Value

Syntax Options MOV locl6, *(0:16bit)
Opcode 1111 0101 LLLL LLLL
CCCC CCCC Ceee ccce
Objmode X
RPT Y
CcYC N+2
Operands loc16 — Addressing mode (see Chapter 5)

*(0:16bit) — Immediate direct memory address, access low 64K range of data space only
(0x00000000 to 0XO000FFFF)

Description Move the content of the location specified by the constant direct memory address
“0:16bit” into the location pointed to by the “loc16” addressing mode:

[locl6] = [0x0000:16bit];

Flags and Modes

Flags and Modes Description
N If (loc16 = @AX), then the load to AX is tested for a negative condition. The negative
flag bit is set if bit 15 of AX is 1, otherwise it is cleared.
7 If (loc16 = @AX), then the load to AX is tested for a zero condition. The bit is set if the
result of the operation on the AX register generates a 0 value, otherwise it is cleared.
Repeat This instruction is repeatable. If the operation follows a RPT instruction, then it will be

executed N+1 times. When repeated, the “(0:16bit)” data-memory address is post-
incremented by 1 during each repetition. Only the lower 16 bits of the address are
affected.

; Copy the contents of Arrayl to Array2:
; intl6é Arrayl[N]; // Located in low 64K of data space
; Intl6é Array2 N];
; For(i=0; 1 < N; i++)
Array2[i] = Arrayl[i];

Example
MOVL XAR2,#Array?2 ; XAR2 = pointer to Array2
RPT #(N-1) ; Repeat next instruction N times
| IMOV *XAR2++,*(0:Arrayl) ; Array2[i] = Arrayl[i],
; i+t
SPRU430F—August 2001 —-Revised April 2015 C28x Assembly Language Instructions 261

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

MOV loc16, #0 — Clear 16-bit Location www.ti.com

MOV loc16, #0
Syntax Options
Opcode
Objmode

RPT

cyC

Operands

Description

Flags and Modes

Clear 16-bit Location

MOV loc16, #0

0010 1011 LLLL LLLL
X

Y

N+1

loc16 — Addressing mode (see Chapter 5)
#0 — Immediate constant value of zero

Load the location pointed to by the “loc16” addressing mode with the value 0x0000:
[locl6] = 0x0000;

Flags and Modes Description
N If (loc16 = @AX), then the load to AX is tested for a negative condition. The negative
flag bit is set if bit 15 of AX is 1, otherwise it is cleared.
7 If (loc16 = @AX), then the load to AX is tested for a zero condition. The bit is set if the
result of the operation on the AX register generates a 0 value, otherwise it is cleared.

Repeat This instruction is repeatable. If the operation is follows a RPT instruction, then it will be
executed N+1 times.
Example Initialize the contents of Arrayl with zero:
; Intl6é Arrayl[N];
; For(i=0; 1 < N; i++)
Arrayl[i] = O;
MOVL XAR2,#Arrayl ; XAR2 = pointer to Arrayl
RPT #(N-1) ; Repeat next instruction N times
| IMOV *XAR2++,#0 ; Arrayl[i] = O,
; i++
262 C28x Assembly Language Instructions SPRU430F-August 2001 —Revised April 2015

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS

INSTRUMENTS

www.ti.com

MOV loc16,ACC << 1..8 — Save Low Word of Shifted Accumulator

MOV loc16,ACC << 1..8 Save Low Word of Shifted Accumulator

Syntax Options

Syntax Options Opcode Objmode RPT CcYyCc
MOV loc16, ACC<<1 |1011 0001 LLLL LLLL 1 Y N+1
MOV loc16, ACC << 2..8 [|0101 0110 0010 1101 1 Y N+1
0000 OSHF LLLL LLLL
1011 1SHF LLLL LLLL 0 - 1

Operands

Description

Flags and Modes

loc16 — Addressing mode (see Chapter 5)
ACC — Accumulator register
#1..8 — Shift value

Load the content of the location pointed to by the “loc16” addressing mode with the low

word of the ACC register after left—shifting by the specified value. The ACC register is

not modified:

[locl6] = ACC >> (16 - shift value); [locl6] = low (ACC <<1...8)

Flags and Modes Description

N

If (loc16 = @AX), then after the load AX is checked for a negative condition. The N flag
is set if bit 15 of the AX is 1; else N is cleared.

Z

If (loc16 = @AX) then after the load AX is checked for a zero condition. The Z flag is
set if AX is zero; else Z is cleared.

Repeat

Example

If the operation is repeatable, then the instruction will be executed N+1 times. The state

of the Z and N flags will reflect the final result. If the operation is not repeatable, the

instruction will execute only once.

; Multiply two Q15 numbers (VarA and VarB) and store result in

; VarC as a Q15 number:
MOV T,@vVarA ; T = VarA (Q15)

MPY ACC,T,@varB ; ACC = VarA * VarB (Q30)

MOVH @VarC,ACC << 1 ; VarC = ACC >> 16-1) (Q15)
; VarC as a Q31 number:

MOV T,@varA ;: T = varA (T = Q14)

MPY ACC,T,@VarB ; ACC = VarA * varB

MOV @VarC+0,ACC << 3 ; VarC low = ACC << 3

MOVH @VarC+1,ACC << 3 ; VarC high = ACC >> (16-1) (VarC = Q31)

(ACC = Q28)

SPRU430F—August 2001 —-Revised April 2015
Submit Documentation Feedback

C28x Assembly Language Instructions

Copyright © 2001-2015, Texas Instruments Incorporated

263

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

MOV loc16, ARn — Store 16-bit Auxiliary Register

13 TEXAS
INSTRUMENTS

www.ti.com

MOV loc16, ARn Store 16-bit Auxiliary Register

Syntax Options
Opcode
Objmode

RPT

CYC

Operands

Description

Flags and Modes

MOV loc16, ARN
0111 1nnn LLLL LLLL

X

1

loc16 — Addressing mode (see Chapter 5)
ARnN — ARO to AR7, lower 16 bits of auxiliary registers

Load the contents of the 16-bit location with ARn:
[locl16] = ARn;

If(loc16 = @ARN), then only the lower 16 bits of the selected auxiliary register is

modified. The upper 16 bits is unchanged.

Flags and Modes Description

If (loc16 = @AX), then the load to AX is tested for a negative condition. Bit-15 of the

N AX register is the sign bit, 0 for positive, 1 for negative. The negative flag bit is set if the

operation on the AX register generates a negative value, otherwise it is cleared.

If (loc16 = @AX), then the load to AX is tested for a zero condition. The bit is set if the
result of the operation on the AX register generates a 0 value, otherwise it is cleared.

Repeat

Example

This instruction is not repeatable. If the operation is follows a RPT instruction, it resets

the repeat counter (RPTC) and only executes once.

MOV @AL, AR3 ; Load AL with the 16-bit contents of
; AR3. If bit 15 of AL is 1, set the
; N flag, else clear it.
; 1T AL is 0, set the Z flag.

MOV @AR4,AR3 ; Load AR4 with the value in AR3.
; Upper 16 bits of XAR4 are
; unchanged.

MOV *SP++,AR3 ; Push the contents of AR3 onto the
; stack. Post increment SP.

MOV *XAR4++,AR4 ; Store contents of AR4 into location
; specified by XAR4. Post-increment
; the contents of XAR4.

MOV *--XAR5,AR5 ; Pre-decrement the contents of XAR5.
; Store the contents of AR5 into the
; location specified by XAR5.

264 C28x Assembly Language Instructions

Copyright © 2001-2015, Texas Instruments Incorporated

SPRU430F—August 2001 —Revised April 2015

Submit Documentation Feedback

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

www.ti.com

MOV loc16, AX — Store AX

MOV loc16, AX Store AX

Syntax Options MOV locl6, AX

Opcode 1001 011A LLLL LLLL

Objmode X

RPT Y

cyC N+1

Operands loc16 — Addressing mode (see Chapter 5)

AX — Accumulator high (AH) or accumulator low (AL) register

Description Load the addressed location pointed to by the “loc16” addressing mode with the 16-bit
content of the specified AX register (AH or AL):
[locl6] = AX;
Flags and Modes
Flags and Modes Description
N If (loc16 = @AX), then the load to AX is tested for a negative condition. The negative
flag bit is set if bit 15 of AX is 1, otherwise it is cleared.
7 If (loc16 = @AX), then the load to AX is tested for a zero condition. The bit is set if the
result of the operation on the AX register generates a 0 value, otherwise it is cleared.
Repeat If this operation follows a RPT instruction, then it will be executed N+1 times. The state
of the N and Z flags will reflect the final result.
Example ; Initialize all Arrayl elements with the value OXFFFF:
MOV AH,#OxFFFF ; Load AH with the value OxFFFF

MOVL XAR2,#Arrayl ; Load XAR2 with address of Arrayl

RPT #9

; Repeat next instruction 10 times.

|1 MOV *XAR2++, AH ; Store contents of AH into location

; pointed by XAR2 and post-increment
; XAR2.

SPRU430F—August 2001 —-Revised April 2015 C28x Assembly Language Instructions 265

Submit Documentation Feedback

Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

MOV loc16, AX, COND — Store AX Register Conditionally

13 TEXAS
INSTRUMENTS

www.ti.com

MOV loc16, AX, COND Store AX Register Conditionally

Syntax Options

MOV loc16, AX, COND

Opcode 0101 0110 0010 101A
0000 COND LLLL LLLL
Objmode 1
RPT -
CcYC 1
Operands loc16 — Addressing mode (see Chapter 5)
AX — Accumulator high (AH) or accumulator low (AL) register
COND - Conditional codes:
COND Syntax Description Flags Tested
0000 NEQ Not Equal To Z=0
0001 EQ Equal To zZ=1
0010 GT Greater Than Z=0ANDN=0
0011 GEQ Greater Than or Equal To N=0
0100 LT Less Than N=1
0101 LEQ Less Than or Equal To Z=10RN=1
0110 Hi Higher C=1ANDZ=0
0111 HIS, C Higher or Same, Carry Set c=1
1000 LO, NC Lower, Carry Clear CcC=0
1001 LOS Lower or Same C=00RZ=1
1010 NOV No Overflow V=0
1011 ov Overflow V=1
1100 NTC Test Bit Not Set TC=0
1101 TC Test Bit Set TC=1
1110 NBIO BIO Input Equal To Zero BIO=0
1111 UNC Unconditional -
Description If the specified condition being tested is true, then the location pointed to by the “loc16”

Flags and Modes

addressing mode will be loaded with the contents of the specified AX register (AH or

AL):
iT(COND = true) [locl6] = AX;

Note: Addressing modes are not conditionally executed. Hence, if an addressing mode
performs a pre or post modification, the modification will occur, regardless of whether the

condition is true or not.

Flags and Modes Description
N If (COND = true AND loc16 = @AX), AX is tested for a negative condition after the
move and if bit 15 of AX is 1, the negative flag bit is set.
7 If (COND = true AND loc16 = @AX), after the move, AX is tested for a zero condition
and the zero flag bit is set if AX = 0, otherwise, it is cleared.
\% If the V flag is tested by the condition, then V is cleared.

266 C28x Assembly Language Instructions

SPRU430F—August 2001 —Revised April 2015

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

www.ti.com

MOV loc16, AX, COND — Store AX Register Conditionally

Repeat

Example

This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

; Swap the contents of VarA and VarB if VarB is higher then VarA:

MOV AL,@VarA ;
MOV AH,@VarB ;
CMP AH, @AL ;

MOV @VarA,AH,HI ;
MOV @varB,AL,Hl ;

AL = VarA, XAR2 points to VarB
AH = VarB, XAR2 points to VarA
Compare AH and AL

Store AH in VarA if higher
Store AL in VarB if higher

SPRU430F—August 2001 —-Revised April 2015
Submit Documentation Feedback

C28x Assembly Language Instructions 267

Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

MOV loc16,IER — Store Interrupt-Enable Register www.ti.com

MOV loc16,IER

Syntax Options
Opcode
Objmode

RPT

cyC

Operands

Description

Flags and Modes

Store Interrupt-Enable Register

MOV locl16,IER
0010 0000 LLLL LLLL

X

1

loc16 — Addressing mode (see Chapter 5)
IER — Interrupt enable register

Save the content of the IER register in the location pointed to by the “loc16” addressing
mode:

[locl6] = IER;

Flags and Modes Description
N If (loc16 = @AX) and bit 15 of AX is 1, then N is set; otherwise N is cleared.
z If (loc16 = @AX) and the value of AX is zero, then Z is set; otherwise Z is cleared.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.
Example ; Push the contents of IER on the stack and load IER with the
; contents of VarA:
MOV *SP++,IER ; Save IER on stack
MOV IER,@VarA ; Load IER with contents of VarA
268 C28x Assembly Language Instructions SPRU430F-August 2001 —Revised April 2015

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

www.ti.com MOV loc16,0VC — Store the Overflow Counter

MOV loc16,0VC Store the Overflow Counter

Syntax Options MOV loc16,0VC
Opcode 0101 0110 0010 1001
0000 0000 LLLL LLLL
Objmode 1
RPT -
CcYC 1
Operands loc16 — Addressing mode (see Chapter 5)

OVC - Overflow counter

Description Store the 6 bits of the overflow counter (OVC) into the upper 6 bits of the location
pointed to by the “loc16” addressing mode and zero the lower 10 bits of the addressed
location:

[loc16(15:10)] = OVC; [loc16(9:0)] = 0;

Flags and Modes

Flags and Modes Description
N If (loc16 = @AX) and bit 15 of AX is 1, then set N; otherwise clear N.
z If (loc16 = @AX) and AX is zero, then set Z; otherwise clear Z.
Repeat Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it

resets the repeat counter (RPTC) and executes only once.

Example ; Save and restore contents of ACC and OVC bits:
MOV *SP++,0VC ; Save OVC on stack
MOV *SP++,AL ; Save AL on stack
MOV *SP++,AH ; Save AH on stack

MOV AH,*--SP ; Restore AH from stack
MOV AL,*--SP ; Restore AL from stack
MOV OVC,*--SP ; Restore OVC from stack

SPRU430F—August 2001 —-Revised April 2015 C28x Assembly Language Instructions 269

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS

INSTRUMENTS

MOV loc16,P — Store Lower Half of Shifted P Register www.ti.com
MOV loc16,P Store Lower Half of Shifted P Register
Syntax Options MOV locl6,P
Opcode 0011 1111 LLLL LLLL
Objmode X
RPT Y
CYC N+1
Operands loc16 — Addressing mode (see Chapter 5)

P — Product register
Description The contents of the P register are shifted by the amount specified in the product shift

mode (PM), and the lower half of the shifted value is stored into the 16-bit location
pointed to by the “loc16” addressing mode. The P register is not modified by the
operation:

[locl6] = P << PM;

Flags and Modes

Flags and Modes Description

N If (loc16 = @AX) and bit 15 of the AX register is 1, then the N bit is set; otherwise, N is
cleared.

7 If (loc16 = @AX) and the value of AX after the load is zero, then the Z bit is set;
otherwise Z is cleared.
The value in the PM bits sets the shift mode for the output operation from the product

PM register. If the product shift value is positive (logical left shift operation), then the low
bits are zero filled. If the product shift value is negative (arithmetic right shift operation),
the upper bits are sign extended.

Repeat This instruction is repeatable. If the operation follows a RPT instruction, then it will be

executed N+1 times. The state of the Z, and N flags will reflect the final result.

Example ; Calculate Y32 = M16*X16 >> 6
MOV T,@M16 ;T =M
MPY P,T,0X16 ; P =T * X
SPM -6 ; Set product shift to >> 6
MOV @Y32+0,P ; Y32 = P >> 6
MOVH @Y32+1,P

270 C28x Assembly Language Instructions SPRU430F-August 2001 —Revised April 2015

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

www.ti.com

MOV locl16, T — Store the T Register

MOV locl16, T Store the T Register

Syntax Options MOV locl6, T

loc16 — Addressing mode (see Chapter 5)

T — Upper 16 bits of the multiplicand register (XT)

Opcode 0010 0001 LLLL LLLL
Objmode X
RPT -
CcYc 1
Operands
Description
mode:
[locl6] = T;

Flags and Modes

Store the 16-bit T register contents into the location pointed to by the “loc16” addressing

Flags and Modes Description
N If (loc16 = @AX) and bit 15 of the AX register is 1, then the N bit is set; otherwise, N is
cleared.
7 If (loc16 = @AX) and the value of AX after the load is zero, then the Z bit is set;
otherwise Z is cleared.

the repeat counter (RPTC) and executes only once.

; Calculate using 16-bit multiply:

;Y = (X0*CO) >> 2) + (X1*C1 >> 2) + (X2*C2 >> 2)

Repeat

Example
; X2 = X1
; X1 = X0
SPM -2 ;
MOV T,@x2 ;
MPY P,T,@C2 ;
MOVP T,@X1 ;
MPY P,T,@C1 ;
MOV @X2,T ;
MOVA T,@X0 ;
MPY P,T,@CO ;
MOV @X1,T ;
ADDL ACC, P << PM ;
MOVL @Y,ACC ;

w
(0]
~+

X UV-HAXUVTH7UTH

ACC

2 =

1 =

product shift to >> 2
X2
T*C2
X1, ACC =
T*C1l
X1
0, ACC =
*CO
X0
= X0*CO >> 2 + X1*C1 >> 2 + X2*C2 >> 2

X2*C2 >> 2

X X1*C1 >> 2 + X2*C2 >> 2
T

Store result into Y

This instruction is not repeatable. If this instruction follows the RPT instruction, it resets

SPRU430F—August 2001 —-Revised April 2015
Submit Documentation Feedback

C28x Assembly Language Instructions

Copyright © 2001-2015, Texas Instruments Incorporated

271

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS

INSTRUMENTS
MOV OVC, loc16 — Load the Overflow Counter www.ti.com
MOV OVC, locl16 Load the Overflow Counter
Syntax Options MOV OVC, locl6
Opcode 0101 0110 0000 0010
0000 0000 LLLL LLLL
Objmode 1
RPT -
CycC 1
Operands OVC - 6-bit overflow counter
Description Load the overflow counter (OVC) with the upper 6 bits of the location pointed to by the
“loc16” addressing mode:
OVC = [loc16(15:10)];
Flags and Modes
Flags and Modes Description
oveC The 6-bit overflow counter is modified.
Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.
Example ; Save and restore contents of ACC and OVC bits:
MOV *SP++,0VC ; Save OVC on stack
MOV *SP++,AL ; Save AL on stack
MOV *SP++,AH ; Save AH on stack
MOV AH,*--SP ; Restore AH from stack
MOV AL,*--SP ; Restore AL from stack
MOV OVC,*--SP ; Restore OVC from stack
272 C28x Assembly Language Instructions SPRU430F-August 2001 —Revised April 2015

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

www.ti.com

MOV PH, loc16 — Load the High Half of the P Register

MOV PH, loc16
Syntax Options
Opcode

Objmode

RPT

cyC

Operands

Description

Flags and Modes

Repeat

Example

Load the High Half of the P Register

MOV PH, loc16
0010 1111 LLLL LLLL
X

1

PH — Upper 16 bits of the product register (P)
loc16 — Addressing mode (see Chapter 5)

Load the high 16 bits of the P register (PH) with the 16-bit location pointed to by the
“loc16” addressing mode; leave the lower 16 bits (PL) unchanged:

PH = [locl6];
PL = unchanged;
None

This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

; Swap the contents of AH and AL:

MOV PH,@AL ; Load PH with AL

MOV PL,@AH ; Load PL with AH

MOV ACC,@P ; Load ACC with P (AH and AL swapped)

SPRU430F—August 2001 —-Revised April 2015 C28x Assembly Language Instructions 273
Submit Documentation Feedback

Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

MOV PL, loc16 — Load the Low Half of the P Register

13 TEXAS
INSTRUMENTS

www.ti.com

MOV PL, loc16

Syntax Options
Opcode
Objmode

RPT

cyC

Operands

Description

Flags and Modes

Repeat

Example

Load the Low Half of the P Register

MOV PL, loc16

0010 0111 LLLL LLLL
X

1

PL — Lower 16 bits of the product register (P)
loc16 — Addressing mode (see Chapter 5)

Load the high 16 bits of the P register (PL) with the 16-bit location pointed to by the
“loc16” addressing mode; leave the lower 16 bits (PH) unchanged:

PL = [locl6];
PH = unchanged;
None

This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

; Swap the contents of AH and AL:

MOV PH,@AL ; Load PH with AL
MOV PL,@AH ; Load PL with AH
MOV ACC,@P ; Load ACC with P (AH and AL swapped)

274 C28x Assembly Language Instructions

SPRU430F—August 2001 —Revised April 2015

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS

INSTRUMENTS

www.ti.com

MOV PM, AX — Load Product Shift Mode

MOV PM, AX

Syntax Options
Opcode
Objmode

RPT

CYC

Operands

Description

Flags and Modes

Load Product Shift Mode

MOV PM, AX

0101 0110 0011 100A

1

1

AX — Accumulator high (AH) or accumulator low (AL) registers.

Load the product shift mode (PM) bits with the 3 least significant bits of register AX.

PM = AX(2:0);

Flags and Modes

Description

PM

The product shift mode bits are loaded with the 3 least significant bits of AX.

Repeat

Example

This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

; Calculate: Y32
CLRC AMODE
MOV AL,@Shift

MOV PM,AX

MOV T,@X16

MPY P,XT,@M16
MOVL ACC,@B32
ADDL ACC,P << PM
MOVL @Y32,ACC

= (

M16*X16 >> Shift) + B32, Shift = 0 to 6
Make sure AMODE = O

; Load AL with contents of "Shift" ADDB AL,#1

Convert "Shift" to PM encoding
Load PM bits with encoded "Shift" value

T = X16
P = X16*M16
ACC = B32

ACC = ACC + (P >> Shift)

; Store result into Y32

SPRU430F—August 2001 —-Revised April 2015
Submit Documentation Feedback

C28x Assembly Language Instructions 275

Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

MOV T, loc16 — Load the Upper Half of the XT Register www.ti.com

MOV T, locl16

Syntax Options
Opcode
Objmode

RPT

cyC

Operands

Description

Flags and Modes

Load the Upper Half of the XT Register

MOV T, loc16

0010 1101 LLLL LLLL
X

1

T — Upper 16 bits of the multiplicand register (XT)
loc16 — Addressing mode (see Chapter 5)

Load the T register with the 16-bit contents of the location pointed to by the “loc16”
addressing mode:

T = [locl6];

None

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.
Example ; Calculate using 16-bit multiply:
; Y = (XO*CO) >> 2) + (XI*CLl >> 2) + (X2*C2 >> 2)
;X2 = x1
; X1 = X0
SPM -2 ; Set product shift to >> 2
MOV T,@X2 ;T = X2
MPY P,T,@C2 ; P = T*C2
MOVP T,@X1 ; T = X1, ACC = X2*C2 >> 2
MPY P,T,@C1 ; P =T*C1
MOV @X2,T ; X2 = x1
MOVA T,@X0 ; T = X0, ACC = X1*C1 >> 2 + X2*C2 >> 2
MPY P,T,@CO ; P = T*CO
MOV @X1,T ; X1 = X0
ADDL ACC, P << PM ; ACC = X0*CO >> 2 + X1*Cl >> 2 + X2*C2 >> 2
MOVL @Y,ACC ; Store result into Y
276 C28x Assembly Language Instructions SPRU430F-August 2001 —Revised April 2015

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS

INSTRUMENTS

www.ti.com

MOV TL, #0 — Clear the Lower Half of the XT Register

MOV TL, #0

Syntax Options
Opcode
Objmode

RPT

cyC

Operands

Description

Flags and Modes

Clear the Lower Half of the XT Register

MOV TL, #0
0101 0110 0101 0110

1

1

T — Upper 16 bits of the multiplicand register (XT)
#0 — Immediate constant value of zero

Load the lower half of the multiplicand register (TL) with zero, leaving the upper half (T)
unchanged:

TL = 0x0000;
T = unchanged;

None

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.
Example ; Calculate and keep low 32-bit result: Y32 = M32*X16 >> 32
MOV TL,#0 ;TL=0
MOV T,@X16 ; T = X16
IMPYL P,XT,@M32 ; P = XT * M32 (high 32-bit of result)
MOVL @Y32,P ; Store result into Y32
SPRU430F—August 2001 —-Revised April 2015 C28x Assembly Language Instructions 277

Submit Documentation Feedback

Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

MOV XARn, PC — Save the Current Program Counter

13 TEXAS
INSTRUMENTS

www.ti.com

MOV XARnN, PC

Syntax Options
Opcode
Objmode

RPT

CYC

Operands

Description

Flags and Modes

Repeat

Example

Save the Current Program Counter

MOV XARn, PC
0011 1110 0101 1nnn

1

1

XARnN — XARO to XAR7, 32-bit auxiliary registers

loc32 — Addressing mode (see Chapter 5)

PC — 22-hit program counter

Load XARnN with the contents of the PC:

XARn = 0:PC;

None

This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

TableA: ;
-long CONST1
-long CONST2
-long CONST3
. FuncA:
MOV XAR5,PC
SUBB XAR5,#($-TableA)
MOVL ACC,*+XAR5[2]
MOVL @VarA,ACC

Location of TableA is relative to

; the current program

; Store CONST2

; XAR5 = current PC

location

; XAR5 = TableA start location
; Load ACC with CONST2
in VarA

278 C28x Assembly Language Instructions

SPRU430F—August 2001 —Revised April 2015
Submit Documentation Feedback

Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

www.ti.com

MOVA T,loc1l6 — Load T Register and Add Previous Product

MOVA T,loc16

Syntax Options
Opcode
Objmode

RPT

cyC

Operands

Description

Flags and Modes

Load T Register and Add Previous Product

MOVA T,loc16

0001 0000 LLLL LLLL

X

Y

N+1

T — Upper 16 bits of the multiplicand register (XT)
loc16 — Addressing mode (see Chapter 5)

Load the T register with the 16-bit content of the location pointed to by the “loc16”
addressing mode. Also, the content of the P register, shifted by the amount specified by
the product shift mode (PM) bits, is added to the content of the ACC register:

T = [locl6];

ACC = ACC + P << PM;

Flags and Modes Description
N After the operation, if bit 31 of the ACC register is 1, the N bit is set; otherwise, N is
cleared.
z After the operation, if the value of ACC is zero, the Z bit is set; otherwise Z is cleared.
C If the addition generates a carry, then C is set; otherwise, C is cleared.
\ If an overflow occurs, V is set; otherwise V is not affected.
If overflow mode is disabled; and if the operation generates a positive overflow, the
ove counter is incremented. If overflow mode is disabled; and if the operation generates a
negative overflow, the counter is decremented.
OVM If overflow mode bit is set; the ACC value will saturate maximum positive
(OX7FFFFFFF) or maximum negative (0x80000000) if the operation overflows.
The value in the PM bits sets the shift mode for the output operation from the product
PM register. If the product shift value is positive (logical left shift operation), then the low
bits are zero filled. If the product shift value is negative (arithmetic right shift operation),
the upper bits are sign extended.

Repeat This instruction is repeatable. If the operation follows a RPT instruction, it will be
executed N+1 times. The state of the Z, N, C and OVC flags reflect the final result. The
V flag will be set if an intermediate overflow occurs.
Example ; Calculate using 16-bit multiply:
; Y = (X0*C0) >> 2) + (X1*C1 >> 2) + (X2*C2 >> 2)
; X2 = X1
; X1 = X0
SPM -2 ; Set product shift to > 2
MOV T,@x2 ;T = X2
MPY P,T,@C2 ; P =T*C2
MOVP T,@X1 ; T = X1, ACC = X2*C2 >> 2
MPY P,T,@C1 P = T*C1
MOV @X2,T ; X2 = X1
MOVA T,@X0 ; T = X0, ACC = X1*C1 >> 2 + X2*C2 >> 2
MPY P,T,@CO P = T*CO
MOV @X1,T ; X1 = X0
ADDL ACC,P << PM ; ACC = XO0*CO >> 2 + X1*C1 >> 2 + X2*C2 >> 2
MOVL @Y ,ACC ; Store result into Y
SPRU430F—August 2001 —-Revised April 2015 C28x Assembly Language Instructions 279

Submit Documentation Feedback

Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

MOVAD T, loc16 — Load T Register www.ti.com

MOVAD T, loc16

Syntax Options
Opcode
Objmode

RPT

cyC

Operands

Description

Flags and Modes

Load T Register

MOVAD T, loc16
1010 0111 LLLL LLLL
1

N

1

T — Upper 16 bits of the multiplicand register (XT)
loc16 — Addressing mode (see Chapter 5)

Note: For this operation, register-addressing modes cannot be used. The modes are:
@ARN, @AH, @AL, @PH, @PL, @SP, @T. An illegal instruction trap will be generated.

Load the T register with the 16-bit content of the location pointed to by the “loc16”
addressing mode and then load the next highest 16-bit location pointed to by “loc16” with
the content of T. In addition, add the content of the P register, shifted by the amount
specified by the product shift mode (PM) bits, to the content of the ACC register:

T = [locl6];

[locl6 + 1] = T;

ACC = ACC + P << PM;

Flags and Modes Description
N After the operation, if bit 31 of the ACC register is 1, then the N bit is set; otherwise, N
is cleared.
7 After the operation, if the value of ACC is zero, then the Z bit is set; otherwise Z is
cleared.
C If the addition generates a carry, the C bit is set; otherwise, C is cleared.
\% If an overflow occurs, V is set; otherwise V is not affected.
If overflow mode is disabled; and if the operation generates a positive overflow, then
ovC the counter is incremented. If overflow mode is disabled; and if the operation generates
a negative overflow, then the counter is decremented.
OVM If overflow mode bit is set; then the ACC value will saturate maximum positive
(Ox7FFFFFFF) or maximum negative (0x80000000) if the operation overflows.
The value in the PM bits sets the shift mode for the output operation from the product
PM register. If the product shift value is positive (logical left shift operation), then the low
bits are zero filled. If the product shift value is negative (arithmetic right shift operation),
the upper bits are sign extended.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.
Example ; Calculate using 16-bit multiply:
;Y = (X0*C0) >> 2) + (X1*C1 >> 2) + (X2*C2 >> 2)
; X2 = X1
; X1 = X0
SPM -2 ; Set product shift to >> 2
MOVP T,@X2 ;T = X2
MPYS P,T,@C2 ; P=T*C2, ACC =0
MOVAD T,@X1 ; T = X1, ACC = X2*C2>>2, X2 = X1
MPY P,T,@C1 ; P =T*C1
MOVAD T,@X0 ; T = X0, ACC = X1*C1>>2 + X2*C2>>2, X1 = X0
MPY P,T,@CO ; P =T*CO
ADDL ACC, P << PM ; ACC = X0*C0>>2 + X1*C1>>2 + X2*C2>>2
MOVL @Y,ACC ; Store result into Y
280 C28x Assembly Language Instructions SPRU430F-August 2001 —Revised April 2015

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

www.ti.com MOVB ACC, #8bit — Load Accumulator With 8-bit Value

MOVB ACC, #8bit Load Accumulator With 8-bit Value

Syntax Options MOVB ACC,#8bit

Opcode 0000 0010 CCCC CCCC
Objmode 1

RPT -

cyC 1

Operands ACC - Accumulator register

#8bit — 8-bit immediate unsigned constant value

Description Load the ACC register with the specified 8-bit, zero-extended immediate constant:
ACC = 0:8bit;

Flags and Modes

Flags and Modes Description
N After the load, the N flag is set if bit 31 of the ACC is 1, else N is cleared.
z After the load, the Z flag is set if the ACC value is zero, else Z is cleared.
Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.
Example ; Increment contents of 32-bit location VarA:
MOVB ACC,#1 ; Load ACC with the value 0x0000 0001

ADDL ACC,@VarA ; Add to ACC the contents of VarA
MOVL @VarA,ACC ; Store result back into VarA

SPRU430F—August 2001 —-Revised April 2015 C28x Assembly Language Instructions 281

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS

INSTRUMENTS

MOVB ARG6/7, #8bit — Load Auxiliary Register With an 8-bit Constant www.ti.com
MOVB ARG6/7, #8bit Load Auxiliary Register With an 8-bit Constant
Syntax Options

Syntax Options Opcode Objmode RPT Ccyc

MOVB ARG, #8bit | 1101 0110 CCCC CCCC X - 1

MOVB AR7, #8bit {1101 0111 CCCC CCCC X - 1
Operands XARNn — XAR6 OR XAR7, 32-bit auxiliary registers

#8bit — 8-bit immediate constant value

Description Load ARG or AR7 with an 8-bit unsigned constant and upper 16 bits of XAR6 and XAR7

Flags and Modes

are unchanged:
AR6/7 = 0:8bit; AR6/7H = unchanged;

None

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.
282 C28x Assembly Language Instructions SPRU430F-August 2001 —Revised April 2015

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

www.ti.com MOVB AX, #8bit — Load AX With 8-bit Constant

MOVB AX, #8bit Load AX With 8-bit Constant

Syntax Options MOVB AX, #8bit

Opcode 1001 101A CCCC CCCC

Objmode X

RPT -

cyC 1

Operands AX — Accumulator high (AH) or accumulator low (AL) register

#8bit — 8-bit immediate constant value

Description Load accumulator high register (AH) or accumulator low register (AL) with an unsigned
8-bit constant zero extended, leaving the other half of the accumulator register
unchanged:

AX = 0:8bit;

Flags and Modes

Flags and Modes Description
N Flag always set to zero.
7 The load to AX is tested for a zero condition. The bit is set if the operation results in AX
=0, otherwise it is cleared.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.
Example MOVB AL, #OxFO ; Load AL with the value Ox00FO.
CMP AL,*+XARO[0] ; Compare contents pointed to by XARO
; with AL.
SB Dest,EQ ; Branch if values are equal.
SPRU430F—August 2001 —-Revised April 2015 C28x Assembly Language Instructions 283

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

MOVB AX.LSB, loc16 — Load Byte Value www.ti.com

MOVB AX.LSB, loc16 Load Byte Value

Syntax Options
Opcode
Objmode

RPT

cyC

Operands

Description

MOVB AX.LSB, loc16
1100 011A LLLL LLLL

X

1

AX.LSB — Least significant byte of accumulator high (AH.LSB) or accumulator low
(AL.LSB) register

loc16 — Addressing mode (see Chapter 5)

Load the least significant byte of the specified AX register (AH.LSB or AL.LSB) with 8
bits from the location pointed to by the “loc16” addressing mode. The most significant
byte of AX is cleared. The form of the “loc16” operand determines which of its 8 bits are
used to load AX.LSB:

if(locl6é = *+XARn[offset])
{
if(offset is an even number)
AX.LSB = [locl6.LSB];
if(offset is an odd value)
AX.LSB = [locl6.MSB];
3
else
AX.LSB = [locl6.LSB];
AX_MSB = 0x00;

Note: offset = 3-bit immediate or ARO or AR1 indexed addressing modes only.

For the following address modes, the returned result is undefined:

Flags and Modes

*AR6%6++ (AMODE = 0)
*0++ (AMODE = x)
*0- - (AMODE = x)
*BRO++ (AMODE = x)
*BRO-- (AMODE = x)
*0++, ARPn (AMODE = 1)
*0- -, ARPn (AMODE = 1)
*BRO++, ARPn (AMODE = 1)
*BR0O--, ARPn (AMODE =1)
Flags and Modes Description

After the move, AX is tested for a zero condition. The zero flag bit is set if AX = 0;

z otherwise it is cleared

After the move, AX is tested for a negative condition. The bit is set if bit 15 of AX is 1;

N otherwise it is cleared.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.
284 C28x Assembly Language Instructions SPRU430F-August 2001 —Revised April 2015

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS

INSTRUMENTS
www.ti.com MOVB AX.LSB, loc16 — Load Byte Value
Example ; Swap the byte order in the 32-bit *Var32" location.
; Before operation: vVar32 = B3 | B2 | B1 | BO
; After operation: Var32 = BO | B1 | B2 | B3
MOVL XAR2,#Var32 ; Load XAR2 with address of "Var32"
MOVB ; ACC(B0O) = var32(B3), ACC(B1) =0
AL .LSB,*+XAR2[3]
MOVB ; ACC(B2) = var32(B1), ACC(B3) =0
AH_LSB,*+XAR2[1]
MOVB ; ACC(B1) = VvVar32(B2), ACC(B1l) = unch
AL .MSB,*+XAR2[2]
MOVB ; ACC(B3) = Vvar32(B0), ACC(B1) = unch
AH_MSB,*+XAR2[0]
MOVL @Var32,ACC ; Store swapped result in "Var32"
SPRU430F—August 2001 —-Revised April 2015 C28x Assembly Language Instructions 285

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

MOVB AX.MSB, loc16 — Load Byte Value www.ti.com

MOVB AX.MSB, loc16 Load Byte Value

Syntax Options
Opcode
Objmode

RPT

cyC

Operands

Description

MOVB AX.MSB, loc16
0011 100A LLLL LLLL

X

1

AX.MSB — Most significant byte of accumulator high (AH.MSB) or accumulator low
(AL.MSB) register

loc16 — Addressing mode (see Chapter 5)

Load the most significant byte of the specified AX register (AH.MSB or AH.LSB) with 8
bits from the location pointed to by the “loc16” addressing mode. The least significant
byte of AX is left unchanged. The form of the “loc16” operand determines which of its 8
bits are used to load AX.MSB.

if(locl6 = *+XARn[offset])
{
if(offset is an even value)
AX_.MSB = [locl6.LSB];
if(offset is an odd value)
AX.MSB = [locl6.MSB];
}
else
AX.MSB = [locl6.LSB];
AX.LSB = unchanged;

Note: Offset = 3-bit immediate or ARO or AR1 indexed addressing modes only.
For the following address modes, the returned result is undefined:

Flags and Modes

*AR6Y%++ (AMODE = 0)
*0++ (AMODE = x)
*0- - (AMODE = x)
*BRO++ (AMODE = x)
*BRO-- (AMODE = x)
*0++, ARPn (AMODE = 1)
*0- -, ARPn (AMODE = 1)
*BRO++, ARPn (AMODE = 1)
*BRO--, ARPn (AMODE = 1)
Flags and Modes Description
N After the move AX is _te_sted for a negative condition. The negative flag bit is set if bit 15
of AX is 1; otherwise it is cleared.
7 After the move, AX is tested for a zero condition. The zero flag bit is set if AX = 0;

otherwise it is cleared.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.
286 C28x Assembly Language Instructions SPRU430F-August 2001 —Revised April 2015

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS

INSTRUMENTS
www.ti.com MOVB AX.MSB, loc16 — Load Byte Value
Example ; Swap the byte order in the 32-bit *Var32" location.
; Before operation: vVar32 = B3 | B2 | B1 | BO
; After operation: Var32 = BO | B1 | B2 | B3
MOVL XAR2,#Var32 ; Load XAR2 with address of "Var32"
MOVB ; ACC(BO) = Var32(B3), ACC(B1) =0
AL .LSB,*+XAR2[3]
MOVB ; ACC(B2) = Var32(B1), ACC(B3) =0
AH_LSB,*+XAR2[1]
MOVB ; ACC(B1) = Vvar32(B2), ACC(B1) = unch
AL .MSB,*+XAR2[2]
MOVB ; ACC(B3) = Var32(B0), ACC(B1) = unch
AH_MSB,*+XAR2[0]
MOVL @Var32,ACC ; Store swapped result in "Var32"
SPRU430F—August 2001 —-Revised April 2015 C28x Assembly Language Instructions 287

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

MOVB loc16,#8bit, COND — Conditionally Save 8-bit Constant

13 TEXAS
INSTRUMENTS

www.ti.com

MOVB loc16,#8bit, COND Conditionally Save 8-bit Constant

Syntax Options MOVB loc16,#8bit, COND
Opcode 0101 0110 1011 COND
CCCC CCCC LLLL LLLL
Objmode 1
RPT -
CcYC 1
Operands loc16 — Addressing mode (see Chapter 5)

#8bit — 8-bit immediate constant value
COND - Conditional codes:

COND Syntax Description Flags Tested

0000 NEQ Not Equal To Z=0

0001 EQ Equal To zZ=1

0010 GT Greater Than Z=0ANDN=0

0011 GEQ Greater Than or Equal To N=0

0100 LT Less Than N=1

0101 LEQ Less Than or Equal To Z=10RN=1

0110 Hi Higher C=1ANDZ=0

0111 HIS, C Higher or Same, Carry Set c=1

1000 LO, NC Lower, Carry Clear CcC=0

1001 LOS Lower or Same C=00RZ=1

1010 NOV No Overflow V=0

1011 ov Overflow V=1

1100 NTC Test Bit Not Set TC=0

1101 TC Test Bit Set TC=1

1110 NBIO BIO Input Equal To Zero BIO=0

1111 UNC Unconditional -
Description If the specified condition being tested is true, then the 8-bit zero extended constant is

stored in the location pointed to by the “loc16” addressing mode:

iT(COND = true) [locl6] = 0:8bit;

Note: Addressing modes are not conditionally executed; therefore, if an addressing
mode performs a pre or post-modification, it will execute regardless of whether the

condition is true or not.

Flags and Modes

Flags and Modes Description
N If (COND = true AND loc16 = @AX), then after the move AX is tested for a negative
condition. The negative flag bit is set if bit 15 of AX is 1, otherwise it is cleared.
7 If (COND = true AND loc16 = @AX), then after the move, AX is tested for a zero
condition. The zero flag bit is set if AX = 0, otherwise it is cleared.
\ If the V flag is tested by the condition, then V is cleared.
288 C28x Assembly Language Instructions SPRU430F-August 2001 —Revised April 2015

Copyright © 2001-2015, Texas Instruments Incorporated

Submit Documentation Feedback

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

www.ti.com

MOVB loc16,#8bit, COND — Conditionally Save 8-bit Constant
Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.
Example ; Calculate:

; if(varA > 20)
; VarA = 0;
CMP @VarA,#20

; Set flags on (VarA - 20)
MOVB @VarA,#0,GT

; Zero VarA if greater then

SPRU430F—August 2001 —-Revised April 2015 C28x Assembly Language Instructions 289
Submit Documentation Feedback

Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

MOVB loc16, AX.LSB — Store LSB of AX Register www.ti.com

MOVB loc16, AX.LSB Store LSB of AX Register

Syntax Options
Opcode
Objmode

RPT

cyC

Operands

Description

MOVB loc16, AX.LSB
0011 110A LLLL LLLL

X

1

loc16 — Addressing mode (see Chapter 5)

AX.LSB — Least significant byte of accumulator high (AH.LSB) or accumulator low
(AL.LSB) register

Load 8 bits of the location pointed to by the “loc16” addressing mode with the least
significant byte of the specified AX register (AH.LSB or AL.LSB). The form of the “loc16”
operand determines which of its 8 bits are loaded and which of its 8 bits are left
unchanged:

if(locl6 = *+XARn[offset])
{
if(offset is an even value)
[locl6.LSB] = AX.LSB;
[locl16.MSB] = unchanged;
if(offset is an odd value)

[loc16.LSB] = unchanged;
[locl16.MSB] = AX.LSB;
3
else
[1oc16.LSB] = AX.LSB;
[locl6.MSB] = unchanged;

Note: offset = 3-bit immediate or ARO or AR1 indexed addressing modes only.
This is a read-modify-write operation.
For the following address modes, the returned result is undefined:

*AR6%++ (AMODE = 0)
*0++ (AMODE = x)
*0- - (AMODE = x)
*BRO++ (AMODE = x)
*BRO-- (AMODE = x)
*0++, ARPn (AMODE =1)
*0— -, ARPn (AMODE =1)
*BRO++, ARPn (AMODE =1)
*BRO--, ARPn (AMODE =1)
Flags and Modes
Flags and Modes Description
N If (Ioc;LG = @A)_()_, then_aft_er the move AX'is testgd f(_)r_a negative condition. The
negative flag bit is set if bit 15 of AX is 1, otherwise it is cleared.
7 If'(I'oc16 = @AX), then aftt_ar the_ move, AX is tested for a zero condition. The zero flag
bit is set if AX = 0, otherwise it is cleared.
290 C28x Assembly Language Instructions SPRU430F-August 2001 —Revised April 2015

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

www.ti.com

MOVB loc16, AX.LSB — Store LSB of AX Register

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.
Example ; Store the 32-bit contents of the ACC into the
; 32-bit contents of "Var32" location in reverse byte order:
; Before operation: ACC = B3 | B2 | B1 | BO
; After operation: Var32 = BO | B1 | B2 | B3
MOVL XAR2,#Var32 ; Load XAR2 with address of "Var32"
MOVB ; var32(B0) = ACC(B3)
*+XAR2[0] ,AH.MSB
MOvB ; Var32(Bl) = ACC(B2)
*+XAR2[1] ,AH.LSB
MOVB ; var32(B2) = ACC(B1)
*+XAR2[2] ,AL .MSB
MOVB ; var32(B3) = ACC(BO)
*+XAR2[3],AL.LSB
SPRU430F—August 2001 —-Revised April 2015 C28x Assembly Language Instructions 291

Submit Documentation Feedback

Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

MOVB loc16, AX.MSB — Store MSB of AX Register www.ti.com

MOVB loc16, AX.MSB Store MSB of AX Register

Syntax Options
Opcode
Objmode

RPT

cyC

Operands

Description

MOVB loc16, AX.MSB
1100 100A LLLL LLLL

X

1

loc16 — Addressing mode (see Chapter 5)

AX.MSB — Most significant byte of accumulator high (AH.MSB) or accumulator low
(AL.MSB) register

Load 8 bits of the location pointed to by the “loc16” addressing mode with the most
significant byte of the specified AX register (AH.MSB or AL.MSB). The form of the
“loc16” operand determines which of its 8 bits are loaded and which of its 8 bits are left
unchanged:

if(locl6 = *+XARn[offset])
{
if(offset is an even number)
[locl6.LSB] = AX.MSB;
[locl16.MSB] = unchanged;
if(offset is an odd number)

[loc16.LSB] = unchanged;
[1oc16.MSB] = AX.MSB;
}
else
[10oc16.LSB] = AX.MSB;

[loc16.MSB] ; unchanged;
Note: offset = 3-bit immediate or ARO or AR1 indexed addressing modes only.
This is a read-modify-write operation.
For the following address modes, the returned result is undefined:

*AR6%++ (AMODE = 0)
*0++ (AMODE = x)
*0- - (AMODE = x)
*BRO++ (AMODE = x)
*BRO-- (AMODE = x)
*0++, ARPn (AMODE =1)
*0— -, ARPn (AMODE =1)
*BRO++, ARPn (AMODE =1)
*BRO--, ARPn (AMODE =1)
Flags and Modes
Flags and Modes Description
N If (Ioc;LG = @A)_()_, then_aft_er the move AX'is testgd f(_)r_a negative condition. The
negative flag bit is set if bit 15 of AX is 1, otherwise it is cleared.
7 If'(I'oc16 = @AX), then aftt_ar the_ move, AX is tested for a zero condition. The zero flag
bit is set if AX = 0, otherwise it is cleared.
292 C28x Assembly Language Instructions SPRU430F-August 2001 —Revised April 2015

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

www.ti.com

MOVB loc16, AX.MSB — Store MSB of AX Register

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.
Example ; Store the 32-bit contents of the ACC into the
; 32-bit contents of "Var32" location in reverse byte order:
; Before operation: ACC = B3 | B2 | B1 | BO
; After operation: Var32 = BO | B1 | B2 | B3
MOVL XAR2,#Var32 ; Load XAR2 with address of "Var32"
MOVB ; var32(B0) = ACC(B3)
*+XAR2[0] ,AH.MSB
MOvB ; Var32(Bl) = ACC(B2)
*+XAR2[1] ,AH.LSB
MOVB ; var32(B2) = ACC(B1)
*+XAR2[2] ,AL .MSB
MOVB ; var32(B3) = ACC(BO)
*+XAR2[3],AL.LSB
SPRU430F—August 2001 —-Revised April 2015 C28x Assembly Language Instructions 293

Submit Documentation Feedback

Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS

INSTRUMENTS
MOVB XARn, #8bit — Load Auxiliary Register With 8-bit Value www.ti.com
MOVB XARnN, #8bit Load Auxiliary Register With 8-bit Value
Syntax Options
Syntax Options Opcode Objmode RPT CcYyCc
MOVB XAR...5, #8bit {1101 Onnn CCCC CCCC X - 1
MOVB XARS6, #8bit | 1011 1110 CCCC CCCC 1 - 1
MOVB XAR?7, #8bit | 1011 0110 CCCC CCCC 1 - 1
Operands XARnN — XARO to XAR7, 32-bit auxiliary registers
#8bit — 8-bit immediate constant value
Description Load XARnN with the 8-bit unsigned immediate value:
XARn = 0:8bit;
Flags and Modes None
Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.
Example MOVB XARO, #F2h ; Load XARO with 0x0000 OOF2
294 C28x Assembly Language Instructions SPRU430F-August 2001 —Revised April 2015

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

www.ti.com

MOVDL XT,loc32 — Store XT and Load New XT

MOVDL XT,loc32

Syntax Options
Opcode
Objmode

RPT

CYC

Operands

Description

Flags and Modes

Store XT and Load New XT

MOVDL XT,loc32

1010 0110 LLLL LLLL

1

Y

N+1

XT — Multiplicand register

loc32 — Addressing mode (see Chapter 5)

Note: For this operation, register-addressing modes cannot be used. The modes are:
@XARN, @ACC, @P, @XT. An illegal instruction trap will be generated.

Load the XT register with the 32-bit content of the location pointed to by the “loc32”
addressing mode and then load the next highest 32-bit location pointed to by “loc32” with
the content of XT:

XT = [loc32];

[loc32 + 2] = XT;

None

Repeat This instruction is repeatable. If this instruction follows the RPT instruction, then it will be
executed N+1 times.
Example ; Calculate using 32-bit multiply, retaining high result:
;Y = (X0*C0) >> 2) + (X1*C1 >> 2) + (X2*C2 >> 2)
; X2 = X1
; X1 = X0
SPM -2 ; Set product shift to >> 2
ZAPA ; Zero ACC, P, OVC
MOVL XT,@X2 ; XT = X2
QWPYL P,XT,@C2 ; P = XT*C2
MOVDL XT,@X1 ; XT = X1, X2 = X1
QMPYAL P,XT,@C1 ; P = XT*C1, ACC = X2*C2>>2
MOVDL XT,@XO0 ; XT = X0, X1 = X0
QMPYAL P,XT,@CO ; P = XT*CO, ACC = X1*C1>>2 + X2*C2>>2
ADDL ACC,P << PM ; ACC = X0*C0>>2 + X1*C1l>>2 + X2*C2>>2
MOVL @Y,ACC ; Store result into Y
SPRU430F—August 2001 —-Revised April 2015 C28x Assembly Language Instructions 295

Submit Documentation Feedback

Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

MOVH loc16,ACC << 1..8 — Description

www.ti.com

MOVH loc16,ACC << 1..8 Description

Syntax Options

Syntax Options Opcode Objmode RPT CYC
MOVH locl16, ACC << 1 1011 0011 LLLL LLLL 1 Y N+1
MOVH loc16, ACC << 2..8 0101 0110 0010 1111 1 Y N+1
0000 OSHF LLLL LLLL
1011 OSHF LLLL LLLL 0 - 1

Operands

Description

Flags and Modes

loc16 — Addressing mode (see Chapter 5)
ACC — Accumulator register
#1..8 — Shift value

Load the content of the location pointed to by the “loc16” addressing mode with the high
word of the ACC register after left—shifting by the specified value. The ACC register is
not modified:

[locl6] = ACC >> (16 - shift value);

Flags and Modes

Description

If (loc16 = @AX), then after the load AX is checked for a negative condition. The N flag

N is set if bit 15 of the AX is 1; else N is cleared.

If (loc16 = @AX) then after the load AX is checked for a zero condition. The Z flag is

z set if AX is zero; else Z is cleared.

Repeat

Example

If the operation is repeatable, then the instruction will be executed N+1 times. The state
of the Z and N flags will reflect the final result. If the operation is not repeatable, the
instruction will execute only once.

; Multiply two Q15 numbers (VarA and VarB) and store result in
; VarC as a Q15 number:
MOV T,@vVarA ; T = VarA (Q15)
MPY ACC,T,@varB ; ACC = VarA * VarB (Q30)
MOVH @arC,ACC << 1 ; VarC = ACC >> 16-1) (Q15)
; VarC as a Q31 number:
MOV T,@VarA ; T = VarA (T = Q14)
MPY ACC,T,@VarB ; ACC = VarA * VarB (ACC = Q28)
MOV @VarC+0,ACC << ; VarC low = ACC >> 3
MOVH @VarC+1,ACC << ; VarC high = ACC >> (16-1) (VarC = Q31)

296 C28x Assembly Language Instructions

SPRU430F—August 2001 —Revised April 2015

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS

INSTRUMENTS
www.ti.com MOVH loc16, P — Save High Word of the P Register
MOVH loc16, P Save High Word of the P Register
Syntax Options MOVH loc16, P
Opcode 0101 0111 LLLL LLLL
Objmode X
RPT Y
cyC N+1
Operands loc16 — Addressing mode (see Chapter 5)
P — Product register
Description The contents of the P register are shifted by the amount specified in the product shift

mode (PM), and the upper half of the shifted value is stored into the 16-bit location
pointed to by the “loc16” addressing mode. The P register is not modified by the
operation:

[locli6] = (P << PM) >> 16;

Flags and Modes

Flags and Modes Description

N If (loc16 = @AX) and bit 15 of the AX register is 1, then the N bit is set; otherwise, N is
cleared.

7 If (loc16 = @AX) and the value of AX after the load is zero, then the Z bit is set;
otherwise Z is cleared.
The value in the PM bits sets the shift mode for the output operation from the product

PM register. If the product shift value is positive (logical left shift operation), then the low
bits are zero filled. If the product shift value is negative (arithmetic right shift operation),
the upper bits are sign extended.

Repeat This instruction is repeatable. If the operation follows a RPT instruction, then it will be

executed N+1 times. The state of the Z, and N flags will reflect the final result.

Example ; Calculate Y32 = M16*X16 >> 6
MOV T,@M16 ;T =M
MPY P,T,0X16 ; P =T * X
SPM -6 ; Set product shift to >> 6
MOV @Y32+0,P ; Y32 = P >> 6
MOVH @Y32+1,P

SPRU430F—August 2001 —-Revised April 2015 C28x Assembly Language Instructions 297

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

MOVL ACC,loc32 —

13 TEXAS
INSTRUMENTS

Load Accumulator With 32 Bits www.ti.com

MOVL ACC,loc32

Syntax Options
Opcode
Objmode

RPT

cyC

Operands

Description

Flags and Modes

Load Accumulator With 32 Bits

MOVL ACC,loc32
0000 0110 LLLL LLLL

X

1

ACC — Accumulator register
loc32 — Addressing mode (see Chapter 5)

Load the ACC register with the content of the location pointed to by the “loc32”
addressing mode.

ACC = [loc32];

Flags and Modes Description
N After the load, the N flag is set if bit 31 of the ACC is 1, else N is cleared.
z After the load, the Z flag is set if the ACC is zero, else Z is cleared.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.
Example Calculate the 32-bit value: VarC = VarA + VarB;
MOVL ACC,@VarA ; Load ACC with contents of VarA
ADDL ACC,@varB ; Add to ACC the contents of VarB
MOVL @VarC,ACC ; Store result into VarC
298 C28x Assembly Language Instructions SPRU430F-August 2001 —Revised April 2015

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

www.ti.com MOVL ACC,P << PM — Load the Accumulator With Shifted P

MOVL ACC,P << PM Load the Accumulator With Shifted P

Syntax Options MOVL ACC,P << PM
Opcode 0001 0110 1010 1100
Objmode X
RPT -
cyC 1

Note: This instruction is an alias for the "MOVP T,loc16” operation with “loc16 = @T"
addressing mode.

Operands ACC - Accumulator register
P — Product register
<< PM - Product shift mode

Description Load the ACC register with the content of the P register shifted as specified by the
product shift mode (PM):

ACC = P << PM;

Flags and Modes

Flags and Modes Description
N After the load, the N flag is set if bit 31 of the ACC is 1, else N is cleared.
VA After the load, the Z flag is set if the ACC is zero, else Z is cleared.

The value in the PM bits sets the shift mode for the output operation from the product
register. If the product shift value is positive (logical left shift operation), then the low

PM bits are zero filled. If the product shift value is negative (arithmetic right shift operation),
the upper bits are sign extended.
Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.
Example ; Calculate: Y = Y + (M*X >> 4)
; Y is a 32-bit value, M and X are 16-bit values
SPM -4 ; Set product shift to >> 4
MOV T,@M ;T =M
MPY P,T,@X ;s P=M=*X
MOVL ACC,P << PM ; ACC = M*X >> 4
ADDL @Y,ACC ;Y=Y + ACC
SPRU430F—August 2001 —-Revised April 2015 C28x Assembly Language Instructions 299

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

MOVL loc32, ACC — Store 32-bit Accumulator

13 TEXAS
INSTRUMENTS

www.ti.com

MOVL loc32, ACC

Syntax Options
Opcode
Objmode

RPT

cyC

Operands

Description

Flags and Modes

Store 32-bit Accumulator
MOVL loc32, ACC
0001 1110 LLLL LLLL

X

1

ACC — Accumulator register
loc32 — Addressing mode (see Chapter 5)

Store the contents of the ACC register into the location pointed to by the “loc32”

addressing mode:
[1oc32] = ACC;

Flags and Modes Description
N If (loc32 = @ACC) then after the load, the N flag is set if bit 31 of the ACC is 1, else N
is cleared.
z If (loc32 = @ACC) then after the load, the Z flag is set if ACC is zero, else Z is cleared.

Repeat

Example

This instruction is not repeatable. If this instruction follows the RPT instruction, it resets

the repeat counter (RPTC) and executes only once.

Calculate the 32-bit value: VarC = VarA + VarB;
MOVL ACC,@VarA ; Load ACC with contents of VarA
ADDL ACC,@varB ; Add to ACC the contents of VarB
MOVL @VarC,ACC ; Store result into VarC

300 C28x Assembly Language Instructions

Copyright © 2001-2015, Texas Instruments Incorporated

SPRU430F—August 2001 —Revised April 2015

Submit Documentation Feedback

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

www.ti.com

MOVL loc32,ACC,COND — Conditionally Store the Accumulator

MOVL loc32,ACC,COND Conditionally Store the Accumulator

Syntax Options

MOVL loc32,ACC,COND

Opcode 0101 0110 0100 1000
0000 COND LLLL LLLL
Objmode X
RPT -
CcYC 1
Operands loc32 — Addressing mode (see Chapter 5)
ACC — Accumulator register
COND - Conditional codes:
COND Syntax Description Flags Tested
0000 NEQ Not Equal To Z=0
0001 EQ Equal To zZ=1
0010 GT Greater Than Z=0ANDN=0
0011 GEQ Greater Than or Equal To N=0
0100 LT Less Than N=1
0101 LEQ Less Than or Equal To Z=10RN=1
0110 Hi Higher C=1ANDZ=0
0111 HIS, C Higher or Same, Carry Set c=1
1000 LO, NC Lower, Carry Clear CcC=0
1001 LOS Lower or Same C=00RZ=1
1010 NOV No Overflow V=0
1011 ov Overflow V=1
1100 NTC Test Bit Not Set TC=0
1101 TC Test Bit Set TC=1
1110 NBIO BIO Input Equal To Zero BIO=0
1111 UNC Unconditional -
Description If the specified condition being tested is true, then the location pointed to by the “loc32”

Flags and Modes

addressing mode will be loaded with the contents of the ACC register:

iT(COND = true) [loc32] = ACC;

Note: Addressing modes are not conditionally executed. Hence, if an addressing mode
performs a pre or post modification, the modification will occur regardless of whether the

condition is true or not.

Flags and Modes

Description

If (COND = true AND loc32 = @ACC), then after the move if bit 31 of ACC is 1, N is

N set; otherwise N cleared.

7 If (COND = true AND loc32 = @ACC), then after the move if (ACC = 0), then the Z bit
is set; otherwise it is cleared.

\ If the V flag is tested by the condition, then V is cleared.

SPRU430F—August 2001 —-Revised April 2015

Submit Documentation Feedback

C28x Assembly Language Instructions 301

Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS

INSTRUMENTS

MOVL loc32,ACC,COND — Conditionally Store the Accumulator www.ti.com
Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets

the repeat counter (RPTC) and executes only once.
Example ; Swap the contents of 32-bit VarA and VarB if VarB is higher:

MOVL ACC,@VarB ; ACC = VarB

MOVL P,@VarA ; P = VarA

CMPL ACC,@P ; Set flags on (VarB - VarA)

MOVL @varA,ACC,HlI ; VarA = ACC if higher

MOVL @P,ACC,HI ; P = ACC if higher

MOVL @VarA,P ; VarA = P
302 C28x Assembly Language Instructions SPRU430F-August 2001 —Revised April 2015

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS

INSTRUMENTS

www.ti.com

MOVL loc32,P — Store the P Register

MOVL loc32,P

Syntax Options
Opcode
Objmode

RPT

cyC

Operands

Description

Flags and Modes

Store the P Register

MOVL loc32,P

1010 1001 LLLL LLLL

1

1

loc32 — Addressing mode (see Chapter 5)

P — Product register

Store the P register contents into the location pointed to by the “loc32” addressing mode:
[loc32] = P;

Flags and Modes Description
N If (loc32 = @ACC) and bit 31 of the ACC register is 1, then the N bit is set; otherwise,
N is cleared.
7 If (loc32 = @ACC) and the value of ACC after the load is zero, then the Z bit is set;

otherwise Z is cleared.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.
Example ; Add 64-bit VarA, VarB and VarC, and store result in VarD:
MOVL P,@VarA+0 ; Load P with low 32 bits of VarA
MOVL ACC,@VarA+2 ; Load ACC with high 32 bits of VarA
ADDUL P,@VarB+0 ; Add to P unsigned low 32 bits of VarB
ADDCL ACC,@vVarB+2 ; Add to ACC with carry high 32 bits of VarB
ADDUL P,@VarC+0 ; Add to P unsigned low 32 bits of VarC
ADDCL ACC,@VarC+2 ; Add to ACC with carry high 32 bits of VarC
MOVL @VarD+0,P ; Store low 32-bit result into VarD
MOVL @VarD+2,ACC ; Store high 32-bit result into VarD
SPRU430F-August 2001 —-Revised April 2015 C28x Assembly Language Instructions 303

Submit Documentation Feedback

Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

MOVL loc32, XARn — Store 32-bit Auxiliary Register

13 TEXAS
INSTRUMENTS

www.ti.com

MOVL loc32, XARn Store 32-bit Auxiliary Register

Syntax Options

Syntax Options Opcode Objmode RPT CcYyCc
MOVL loc32, XARO 0011 1010 LLLL LLLL 1 - 1
MOVL loc32, XAR1 1011 0010 LLLL LLLL 1 — 1
MOVL loc32, XAR2 1010 1010 LLLL LLLL 1 - 1
MOVL loc32, XAR3 1010 0010 LLLL LLLL 1 - 1
MOVL loc32, XAR4 1010 1000 LLLL LLLL 1 - 1
MOVL loc32, XAR5 1010 0000 LLLL LLLL 1 - 1
MOVL loc32, XAR6 1100 0010 LLLL LLLL X - 1
MOVL loc32, XAR7 1100 0011 LLLL LLLL X — 1

Operands

Description

loc32 — Addressing mode (see Chapter 5)
XARnN — XARO to XAR7, 32-bit auxiliary registers

Flags and Modes

[1oc32] = XARn;

Load the contents of the 32-bit addressed location with the contents of XARnN:

Flags and Modes

Description

If (loc32 = @ACC), then the load to ACC is tested for a negative condition. Bit-31 of the

N ACC register is the sign bit, O for positive, 1 for negative. The negative flag bit is set if
the operation on the ACC register generates a negative value, otherwise it is cleared.
If (loc32 = @ACC), then the load to ACC is tested for a zero condition. The bit is set if
z the result of the operation on the ACC register generates a 0 value, otherwise it is

cleared.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.
Example
MOVL @ACC, XARO ; Move the 32-bit contents of XARO into ACC.
; If bit 31 of the ACC is 1 set N. If
; ACC = 0, set Z.
MOVL *XAR1, XAR7 ; Move the 32-bit contents of XAR7 into the
; location pointed to by XARL.
MOVL *XAR6++,XAR6 ; Move the 32-bit contents of XAR6 into the
; location pointed to by XAR6. Post-increment
; the contents of XAR6.
MOVL *--XAR5,XAR5 ; Predecrement the contents of XAR5. Move the
; 32-bit contents of XAR5 into the location
; pointed to by XAR5.
304 C28x Assembly Language Instructions SPRU430F—August 2001 —Revised April 2015

Submit Documentation Feedback

Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

www.ti.com MOVL loc32,XT — Store the XT Register

MOVL loc32,XT Store the XT Register

Syntax Options MOVL loc32,XT

Opcode 1010 1011 LLLL LLLL

Objmode 1

RPT -

cyC 1

Operands loc32 — Addressing mode (see Chapter 5)

XT — Multiplicand register

Description Store the XT register into 32-bit location pointed to by the “loc32" addressing mode:
[loc32] = XT;

Flags and Modes

Flags and Modes Description
N If (loc32 = @ACC) and bit 31 of the ACC register is 1, then the N bit is set; otherwise,
N is cleared.

If (loc32 = @ACC) and the value of ACC after the load is zero, then the Z bit is set;

z otherwise Z is cleared.
Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.
Example ; Calculate using 32-bit multiply, retaining high result:
; Y = (XO*CO) >> 2) + (X1*C1l >> 2) + (X2*C2 >>2)
; X2 = X1
X1 = X0
SPM -2 ; Set product shift to >> 22
ZAPA ; Zero ACC, P, OVC
MOVL XT,@X2 5 XT = X2
QMPYL P,XT,@C2 ; P = XT*C2
MOVL XT,@X1 ; XT = X1, ACC = X2*C2 >> 2
QMPYAL P,XT,@C1l ; P = XT*C1
MOVL @X2,XT ; X2 = X1
MOVL XT,@X0 ; XT = X0, ACC = X1*C1 >> 2 + X2*C2 >> 2
QMPYAL P,XT,@CO ; P = XT*CO
MOVL @X1,XT ; X1 = X0
ADDL ACC, P << PM ; ACC = XO0*CO >> 2 + X1*C1l >> 2 + X2*C2 >> 2
MOVL @Y ,ACC ; Store result into Y
SPRU430F-August 2001 —-Revised April 2015 C28x Assembly Language Instructions 305

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS

INSTRUMENTS
MOVL P,ACC — Load P From the Accumulator www.ti.com
MOVL P,ACC Load P From the Accumulator
Syntax Options MOVL P,ACC
Opcode 1111 1111 0101 1010
Objmode X
RPT -
Ccyc 1
Operands P — Product register
ACC — Accumulator register
Description Load the P register with the content of the ACC register:
P = ACC;
Flags and Modes None
Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.
Example Calculate the 32-bit value: VarC = abs(VarA) + abs(VvarB)
MOVL ACC,@VarA ; Load ACC with contents of VarA
ABS ACC ; Take absolute value of VarA
MOVL P,ACC ; Temp save ACC in P register
MOVL ACC,@varB ; Load ACC with contents of VarB
ABS ACC ; Take absolute value of VarB
ADDL ACC,@P ; Add contents of P to ACC
MOVL @VarC,ACC ; Store result into VarC
306 C28x Assembly Language Instructions SPRU430F-August 2001 —Revised April 2015

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS

INSTRUMENTS
www.ti.com MOVL P,loc32 — Load the P Register
MOVL P,loc32 Load the P Register
Syntax Options MOVL P,loc32
Opcode 1010 0011 LLLL LLLL
Objmode 1
RPT -
CcyC 1
Operands P — Product register
loc32 — Addressing mode (see Chapter 5)
Description Load the P register with the 32-bit location pointed to by the “loc32” addressing mode:
P = [loc32];
Flags and Modes None
Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.
Example ; Add 64-bit VarA, VarB and VarC, and store result in VarD:
MOVL P,@vVarA+0 ; Load P with low 32 bits of VarA M
OVL ACC,@vVarA+2 ; Load ACC with high 32 bits of VarA
ADDUL P,@VarB+0 ; Add to P unsigned low 32 bits of VarB
ADDCL ACC,@VarB+2 ; Add to ACC with carry high 32 bits of VarB
ADDUL P,@VarC+0 ; Add to P unsigned low 32 bits of VarC
ADDCL ACC,@VarC+2 ; Add to ACC with carry high 32 bits of VarC
MOVL @varD+0,P ; Store low 32-bit result into VarD
MOVL @VarD+2,ACC ; Store high 32-bit result into VarD
SPRU430F—August 2001 —-Revised April 2015 C28x Assembly Language Instructions 307

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

MOVL XARnN, loc32 — Load 32-bit Auxiliary Register

13 TEXAS
INSTRUMENTS

www.ti.com

MOVL XARnN, loc32 Load 32-bit Auxiliary Register

Syntax Options

Syntax Options Opcode Objmode RPT CcYyCc
MOVL XARO, loc32 1000 1110 LLLL LLLL 1 - 1
MOVL XAR1, loc32 1000 1011 LLLL LLLL 1 — 1
MOVL XAR2, loc32 1000 0110 LLLL LLLL 1 - 1
MOVL XARS, loc32 1000 0010 LLLL LLLL 1 - 1
MOVL XAR4, loc32 1000 1010 LLLL LLLL 1 - 1
MOVL XARS, loc32 1000 0011 LLLL LLLL 1 - 1
MOVL XARS6, loc32 1100 0100 LLLL LLLL X - 1
MOVL XAR7, loc32 1100 0101 LLLL LLLL X — 1

Operands

Description

Flags and Modes

Repeat

Example

XARnN — XARO to XAR7, 32-bit auxiliary registers
loc32 — Addressing mode

Load XARnN with the contents of the 32-bit addressed location:

XARn = [loc32];

None

This instruction is not repeatable. If this instruction follows the RPT instruction, it resets

the repeat counter (RPTC) and executes only once.

MOVL XARO,@ACC

MOVL XAR2,*XARO++

MOVL XAR3,*XAR3++

MOVL XAR4,*--XAR4

Move the 32-bit contents of ACC into

XARO

Move the 32-bit value pointed to by
XARO into XAR2. Post increment XARO

by 2

Move the 32-bit value pointed to by

XAR3

into XAR3. Address modification
of XAR3 is ignored.

Predecrement the contents of XAR4.

; XAR4 into XAR4.

; Move the 32-bit value pointed to by

308 C28x Assembly Language Instructions

SPRU430F—August 2001 —Revised April 2015
Submit Documentation Feedback

Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS

INSTRUMENTS

www.ti.com

MOVL XARnN, #22bit — Load 32-bit Auxiliary Register With Constant Value

MOVL XARnN, #22bit Load 32-bit Auxiliary Register With Constant Value

Syntax Options

CCCC ccce ccce ccce

Syntax Options Opcode OBJ- MODE RPT CcYyCc

MOVL XARO, #22bit 1000 1101 0OOCC ccccC 1 - 1
CCCC Ccccec ccee ccee

MOVL XAR1, #22bit 1000 1101 o01cCC cccc 1 - 1
CCCC Ccccc ccce ccee

MOVL XAR2, #22bit 1000 1101 10CC cccc 1 - 1
CCCC CCcC cccce ccee

MOVL XAR3, #22bit 1000 1101 11CC CCCC 1 - 1
CCCC CCCC cccc ccce

MOVL XAR4, #22bit 1000 1111 0OOCC CcCcC 1 - 1
CCCC CCCC cccc ccce

MOVL XARS5, #22bit 1000 1111 01CC ccCcC 1 - 1
CCCC CcccC ccee ccee

MOVL XARG6, #22bit 0111 0110 10CC cccc X - 1
CCCC Ccccec ccee ccee

MOVL XAR7, #22bit 0111 0110 11CC cccc X - 1

Operands

Description

Flags and Modes

Repeat

Example

XARnN — XARO to XAR7, 32-bit auxiliary registers

#22bit — 22-bit immediate constant value

Load XARnN with a 22-bit unsigned constant:

XARn = 0:22bit;

None

This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

MOVL XAR4,#VarA

Initialize XAR4 pointer with the
; 22-bit address of VarA

SPRU430F—August 2001 —-Revised April 2015
Submit Documentation Feedback

Copyright © 2001-2015, Texas Instruments Incorporated

C28x Assembly Language Instructions

309

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

MOVL XT,loc32 — Load the XT Register

13 TEXAS
INSTRUMENTS

www.ti.com

MOVL XT,loc32

Syntax Options
Opcode
Objmode

RPT

CYC

Operands

Description

Flags and Modes

Repeat

Example

Load the XT Register

MOVL XT,loc32

1000 0111 LLLL LLLL

1

1

T — Upper 16 bits of the multiplicand register (XT)

loc32 — Addressing mode (see Chapter 5)

Load the XT register with the 32-bit content of the location pointed to by the “loc32”

addressing mode:

XT = [loc32];

None

This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

; Calculate using 32-bit multiply, retaining high result:
;Y = (XO*C0) >> 2) + (X1*C1l >> 2) + (X2*C2 >> 2)

; X2 = X1
; X1 = X0
SPM -2
ZAPA

MOVL XT,@X2
QWMPYL P,XT,@C2
MOVL XT,@X1
QMPYAL P,XT,@C1
MOVL @X2,XT

MOVL XT,@X0
QMPYAL P,XT,@CO
MOVL @X1,XT
ADDL ACC,P << PM
MOVL @Y,ACC

Set product shift to >> 2
Zero ACC, P, OVC

XT = X2
; P = XT*C2
; XT = X1, ACC = X2*C2 >> 2
; P = XT*C1
X2 = X1
XT = X0, ACC = X1*C1 >> 2 + X2*C2 >> 2
P = XT*CO
X1 = X0

ACC = X0*CO >> 2 + X1*C1l >> 2 + X2*C2 >> 2
Store result into Y

310 C28x Assembly Language Instructions

SPRU430F—August 2001 —Revised April 2015
Submit Documentation Feedback

Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS

INSTRUMENTS
www.ti.com MOVP T,loc16 — Load the T Register and Store P in the Accumulator
MOVP T,loc16 Load the T Register and Store P in the Accumulator
Syntax Options MOVP T,loc16
Opcode 0001 0110 LLLL LLLL
Objmode X
RPT -
cyC 1
Operands T — Upper 16 bits of the multiplicand register (XT)

loc16 — Addressing mode (see Chapter 5)

Description Load the T register with the 16-bit content of the location pointed to by the “loc16”

addressing mode. Also, the content of the P register, shifted by the amount specified by
the product shift mode (PM) bits, is loaded into the ACC register:

T = [locl6];
ACC = P << PM;

Flags and Modes

Flags and Modes Description
N After the operation if bit 31 of the ACC register is 1, then the N bit is set; otherwise, N
is cleared.
7 After the operation, if the value of ACC is zero, then the Z bit is set; otherwise Z is
cleared.
The value in the PM bits sets the shift mode for the output operation from the product
PM rggister. If the‘product shift value is_positive _(Iogical _Ieft sh!ft ope_rati_on), th(_en the onv
bits are zero filled. If the product shift value is negative (arithmetic right shift operation),
the upper bits are sign extended.
Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.
Example ; Calculate using 16-bit multiply:
; Y = (X0*CO) >> 2) + (X1*Cl >> 2) + (X2*C2 >> 2)
; X2 = X1
; X1 = X0
SPM -2 ; Set product shift to >> 2
MOV T,@x2 ;T = X2
MPY P,T,@C2 ; P =T*C2
MOVP T,@X1 ; T = X1, ACC = X2*C2 >> 2
MPY P,T,@C1 ; P =T*C1
MOV @X2,T ; X2 = X1
MOVA T,@X0 ; T = X0, ACC = X1*C1 >> 2 + X2*C2 >> 2
MPY P,T,@CO ; P =T*CO
MOV @X1,T ; X1 = X0
ADDL ACC, P << PM ; ACC = XO0*CO >> 2 + X1*C1 >> 2 + X2*C2 >> 2
MOVL @Y,ACC ; Store result into Y
SPRU430F—August 2001 —-Revised April 2015 C28x Assembly Language Instructions 311

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

MOVS T,loc16 —

13 TEXAS
INSTRUMENTS

Load T and Subtract P From the Accumulator www.ti.com

MOVS T,loc16

Syntax Options
Opcode
Objmode

RPT

cyC

Operands

Description

Flags and Modes

Load T and Subtract P From the Accumulator

MOVS T,loc16

0001 0001 LLLL LLLL

X
Y
N+1

T — Upper 16 bits of the multiplicand register (XT)

loc16 — Addressing mode (see Chapter 5)

Load the T register with the 16-bit content of the location pointed to by the “loc16”

addressing mode.

Also, the content of the P register, shifted by the amount specified by

the product shift mode (PM) bits, is subtracted from the content of the ACC register:

T = [locl6];
ACC = ACC - P <<

PM;

Flags and Modes

Description

After the operation, if bit 31 of the ACC register is 1, then the N bit is set; otherwise, N

N is cleared.
7 After the operation, if the value of ACC is zero, then the Z bit is set; otherwise Z is
cleared.
C If the subtraction generates a borrow, the C bit is cleared; otherwise, C is set.
\Y If an overflow occurs, V is set; otherwise V is not affected.
If overflow mode is disabled; and if the operation generates a positive overflow, then
ovC the counter is incremented. If overflow mode is disabled; and if the operation generates
a negative overflow, then the counter is decremented.
OVM If overflow mode bit is set; then the ACC value will saturate maximum positive
(Ox7FFFFFFF) or maximum negative (0x80000000) if the operation overflows.
The value in the PM bits sets the shift mode for the output operation from the product
PM register. If the product shift value is positive (logical left shift operation), then the low

bits are zero filled. If the product shift value is negative (arithmetic right shift operation),
the upper bits are sign extended.

Repeat

Example

This instruction is repeatable. If the operation follows a RPT instruction, then it will be
executed N+1 times. The state of the Z, N, C and OVC flags will reflect the final result.
The V flag will be set if an intermediate overflow occurs.

; Calculate using 16-bit multiply:

;Y = (X0*C0o) >>
; X2 = X1

; X1 = X0

SPM -2

MOVP T,@X2

MPYS P,T,@C2
MOVS T,@X1

MPY P,T,@C1

MOV @Xx2,T

MOVA T,@XO0

MPY P,T,@CO

MOV @X1,T

SUBL ACC,P << PM
MOVL @Y,ACC

2) + (X1*C1 >> 2) + (X2*C2 >> 2)

; Set product shift to >> 2
;T = X2
; P=T*C2, ACC =0

;T = X1, ACC = —X2*C2 >> 2
; P = T*C1

;X2 = X1

: T = X0, ACC = —X1*C1 >> 2 - X2*C2 >> 2
; P = T*CO

; X1 = X0

; ACC = -X0*CO >> 2 - X1*C1 >> 2 - X2*C2 >> 2
; Store result into Y

312 C28x Assembly Language Instructions

SPRU430F—August 2001 —Revised April 2015
Submit Documentation Feedback

Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

www.ti.com

MOVU ACC,loc16 — Load Accumulator With Unsigned Word

MOVU ACC,locl6 Load Accumulator With Unsigned Word

Syntax Options MOVU ACC,loc16

Opcode 0000 1110 LLLL LLLL
Objmode X

RPT -

cyC 1

Operands ACC - Accumulator register

loc16 — Addressing mode (see Chapter 5)

Description Load the low half of the accumulator (AL) with the 16-bit contents of the addressed

location pointed to by the “loc16” addressing mode and fill the high half of the
accumulator (AH) with 0Os:

AL

Flags and Modes

= [loc16];
AH = 0x0000;

Flags and Modes Description
N Clear flag.
VA After the load, the Z flag is set if the ACC value is zero, else Z is cleared.
Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets

the repeat counter (RPTC) and executes only once.

Example ; Add three 32-bit unsigned variables by 16-bit parts:
MOVU ACC,@VarAlow ; AH = 0, AL = VarAlow
ADD ACC,@VarAhigh ; AH = VarAhigh, AL = VarAlow

<< 16

ADDU ACC,@VarBlow ; ACC
ADD ACC,@VarBhigh ; ACC

<< 16

ADDCU ACC,@varClow ; ACC
ADD ACC,@VarChigh ; ACC

<< 16

ACC + 0O:VarBlow
ACC + VarBhigh << 16

ACC + VarClow + Carry
ACC + VarChigh << 16

SPRU430F—August 2001 —-Revised April 2015 C28x Assembly Language Instructions

Submit Documentation Feedback

Copyright © 2001-2015, Texas Instruments Incorporated

313

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS

INSTRUMENTS
MOVU loc16,0VC — Store the Unsigned Overflow Counter www.ti.com
MOVU loc16,0VC Store the Unsigned Overflow Counter
Syntax Options MOVU loc16,0VC
Opcode 0101 0110 0010 1000
0000 0000 LLLL LLLL
Objmode 1
RPT -
CcYC 1
Operands loc16 — Addressing mode (see Chapter 5)
OVC - Overflow counter
Description Store the 6 bits of the overflow counter (OVC) into the lower 6 bits of the location pointed
to by the “loc16” addressing mode and zero the upper 10 bits of the addressed location:
[loc16(15:6)] = 0;
[1oc16(5:0)] = 0VC;
Flags and Modes
Flags and Modes Description
N If (loc16 = @AX) and bit 15 of AX is 1, then set N; otherwise clear N.
z If (loc16 = @AX) and AX is zero, then set Z; otherwise clear Z.
Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.
Example ; Save and restore contents of ACC and OVC bits:
MOVU *SP++,0VC ; Save OVC on stack
MOV *SP++,AL ; Save AL on stack
MOV *SP++,AH ; Save AH on stack
MOV AH,*--SP ; Restore AH from stack
MOV AL,*--SP ; Restore AL from stack
MOVU OVC,*--SP ; Restore OVC from stack
314 C28x Assembly Language Instructions SPRU430F-August 2001 —Revised April 2015

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

www.ti.com

MOVU OVC,loc16 — Load Overflow Counter With Unsigned Value

MOVU OVC,loc16

Syntax Options

Load Overflow Counter With Unsigned Value

MOVU OVC,locl6

Opcode 0101 0110 0110 0010

0000 0000 LLLL LLLL
Objmode 1
RPT -
CYC 1
Operands OVC - 6-bit overflow counter
Description

Load the overflow counter (OVC) with the lower 6 bits of the location pointed to by the

“loc16” addressing mode:
OVC = [locl6(5:0)]

Flags and Modes

Flags and Modes

Description

ovC

The 6-bit overflow counter is modified.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Save and

restore contents of ACC and OVC bits:

MOVU *SP++,0VC ; Save OVC on stack

MOV *SP++,AL
MOV *SP++,AH

MOV AH,*--SP

; Save AL on stack
; Save AH on stack

; Restore AH from stack

MOV AL,*--SP ; Restore AL from stack M
OVU ovC,*--SP ; Restore OVC from stack

SPRU430F—August 2001 —-Revised April 2015

Submit Documentation Feedback

C28x Assembly Language Instructions 315

Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS

INSTRUMENTS

MOVW DP, #16bit — Load the Entire Data Page www.ti.com
MOVW DP, #16bit Load the Entire Data Page
Syntax Options MOVW DP, #16bit
Opcode 0111 0110 0001 1111

CCCC CCCC CCCC CCCe
Objmode X
RPT -
CcYC 1
Operands DP — Data page register

#16bit — 16-bit immediate constant value
Description Load the data page register with a 16-bit constant:

DP(15:0) = 16bit;
Flags and Modes None
Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets

the repeat counter (RPTC) and executes only once.
Example MOVW DP, #VarA ; Load DP with the data page that

; contains VarA. Assumes VarA is in the
; lower OxO003F FFCO of memory

MOVW DP, #0F012h ; Load DP with data page number OxF012

316 C28x Assembly Language Instructions SPRU430F-August 2001 —Revised April 2015

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS

INSTRUMENTS

www.ti.com MOVX TL,loc16 — Load Lower Half of XT With Sign Extension

MOVX TL,loc16 Load Lower Half of XT With Sign Extension

Syntax Options MOVX TL,loc16

Opcode 0101 0110 0010 0001
XXXX XXXX LLLL LLLL

Objmode 1

RPT -

CcYC 1

Operands TL — Lower 16 bits of the multiplicand register (XT)
loc16 — Addressing mode (see Chapter 5)

Description Load the lower 16 bits of the multiplicand register (TL) with the 16-bit contents of the
location pointed to by the “loc16” addressing mode and then sign extend that value into
the upper upper 16 bits of XT:

TL = [loc16];
T = sign extension of TL;

Flags and Modes None

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

Example ; Calculate and keep low 32-bit result: Y32 = M32*X16
MOVX TL,@X16 ; XT = S:X16
IMPYL P,XT,@M32 ; P = XT * M32 (low 32 bits of result)

MOVL @Y32,P ; Store result into Y32
SPRU430F—August 2001 —-Revised April 2015 C28x Assembly Language Instructions 317

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS

INSTRUMENTS
MOVZ ARn, loc16 — Load Lower Half of XARn and Clear Upper Half www.ti.com
MOVZ ARn, loc16 Load Lower Half of XARn and Clear Upper Half
Syntax Options
Syntax Options Opcode OBJ- MODE RPT CcYyCc
MOVZ ARO...5, loc16 | 0101 1nnn LLLL LLLL X - 1
MOVZ ARG, loc16 1000 1000 LLLL LLLL 1 - 1
MOVZ AR7, loc16 1000 0000 LLLL LLLL 1 - 1
Operands ARnN — ARO to AR7, lower 16 bits of auxiliary registers
loc16 — Addressing modes (See chapter 5)
Description Load ARn with the contents of the 16-bit location and clear ARnH:
ARn = [locl6];
ARNH = O3
Flags and Modes None
Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.
Example
MOVL XAR7, #ArrayA ; Initialize XAR2 pointer
MOVZ ARO, *+XAR2[0] ; Load 16-bit value pointed to by XAR2
; into ARO. XARO(31:16) = 0.
MOVZ AR7, *-SP[1] ; Load the first 16-bit value off of the
; stack into AR7. XAR7(31:16) = 0.
318 C28x Assembly Language Instructions SPRU430F-August 2001 —Revised April 2015

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

www.ti.com MOVZ DP, #10bit — Load Data Page and Clear High Bits

MOVZ DP, #10bit Load Data Page and Clear High Bits

Syntax Options MOVZ DP, #10bit
Opcode 1011 10CC CCCC cccc
Objmode 1

RPT -

cyC 1

Operands DP — Data page register

#10bit — 10-bit immediate constant value

Description Load the data page register with a 10-bit constant and clear the upper 6 bits:
DP(9:0) = 10bit;
DP(15:10) = 0;
Flags and Modes None
Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.
Example
MOVZ DP, #VarA ; Load DP with the data page that contains
; VarA. Assumes VarA is in the lower
; 0x0000 FFCO of memory
MOVZ DP, #3FFh ; Load DP with page number OxO03FF.
SPRU430F—August 2001 —-Revised April 2015 C28x Assembly Language Instructions 319

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

MPY ACC,loc16, #16bit — 16 X 16-bit Multiply www.ti.com

MPY ACC,locl16, #16bit 16 X 16-bit Multiply

Syntax Options

Opcode

Objmode
RPT
CcYc

Operands

Description

Flags and Modes

MPY ACC,loc16, #16bit

0011 0100 LLLL LLLL
CCCC CCCC ccce ccee

X

1

ACC - Accumulator register

loc16 — Addressing mode (see Chapter 5)

16-bit immediate constant value

Load the T register with the 16-bit content of the location pointed to by the “loc16”
addressing mode; then, multiply the signed 16-bit content of the T register by the
specified signed 16-bit constant value:

T = [locl6];

ACC = signed T * signed 16bit;

Flags and Modes

Description

Z

After the operation, the Z flag is set if the ACC is zero, else Z is cleared.

N

After the operation, the N flag is set if bit 31 of the ACC is 1, else N is cleared.

Repeat

Example

This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

; Calculate signed using 16-bit multiply:

; Y32 = Y32 + X16 * 2000

MPY ACC,@X16,#2000 ; T = X16, ACC = X16 * 2000
ADDL @Y32,ACC ; Y32 = Y32 + ACC

320 C28x Assembly Language Instructions

SPRU430F—August 2001 —Revised April 2015

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

www.ti.com MPY ACC, T, loc16 — 16 X 16-bit Multiply

MPY ACC, T, locl6 16 X 16-bit Multiply

Syntax Options MPY ACC, T, loc16

Opcode 0001 0010 LLLL LLLL
Objmode X

RPT -

cyC 1

Operands ACC - Accumulator register

T — Multiplicand register
loc16 — Addressing mode (see Chapter 5)

Description Multiply the signed 16-bit content of the T register by the signed 16-bit contents of the
location pointed to by the “loc16” addressing mode and store the result in the ACC
register:

ACC = signed T * signed [locl6];

Flags and Modes

Flags and Modes Description

z After the operation, the Z flag is set if the ACC is zero, else Z is cleared.

N After the operation, the N flag is set if bit 31 of the ACC is 1, else N is cleared.
Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets

the repeat counter (RPTC) and executes only once.
Example ; Calculate signed using 16-bit multiply:

; Y32 = Y32 + X16*M16

MOV T,@X16 ; T = X16

MPY ACC,T,@M16 ; ACC = T * M16
ADDL @Y32,ACC ; Y32 = Y32 + ACC

SPRU430F—August 2001 —-Revised April 2015 C28x Assembly Language Instructions 321

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

MPY P,loc16,#16bit — 16 X 16-Bit Multiply

13 TEXAS
INSTRUMENTS

www.ti.com

MPY P,loc16,#16bit 16 X 16-Bit Multiply

Syntax Options

Opcode

Objmode
RPT
CcYc

Operands

Description

Flags and Modes

Repeat

Example

MPY P,loc16,#16bit

1000 1100 LLLL LLLL
CCCC CCCC ccce ccee

1

1

P — Product register

loc16 — Addressing mode (see Chapter 5)

#16bit — 16-bit immediate constant value

Multiply the signed 16-bit contents of the location pointed to by the “loc16” addressing
mode by the 16-bit immediate value and store the 32-bit result in the P register:

P = signed [locl6] * signed 16bit;

None

This instruction is not repeatable. If this instruction follows the RPT instruction, it resets

the repeat counter (RPTC) and executes only once.

; ; Calculate using
; Y = (X0*C0) >> 2)
; CO, C1 and C2 are

16-bit multiply:
+ (X1*C1 >> 2) + (X2*C2 >> 2),
constants

SPM -2 ; Set product shift to >> 2

MOVB ACC,#0 ; Zero ACC

MPY P,@X2,#C2 ; P = X2*C2

MPYA P,@X1,#C1 ; ACC = X2*C2>>2, P = X1*C1

MPYA P,@X0,#CO ; ACC = X1*C1>>2 + X2*C2>>2, P = XO0*CO
ADDL ACC,P << PM ; ACC = XO0*CO0>>2 + X1*C1l>>2 + X2*C2>>2
MOVL @Y,ACC ; Store result into Y

322 C28x Assembly Language Instructions

SPRU430F—August 2001 —Revised April 2015
Submit Documentation Feedback

Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS

INSTRUMENTS

www.ti.com

MPY P,T,loc16 — 16 X 16 Multiply

MPY P,T,loc16
Syntax Options
Opcode

Objmode

RPT

cyC

Operands

Description

Flags and Modes

Repeat

Example

16 X 16 Multiply

MPY P,T,loc16
0011 0011 LLLL LLLL

X

1

P — Product register
T — Multiplicand register
loc16 — Addressing mode (see Chapter 5)

Multiply the signed 16-bit content of the T register by the signed 16-bit contents of the
location pointed to by the “loc16” addressing mode and store the 32-bit result in the P
register:

P = signed T * signed [locl6];
None

This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

; Calculate using 16-bit multiply:
;Y = (X0*CO) >> 2) + (X1*C1 >> 2) + (X2*C2 >> 2)

; X2 = X1

; X1 = X0

SPM -2 ; Set product shift to >> 2

MOVP T,@X2 ; T = X2

MPYS P,T,@C2 ; P=T*C2, ACC =0

MOVAD T,@X1 ; T = X1, ACC = X2*C2>>2, X2 = X1

MPY P,T,@C1 ; P=T*C1

MOVAD T,@X0 ; T = X0, ACC = X1*C1>>2 + X2*C2>>2, X1 = X0
MPY P,T,@CO ; P = T*CO

ADDL ACC, P << PM ; ACC = X0*C0>>2 + X1*C1>>2 + X2*C2>>2
MOVL @Y,ACC ; Store result into Y

SPRU430F—August 2001 —-Revised April 2015

Submit Documentation Feedback

Copyright © 2001-2015, Texas Instruments Incorporated

C28x Assembly Language Instructions 323

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

MPYA P,loc16,#16bit — 16 X 16-Bit Multiply and Add Previous Product www.ti.com

MPYA P,loc16,#16bit 16 X 16-Bit Multiply and Add Previous Product

Syntax Options

Opcode

Objmode
RPT
CcYc

Operands

Description

Flags and Modes

MPYA P,loc16,#16bit

0001 0101 LLLL LLLL
CCCC CCCC ccce ccee

X

1

P — Product register
loc16 — Addressing mode (see Chapter 5)
#16bit — 16-bit immediate constant value

Add the previous product (stored in the P register), shifted as specified by the product
shift mode (PM) bits, to the ACC register. Load the T register with the content of the
location pointed to by the “loc16” addressing mode. Multiply the signed 16-bit content of
the T register by the signed 16-bit constant value and store the 32-bit result in the P
register:

ACC = ACC + P << PM:

T = [locl6];

P signed T * signed 16bit;

Flags and Modes Description
z After the operation, the Z flag is set if the ACC is zero, else Z is cleared.
N After the addition, the N flag is set if bit 31 of the ACC is 1, else N is cleared.
C If the addition generates a carry, C is set; otherwise C is cleared.
\% If an overflow occurs, V is set; otherwise V is not affected.

If overflow mode is disabled; and if the operation generates a positive overflow, then

oveC the counter is incremented. If overflow mode is disabled; and if the operation generates

a negative overflow, then the counter is decremented.

If overflow mode bit is set; then the ACC value will saturate maximum positive

OVM (Ox7FFFFFFF) or maximum negative (0x80000000) if the operation overflowed.
The value in the PM bits sets the shift mode for the output operation from the product
PM register. If the product shift value is positive (logical left shift operation), then the low

bits are zero filled. If the product shift value is negative (arithmetic right shift operation),
the upper bits are sign extended.

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.
Example ; Calculate using 16-bit multiply:
;Y = (X0*CO) >> 2) + (X1*C1 >> 2) + (X2*C2 >> 2),
; CO, C1 and C2 are constants
SPM -2 ; Set product shift to >> 2
MOVB ACC,#0 ; Zero ACC
MPY P,@X2,#C2 ; P = X2*C2
MPYA P,@X1,#C1 ; ACC = X2*C2>>2, P = X1*C1
MPYA P,@X0,#CO ; ACC = X1*C1>>2 + X2*C2>>2, P = X0*CO
ADDL ACC, P << PM ; ACC = X0*C0>>2 + X1*C1>>2 + X2*C2>>2
MOVL @Y,ACC ; Store result into Y
324 C28x Assembly Language Instructions SPRU430F-August 2001 —Revised April 2015

Submit Documentation Feedback
Copyright © 2001-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU430F

13 TEXAS
INSTRUMENTS

www.ti.com

MPYA P,T,loc16 — 16 X 16-bit Multiply and Add Previous Product

MPYA P,T,locl6 16 X 16-bit Multiply and Add Previous Product

Syntax Options MPYA P,T,locl16
Opcode 0001 0111 LLLL LLLL
Objmode X

RPT Y

cyC N+1

Operands P — Product register

T — Multiplicand register

loc16 — Addressing mode (see Chapter 5)

Description Add the previous product (stored in the P register), shifted as specified by the product
shift mode (PM), to the ACC register. Multiply the signed 16-bit content of T by the
signed 16-bit content of the location pointed to by the “loc16” addressing mode and store
the 32-bit result in the P register:

ACC = ACC + P

<< PM;

P = signed T * signed [locl6];

Flags and Modes

Flags and Modes Description
z After the operation, the Z flag is set if the ACC is zero, else Z is cleared.
N After the addition, the N flag is set if bit 31 of the ACC is 1, else N is cleared.
C If the addition generates a carry, C is set; otherwise C is cleared.
\Y If an overflow occurs, V is set; otherwise V is not affected.
If overflow mode is disabled; and if the operation generates a positive overflow, then
ovC the counter is incremented. If overflow mode is disabled; and if the operation generates
a negative overflow, then the counter is decremented.
OVM If overflow mode bit is set; then the ACC value will saturate maximum positive
(0x7FFFFFFF) or maximum negative (0x80000000) if the operation overflowed.
The value in the PM bits sets the shift mode for the output operation from the product
PM register. If the product shift value is positive (logical left shift operation), then the low
bits are zero filled. If the product shift value is negative (arithmetic right shift operation),
the upper bits are sign extended.
Repeat This instruction is repeatable. If the operation follows a RPT instruction, then it will be

executed N+1 times. The state of the Z, N, C and OVC flags will reflect the final result.
The V flag will be set if an intermediate overflow occurs.

Example ; Calculate using 16-bit multiply:

; Y = (X0*C0o) >>
SPM -2

MOVP T,@X2

MPYS P,T,@C2

MOV T,@X1

MPYA P,T,@C1

MOV T,@X0

MPYA P,T,@CO
ADDL ACC,P << PM
MOVL @Y,ACC

2) + (X1*C1 >> 2) + (X2*C2 >> 2)
; Set product shift to >> 2
; ACC =P, T = X2
; ACC = ACC - P =0, P =T*C2

; T =X1
; ACC = X2*C2>>2, P = T*C1
; T = X0

; ACC = X1*C1>>2 + X2*C2>>2, P = T*CO
; ACC = X0*C0>>2 + X1*C1>>2 + X2*C2>>2
; Store result into Y

SPRU430F—August 2001 —-Revised April 2015
Submit Documentatio