

MSPM0G3107-Q1, MSPM0G3106-Q1, MSPM0G3105-Q1

JAJSSU8A - OCTOBER 2023 - REVISED JANUARY 2024

MSPM0G310x-Q1 車載用、CAN-FD インターフェイス搭載、ミクスト シグナル マイクロコントローラ

1 特長

- 車載アプリケーション向けに認定済み
- ・コア
 - Arm® 32 ビット Cortex®-M0+ CPU、メモリ保 護ユニット付き、最高 80MHz の周波数
- 動作特性
 - 拡張動作温度範囲:-40°C~125°C
 - 広い電源電圧範囲:1.62V ~ 3.6V
- ・メモリ
 - 最大 128KB のフラッシュ メモリ、誤り訂正符号 (ECC) 内蔵
 - 最大 32KB の SRAM、ハードウェア パリティ 付き
- ・ 高性能アナログ ペリフェラル
 - 最大 11 の外部チャネルを持つ 2 つの同時サンプリング 12 ビット 4Msps A/D コンバータ (ADC)
 - 250ksps で 14 ビットの実効分解能、ハードウェア平均化付き
 - 1 つの汎用アンプ (GPAMP)
 - 1.4V または 2.5V の構成可能な内部共有電圧リファレンス (VREF)
 - 温度センサ内蔵
 - 統合型電源監視
- ・ 最適化された低消費電力モード
 - RUN: 96µA/MHz (CoreMark)
 - SLEEP: 467µA (4MHz 時)
 - STOP: 46µA (32kHz 時)
 - STANDBY: 1.5µA (RTC および SRAM 保持)
 - SHUTDOWN: 80nA (IO ウェークアップ機能あり)
- ・ インテリジェント デジタル ペリフェラル
 - 7 チャネル DMA コントローラ
 - デッドバンド挿入とフォルト処理をサポートする2つの16ビット高度制御タイマ
 - 最大 22 の PWM チャネルをサポートする 7 つのタイマ
 - 1 つの 16 ビット汎用タイマ
 - 1 つの 16 ビット汎用タイマ、QEI をサポート
 - 2 つの 16 ビット汎用タイマ、STANDBY モードでの低消費電力動作をサポート
 - 1つの32ビット汎用タイマ
 - 2つの16ビット高度タイマ、デッドバンド付き
 - 2つのウィンドウ ウォッチドッグ タイマ
 - RTC、アラームおよびカレンダー モード付き
- 拡張通信インターフェイス

- 4 つの UART インターフェイス。1 つは LIN、 IrDA、DALI、スマート カード、マンチェスターをサポート、3 つは STANDBY モードでの低 消費電力動作をサポート
- 2 つの I²C インターフェイス。 FM+ (1Mbit/s) をサポート、さらに STOP モードからのウェ ークアップをサポート
- 2 つの SPI。1 つの SPI で最大 32Mbit/s をサポート。
- 1 つのコントローラ エリア ネットワーク (CAN) インターフェイス。CAN 2.0 A または B、CAN-FD をサポート
- ・ クロック システム
 - ±1.2% 精度の 4~32MHz 内部発振器 (SYSOSC)
 - 最高 80MHz のフェーズ ロック ループ (PLL)
 - ±3% 精度の 32kHz 内部発振器 (LFOSC)
 - 外部 4~48MHz 水晶発振器 (HFXT)
 - 外部 32kHz 水晶発振器 (LFXT)
 - 外部クロック入力
- ・ データの整合性と暗号化
 - 巡回冗長検査 (CRC-16、CRC-32)
 - 真性乱数生成器 (TRNG)
 - 128 または 256 ビットのキーによる AES 暗号化
- ・ 柔軟な I/O 機能
 - 最大 28 の GPIO
 - 2つの 5V 対応 IO
 - 20mA の駆動能力を持つ2つの高駆動IO
- 開発サポート
 - 2ピン シリアル ワイヤ デバッグ (SWD)
- ・ パッケージ オプション
 - 64ピンLQFP
 - 48ピンLQFP、VQFN
 - 32 ピン VQFN
 - 28ピン VSSOP
 - 20ピン VSSOP
- ファミリの製品(「製品比較」も参照)
 - MSPM0G3105:32KB フラッシュ、16KB RAM
 - MSPM0G3106:64KB フラッシュ、32KB RAM
 - MSPM0G3107:128KB フラッシュ、32KB RAM
- 開発キットとソフトウェア(「ツールとソフトウェア」も参照)
 - LP-MSPM0G3507 LaunchPad™ 開発キット
 - ── MSP ソフトウェア開発キット (SDK)
- 車載認定

- AEC-Q100 グレード 1 (-40°C ~ 125°C)
- 32 および 48 ピン QFN、ウェッタブル フランク オプション

2 アプリケーション

- 車載用ボディ エレクトロニクス / ライティング
- 車載用ゲートウェイ
- ・ ステアリング ホイール システム
- 車載用モーター制御
- DC / AC インバータ
- 車内照明
- ・ ドア ハンドル モジュール
- ・ キック ツー オープン モジュール
- 車両の乗員検出
- ・ コンフォート シート モジュール

3 概要

MSPM0G310x マイクロコントローラ (MCU) は、最大 80MHz の周波数で動作する拡張 Arm® Cortex®-M0+ 32 ビット コア プラットフォームをベースにした MSP 高集積超低消費電力 32 ビット MCU ファミリの一部です。コスト最適化されたこれらの MCU は高性能アナログ ペリフェラルを内蔵しており、-40 $^{\circ}$ ~ 125 $^{\circ}$ C の拡張温度範囲をサポートし、1.62V ~ 3.6V の電源電圧で動作します。

MSPM0G310x デバイスは、最大 128KB の組込みフラッシュ プログラム メモリ (ECC (誤り訂正符号) 内蔵)、最大 32KB の SRAM (ハードウェア パリティ付き) を搭載しています。また、メモリ保護ユニット、7 チャネル DMA に加えて、2 つの 12 ビット 4MSPS ADC、構成可能な内部共有電圧リファレンス、1 つの汎用アンプなど各種の高性能アナログ ペリフェラルも内蔵しています。これらのデバイスは、2 つの 16 ビット高度制御タイマ、5 つの汎用タイマ (QEI インターフェイス用の 1 つの 16 ビット汎用タイマ、STANDBY モード用の 2 つの 16 ビット汎用タイマ、1 つの 32 ビット汎用タイマ)、2 つのウィンドウ付きウォッチドッグ タイマ、アラームとカレンダー モードを備えた 1 つの RTC など、インテリジェントなデジタル ペリフェラルも搭載しています。これらのデバイスは、データ整合性と暗号化ペリフェラル (CRC、TRNG、AES)、および拡張通信インターフェイス (4 つの UART、2 つの I2C、2 つの SPI、CAN 2.0/FD)を提供します。

テキサス・インスツルメンツの MSPM0 ファミリの低消費電力 MCU は、アナログとデジタルの統合度が異なるデバイスで構成されており、お客様はプロジェクトのニーズを満たす MCU を見つけることができます。 MSPM0 MCU ファミリは、ARM Cortex-M0+ プラットフォームと包括的な超低消費電力のシステム アーキテクチャを組み合わせたもので、システム設計者は性能向上と消費電力低減を同時に実現できます。

MSPM0G310x MCU は、広範囲にわたるハードウェアおよびソフトウェアのエコシステムによってサポートされており、リファレンス デザインやコード サンプルを使って設計を迅速に開始できます。開発キットには、購入可能な LaunchPad が含まれています。また、 テキサス・インスツルメンツは無償の MSP ソフトウェア開発キット (SDK) も提供しており、Code Composer Studio IDE デスクトップのコンポーネントとして利用できます。また、TI Resource Explorer ではクラウド バージョンを利用できます。MSPM0 MCU には、広範囲にわたるオンライン資料、MSP Academy によるトレーニング、TI E2E サポート フォーラムによるオンライン サポートも用意されています。

モジュールの詳細については、『MSPM0 G シリーズ 80MHz マイクロコントローラ テクニカル リファレンスマニュアル』を参照してください。

注意

電気的な過剰ストレスや、データやコード メモリの不安定化を防止するために、デバイス レベルの ESD 仕様に従って、システム レベルの ESD 保護を適用する必要があります。詳細については、『MSP430™のシステム レベルの ESD 考慮事項』を参照してください。このアプリケーション ノートに記載されている原則は、MSPM0 MCU に適用されます。

4機能ブロック図

図 4-1 に、MSPM0G310x の機能ブロック図を示します。

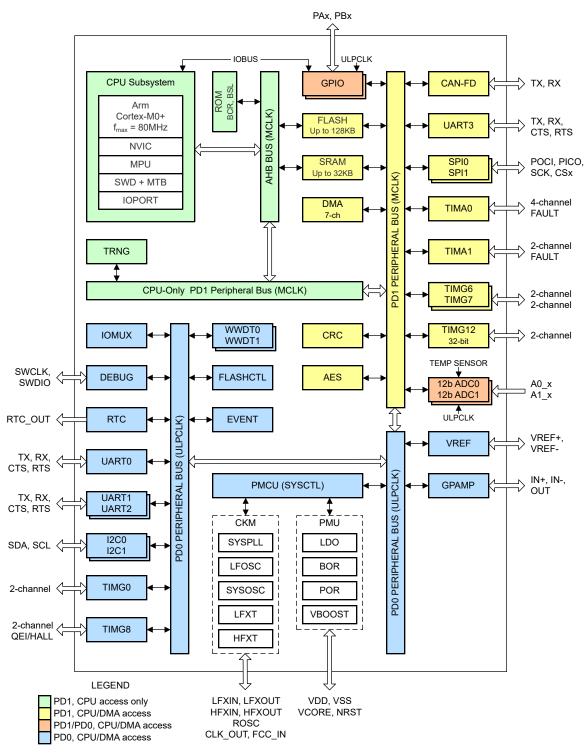


図 4-1. MSPM0G310x の機能ブロック図

ADVANCE INFORMATION

目次

1 特長 1	8.7 メモリ
2アプリケーション2	8.8 フラッシ
3 概要	8.9 SRAM
4 機能ブロック図	8.10 GPIO.
5 デバイスの比較5	8.11 IOMUX
6 ピン構成および機能6	8.12 ADC
6.1 ピン配置図6	8.13 温度セ
6.2 ピン属性11	8.14 VREF.
6.3 信号の説明15	8.15 GPAM
6.4 未使用ピンの接続26	8.16 TRNG
7 仕様27	8.17 AES
7.1 絶対最大定格27	8.18 CRC
7.2 ESD 定格27	8.19 UART.
7.3 推奨動作条件27	8.20 I2C
7.4 熱に関する情報28	8.21 SPI
7.5 電源電流特性30	8.22 CAN-F
7.6 電源シーケンス31	8.23 WWD7
7.7 フラッシュ メモリの特性32	8.24 RTC
7.8 タイミング特性33	8.25 タイマ
7.9 クロック仕様34	8.26 デバイ
7.10 デジタル IO37	8.27 入力 /
7.11 アナログ マルチプレクサ VBOOST40	8.28 シリア
7.12 ADC40	8.29 ブート
7.13 温度センサ42	8.30 デバイ
7.14 VREF42	8.31 識別
7.15 GPAMP43	9 アプリケー
7.16 I2C44	9.1 代表的な
7.17 SPI45	10 デバイスお
7.18 UART48	10.1 入門と
7.19 TIMx48	10.2 デバイ
7.20 TRNG48	10.3 ツール
7.21 エミュレーションおよびデバッグ48	10.4 ドキュ
8 詳細説明49	10.5 サポー
8.1 CPU	10.6 商標
8.2 動作モード	10.7 静電気
8.3 パワー マネージメント ユニット (PMU)51	10.8 用語集
8.4 クロック モジュール (CKM)51	11 改訂履歴
8.5 DMA52	12 メカニカル

8.7 メモリ	
8.8 フラッシュ メモリ	57
8.9 SRAM	58
8.10 GPIO	
8.11 IOMUX	58
8.12 ADC	
8.13 温度センサ	<mark>5</mark> 9
8.14 VREF	59
8.15 GPAMP	
8.16 TRNG	
8.17 AES	60
8.18 CRC	60
8.19 UART	60
8.20 I2C	
8.21 SPI	
8.22 CAN-FD	
8.23 WWDT	
8.24 RTC	
8.25 タイマ (TIMx)	63
8.26 デバイスのアナログ接続	
8.27 入力 / 出力の回路図	66
8.28 シリアル ワイヤ デバッグ インターフェイス	
8.29 ブートストラップ ローダ (BSL)	67
8.30 デバイス ファクトリ定数	
8.31 識別 アプリケーション、実装、および レイアウト	68
アプリケーション、実装、およびレイアワト	69
9.1 代表的なアプリケーション 0 デバイスおよびドキュメントのサポート	69
0 デバイスおよひドキュメントのサポート	71
10.1 入門と次のステップ	
10.2 デバイス命名規則	
10.3 ツールとソフトウェア	
10.4 ドキュメントのサポート	73
10.5 サポート・リソース	
10.6 商標	73
10.7 静電気放電に関する注意事項	
10.8 用語集	
1 改訂履歴	73
2 メカニカル、パッケージ、および注文情報	75

8.6 イベント......53

5 デバイスの比較

表 5-1. 製品比較

型番 (1) (4)	フラッシュ / SRAM (KB)	QUAL (2)	ADC / CHAN	GPAMP	UART / I2C / SPI	CAN	TIMA	TIMG	GPIO	パッケージ (パッ ケージ サイズ) ⁽³⁾
M0G3105QPMQ1	32 / 16									
M0G3106QPMQ1	64 / 32	Q	2 / 17	1	4/2/2	1	2	5	60	64 LQFP (12mm × 12mm)
M0G3107QPMQ1	128 / 32									(12.1)
M0G3105QPTQ1	32 / 16									
M0G3106QPTQ1	64 / 32	Q	2 / 16	1	4/2/2	1	2	5	44	48 LQFP (9mm × 9mm)
M0G3107QPTQ1	128 / 32									(6111111)
M0G3105QRGZQ1	32 / 16									
M0G3106QRGZQ1	64 / 32	Q	2 / 16	1	4/2/2	1	2	5	44	48 VQFN (7mm × 7mm) ⁽⁵⁾
M0G3107QRGZQ1	128 / 32									(**************************************
M0G3105QRHBQ1	32 / 16									
M0G3106QRHBQ1	64 / 32	Q	2 / 11	1	4/2/2	1	2	5	28	32 VQFN (5mm × 5mm) ⁽⁵⁾
M0G3107QRHBQ1	128 / 32									(6111111)
M0G3105QDGS28Q1	32 / 16									
M0G3106QDGS28Q1	64 / 32	Q	2 / 11	1	4/2/2	1	2	5	24	28 VSSOP (7.1mm × 4.9mm)
M0G3107QDGS28Q1	128 / 32									(7.1111111)
M0G3105QDGS20Q1	32 / 16									
M0G3106QDGS20Q1	64 / 32	Q	2/6	1	4/2/2	1	2	5	16	20 VSSOP (5.1mm × 4.9mm)
M0G3107QDGS20Q1	128 / 32									(5.111111)

- (1) 提供中の全デバイスに関する最新の製品、パッケージ、および注文情報については、セクション 12 の「付録:パッケージ オプション」または テキサス・インスツルメンツ Web サイトを参照してください。
- (2) デバイス認定:
 - ・ Q = -40℃~125℃、AEC-Q100 認定済み
- (3) パッケージ サイズ (長さ×幅) は公称値であり、該当する場合はピンも含まれます。公差を含めたパッケージの寸法については、セクション 12 を参照してください。
- (4) 型番の詳細については、セクション 10.2 を参照してください。
- (5) 32 ピンおよび 48 ピン VQFN パッケージはウェッタブル フランク付きで提供しています。

6ピン構成および機能

システム構成ツール は、ピンの多重化およびピン設定を容易にするための初期化コードを有効にしたり、構成したり、生成するグラフィカル インターフェイスを提供します。以下のピン配置図は、デバイスのピン配置を簡素化するために、主要なペリフェラル機能、内蔵デバイス機能の一部、使用可能なクロック信号を示しています。ピンの機能の詳細については、「ピンの属性」および「信号の説明」セクションを参照してください。

6.1 ピン配置図

図 6-1. ピン配置図の色分け

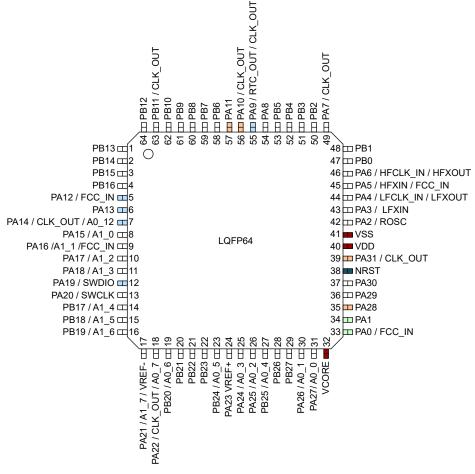


図 6-2. 64 ピン PM (LQFP) (上面図)

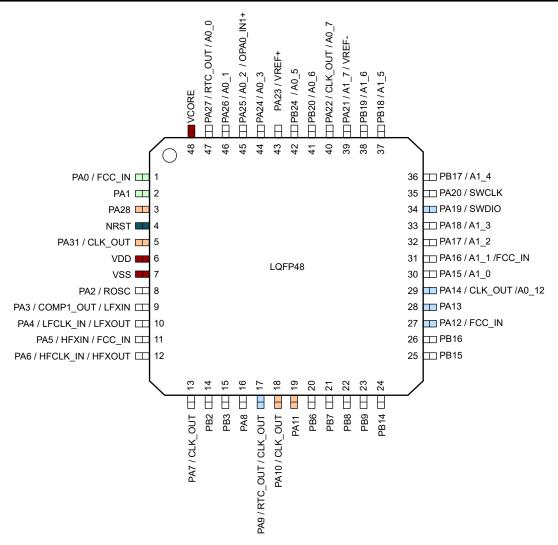


図 6-3. 48 ピン PT (LQFP) (上面図)

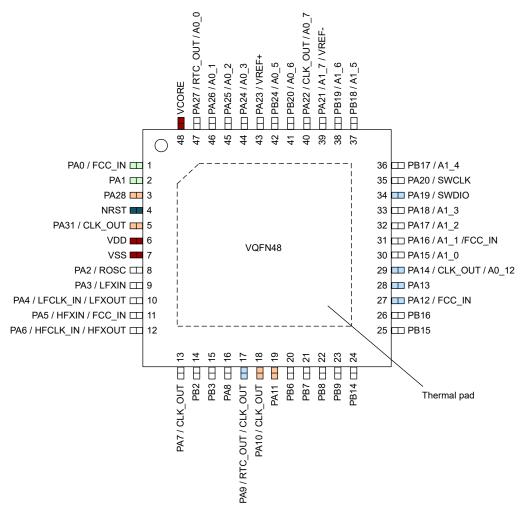


図 6-4. 48 ピン RGZ (VQFN) (上面図)

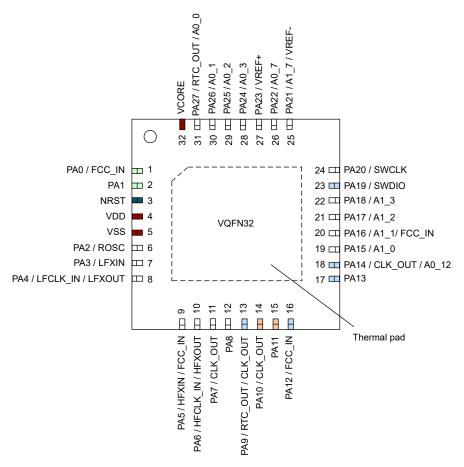


図 6-5. 32 ピン RHB (VQFN) (上面図)

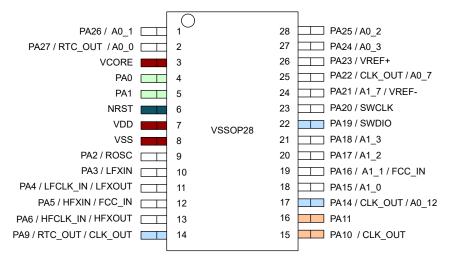


図 6-6. 28 ピン DGS28 (VSSOP) (上面図)

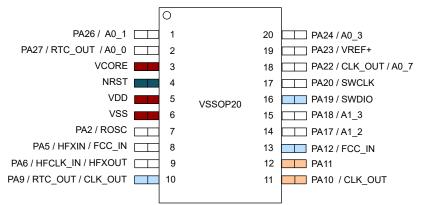


図 6-7. 20 ピン DGS20 (VSSOP) (上面図)

注

各パッケージ オプションの完全なピン構成および機能の説明については、「ピンの属性」および「信号の説明」を参照してください。

6.2 ピン属性

次の表に、各デバイス パッケージの各ピンで利用可能な機能を示します。

注

デバイス上の各デジタル I/O は、専用のピン制御管理レジスタ (PINCMx) に割り当てられており、ユーザーが PINCM.PF 制御ビットを使って必要なピン機能を設定できます。

表 6-1. ピン属性

			信号名		۲	ン番	号				
PINCMx	ピン名	アナログ	デジタル [ピン機能] ⁽¹⁾	64 LQFP	48 LQFP, VQFN	32 VQFN	28 VSSOP	20 VSSOP	IO 構造		
該当な し			VDD	40	6	4	7	5	電源		
該当な し			VSS	41	7	5	8	6	電源		
該当な し			VCORE	32	48	32	3	3	電源		
該当な し			NRST	38	4	3	6	4	リセット		
1	PA0		UART0_TX [2] / I2C0_SDA [3] / TIMA0_C0 [4] / TIMA_FAL1 [5] / TIMG8_C1 [6] / FCC_IN [7] / (デフォルト BSL I2C_SDA)	33	1	1	4	_	5V 対応オ ープン ド レイン		
2	PA1		UART0_RX [2] / I2C0_SCL [3] / TIMA0_C1 [4] / TIMA_FAL2 [5] / TIMG8_IDX [6] / TIMG8_C0 [7] / (デフォルト BSL I2C_SCL)	34	2	2	5	-	5V 対応オ ープン ド レイン		
3	PA28		UART0_TX [2] / I2C0_SDA [3] / TIMA0_C3 [4] / TIMA_FAL0 [5] / TIMG7_C0 [6] / TIMA1_C0 [7]	-	-	高駆動					
4	PA29		I2C1_SCL [2] / UART2_RTS [3] / TIMG8_C0 [4] / TIMG6_C0 [5]	36	_	_	-	_	標準		
5	PA30		I2C1_SDA [2] / UART2_CTS [3] / TIMG8_C1 [4] / TIMG6_C1 [5]	37	_	_	_	_	標準		
6	PA31		UARTO_RX [2] / I2CO_SCL [3] / TIMAO_C3N [4] / TIMG12_C1 [5] / CLK_OUT [6]/ TIMG7_C1 [7] / TIMA1_C1 [8]	39	5	_	_	-	高駆動		
7	PA2	ROSC	TIMG8_C1 [2] / SPI0_CS0 [3] / TIMG7_C1 [4] / SPI1_CS0 [5]	42	8	6	9	7	標準		
8	PA3	LFXIN	TIMG8_C0 [2] / SPI0_CS1 [3] / UART2_CTS [4] / TIMA0_C2 [5] / TIMG7_C0 [7] / TIMA0_C1 [8] / I2C1_SDA [9]	43	9	7	10	-	標準		
9	PA4	LFXOUT	TIMG8_C1 [2] / SPI0_POCI [3] / UART2_RTS [4] / TIMA0_C3 [5] / LFCLK_IN [6] / TIMG7_C1 [7] / TIMA0_C1N [8] / I2C1_SCL [9]	44	10	8	11	_	標準		
10	PA5	HFXIN	TIMG8_C0 [2] / SPI0_PICO [3] / TIMA_FAL1 [4] / TIMG0_C0 [5] / TIMG6_C0 [6] / FCC_IN [7] 45 11 9 12 8								
11	PA6	HFXOUT	TIMG8_C1 [2] / SPI0_SCK [3] / TIMA_FAL0 [4] / TIMG0_C1 [5] / HFCLK_IN [6] / TIMG6_C1 [7] / TIMA0_C2N [8] 46 12 10 13 9								
12	PB0		UART0_TX [2] / SPI1_CS2 [3] / TIMA1_C0 [4] / TIMA0_C2 [5]	47	_	_	_	_	標準		
13	PB1		UARTO_RX [2] / SPI1_CS3 [3] / TIMA1_C1 [4] / 48								

表 6-1. ピン属性 (続き)

			表 6-1. ピン属性 (続き)		سا	ン番	_		
			信号名			. ン音	<u>ਰ</u>		
PINCMx	ピン名	アナログ	デジタル [ピン機能] ⁽¹⁾	64 LQFP	48 LQFP, VQFN	32 VQFN	28 VSSOP	20 VSSOP	IO 構造
14	PA7		CLK_OUT [3] / TIMG8_C0 [4] / TIMA0_C2 [5] / TIMG8_IDX [6] / TIMG7_C1 [7] / TIMA0_C1 [8]	49	13	11	_	_	標準
15	PB2		UART3_TX [2] / UART2_CTS [3] / I2C1_SCL [4] / TIMA0_C3 [5] / UART1_CTS [6] / TIMG6_C0 [7] / TIMA1_C0 [8]	50	14	_	_	-	標準
16	PB3		UART3_RX [2] / UART2_RTS [3] / I2C1_SDA [4] / TIMA0_C3N[5] / UART1_RTS [6] / TIMG6_C1 [7] / TIMA1_C1 [8]	51	15	_	_	-	標準
17	PB4		UART1_TX [2] / UART3_CTS [3] / TIMA1_C0 [4] / TIMA0_C2 [5] / TIMA1_C0N [6]	52	_	_	-	_	標準
18	PB5		UART1_RX [2] / UART3_RTS [3] / TIMA1_C1 [4] / TIMA0_C2N [5] / TIMA1_C1N [6]	53	_	_	-	_	標準
19	PA8		UART1_TX [2] / SPI0_CS0 [3] / UART0_RTS [4] / TIMA0_C0 [5] / TIMA1_C0N [6]	54	16	12	_	_	標準
20	PA9		UART1_RX [2] / SPI0_PICO [3] / UART0_CTS [4] / TIMA0_C1 [5] / RTC_OUT [6] / TIMA0_C0N [7] / TIMA1_C1N [8] / CLK_OUT[9]	55	17	13	14	10	高速
21	PA10		UART0_TX [2] / SPI0_POCI [3] / I2C0_SDA [4] / TIMA1_C0 [5] / TIMG12_C0 [6] / TIMA0_C2 [7] / I2C1_SDA [8] / CLK_OUT[9] / (デフォルト BSL UART_TX)	11	高駆動				
22	PA11		UART0_RX [2] / SPI0_SCK [3] / I2C0_SCL [4] / TIMA1_C1 [5] / TIMA0_C2N [7] / I2C1_SCL [8]/ (デフォ ルト BSL UART_RX)	57	19	15	16	12	高駆動
23	PB6		UART1_TX [2] / SPI1_CS0 [3] / SPI0_CS1 [4] / TIMG8_C0 [5] / UART2_CTS [6] / TIMG6_C0 [7] / TIMA1_C0N [8]	58	20	_	_	_	標準
24	PB7		UART1_RX [2] / SPI1_POCI [3] / SPI0_CS2 [4] / TIMG8_C1 [5] / UART2_RTS [6] / TIMG6_C1 [7] / TIMA1_C1N [8]	59	21	_	_	-	標準
25	PB8		UART1_CTS [2] / SPI1_PICO [3] / TIMA0_C0 [4]	60	22	_	_	_	標準
26	PB9		UART1_RTS [2] / SPI1_SCK [3] / TIMA0_C1 [4] / TIMA0_C0N [5]	61	23	_	_	1	標準
27	PB10		TIMG0_C0 [2] / TIMG8_C0 [3] / TIMG6_C0 [5]	62	_	_	_	-	標準
28	PB11		TIMG0_C1 [2] / TIMG8_C1 [3] / CLK_OUT [4] / TIMG6_C1 [5]	63	_	_	_	1	標準
29	PB12		UART3_TX [2] / TIMA0_C2 [3] / TIMA_FAL1 [4] / TIMA0_C1 [5]	64	_	_	_	_	標準
30	PB13		UART3_RX [2] / TIMA0_C3 [3] / TIMG12_C0 [4] / TIMA0_C1N [5]	1	_	_	_	_	標準
31	PB14		SPI1_CS3 [2] / SPI1_POCI [3] / SPI0_CS3 [4] / TIMG12_C1 [5] / TIMG8_IDX [6] / TIMA0_C0 [7]	2	24	_	_	_	標準
32	PB15		UART2_TX [2] / SPI1_PICO [3] / UART3_CTS [4] / TIMG8_C0 [5] / TIMG7_C0 [6]	3	25	_	_	_	標準
33	PB16		UART2_RX [2] / SPI1_SCK [3] / UART3_RTS [4] / TIMG8_C1 [5] / TIMG7_C1 [6]	4	26	_	_	_	標準
34	PA12		UART3_CTS [2] / SPI0_SCK [3] / TIMG0_C0 [4] / CAN_TX [5] / TIMA0_C3 [6] / FCC_IN [7]	5	27	16	_	13	高速

表 6-1. ピン属性 (続き)

			衣 6-1. ヒノ属性 (続さ) 信号名		۲	ン番	号			
PINCMx	ピン名	アナログ	デジタル [ピン機能] ⁽¹⁾	64 LQFP	48 LQFP, VQFN	32 VQFN	28 VSSOP	20 VSSOP	IO 構造	
35	PA13		UART3_RTS [2] / SPI0_POCI [3] / UART3_RX [4] / TIMG0_C1 [5] / CAN_RX [6] / TIMA0_C3N [7]	6	28	17	_	_	高速	
36	PA14	A0_12	UART0_CTS [2] / SPI0_PICO [3] / UART3_TX [4] / TIMG12_C0 [5] / CLK_OUT [6]	7	29	18	17	-	高速	
37	PA15	A1_0	UARTO_RTS [2] / SPI1_CS2 [3] / I2C1_SCL [4] / TIMA1_C0 [5] / TIMG8_IDX [6] / TIMA1_C0N [7] / TIMA0_C2 [8]	8	30	19	18	_	標準	
38	PA16	A1_1	SPI1_POCI [3] / I2C1_SDA [4] / TIMA1_C1 [5] / TIMA1_C1N [6] / TIMA0_C2N [7] / FCC_IN [8]	9	31	20	19	_	標準	
39	PA17	A1_2	UART1_TX [2] / SPI1_SCK [3] / I2C1_SCL [4] / TIMA0_C3 [5] / TIMG7_C0 [6] / TIMA1_C0 [7]	10	32	21	20	14	標準 (ウェ ーク付き) ⁽²⁾	
40	PA18	A1_3 / GPAMP_IN-	UART1_RX [2] / SPI1_PICO [3] / I2C1_SDA [4] / TIMA0_C3N [5] / TIMG7_C1 [6] / TIMA1_C1 [7] / デフォ ルト BSL_Invoke	11	33	22	21	15	標準 (ウェ ーク付き) ⁽²⁾	
41	PA19		SWDIO [2]	12	34	23	22	16	高速	
42	PA20		SWCLK [2]	13	35	24	23	17	標準	
43	PB17	A1_4	UART2_TX [2] / SPI0_PICO [3] / SPI1_CS1 [4] / TIMA1_C0 [5] / TIMA0_C2 [6]	36	-	-	-	標準		
44	PB18	A1_5	UART2_RX [2] / SPI0_SCK [3] / SPI1_CS2 [4] / TIMA1_C1 [5] / TIMA0_C2N [6]	UART2_RX [2] / SPI0_SCK [3] / SPI1_CS2 [4] /						
45	PB19	A1_6	SPI0_POCI [3] / TIMG8_C1 [4] / UART0_CTS [5] / TIMG7_C1 [6]	16	38	-	-	_	標準	
46	PA21	A1_7 / VREF-	UART2_TX [2] / TIMG8_C0 [3] / UART1_CTS [4] / TIMA0_C0 [5] / TIMG6_C0 [6]	17	39	25	24	_	標準	
47	PA22	A0_7 / GPAMP_OUT	UART2_RX [2] / TIMG8_C1 [3] / UART1_RTS [4] / TIMA0_C1 [5] / CLK_OUT [6] / TIMA0_C0N [7] / TIMG6_C1 [8]	18	40	26	25	18	標準	
48	PB20	A0_6	SPI0_CS2 [2] / SPI1_CS0 [3] / TIMA0_C2 [4] / TIMG12_C0 [5] / TIMA_FAL1 [6] / TIMA0_C1 [7] / TIMA1_C1N [8]	19	41	-	_	-	標準	
49	PB21		SPI1_POCI [2] / TIMG8_C0 [3]	20	-	-	-	-	標準	
50	PB22		SPI1_PICO [2] / TIMG8_C1 [3]	21	_	_	_	_	標準	
51	PB23		SPI1_SCK [2] / TIMA_FAL0 [4]	22	_	_	_	-	標準	
52	PB24	A0_5	SPI0_CS3 [2] / SPI0_CS1 [3] / TIMA0_C3 [4] / TIMG12_C1 [5] / TIMA0_C1N [6] / TIMA1_C0N [7]	23	42	_	_	ı	標準	
53	PA23	VREF+	UART2_TX [2] / SPI0_CS3 [3] / TIMA0_C3 [4] / TIMG0_C0 [5] / UART3_CTS [6] / TIMG7_C0 [7]/ 24 43 27 26 19 TIMG8_C0 [8]							
54	PA24	A0_3	UART2_RX [2] / SPI0_CS2 [3] / TIMA0_C3N [4] / TIMG0_C1 [5] / UART3_RTS [6] / TIMG7_C1 [7] / 25 44 28 27 20 TIMA1_C1 [8]							
55	PA25	A0_2	UART3_RX [2] / SPI1_CS3 [3] / TIMG12_C1 [4] / TIMA0_C3 [5] / TIMA0_C1N [6]	26	45	29	28	_	標準	
56	PB25	A0_4	UART0_CTS [2] / SPI0_CS0 [3] / TIMA_FAL2 [4]	27	-	-	-	_	標準	
57	PB26		UARTO_RTS [2] / SPIO_CS1 [3] / TIMAO_C3 [4] / TIMG6_C0 [5] / TIMA1_C0 [6]	28	_	_	_	-	標準	

表 6-1. ピン属性 (続き)

			信号名		۲	ン番	号		
PINCMx	ピン名	アナログ	デジタル [ピン機能] ⁽¹⁾	64 LQFP	48 LQFP, VQFN	32 VQFN	28 VSSOP	20 VSSOP	IO 構造
58	PB27		SPI1_CS1 [3] / TIMA0_C3N [4] / TIMG6_C1 [5] / TIMA1_C1 [6]	29	_	_	_	ı	標準
59	PA26	A0_1 / GPAMP_IN+	UART3_TX [2] / SPI1_CS0 [3] / TIMG8_C0 [4] / TIMA_FAL0 [5] / CAN_TX [6] / TIMG7_C0 [7]	30	46	30	1	1	標準
60	PA27	A0_0	RTC_OUT [2] / SPI1_CS1 [3] / TIMG8_C1 [4] / TIMA_FAL2 [5] / CAN_RX [6] / TIMG7_C1 [7]	31	47	31	2	2	標準

- (1) アナログ機能 (例:OPA 入力 / 出力、COMP 入力) を使う場合、IOMUX の PINCM.PF と PINCM.PC を 0 に設定してください。デバイス上の各デジタル I/O は、専用のピン制御管理レジスタ (PINCMx) に割り当てられており、ユーザーが PINCM.PF 制御ビットを使って必要なピン機能を設定できます。
- (2) ウェーク付きの標準機能では、I/O を使って、最小低消費電力の SHUTDOWN モードからデバイスをウェークアップできます。すべての I/O は、それよりも高いレベルの低消費電力モードから MCU をウェークアップするように構成できます。詳細については、『MSPMO G シリーズ 80MHz マイクロコントローラ テクニカル リファレンス マニュアル』の「GPIO FastWake」セクションを参照してください。

表 6-2. IO タイプ別のデジタル IO 機能

	20					
IO 構造	反転制御	駆動能力制御	ヒステリシス 制御	プルアップ抵 抗	プルダウン抵 抗	ウェークアッ プ ロジック
標準駆動	Y			Y	Y	
標準駆動 (ウェーク付き) ⁽²⁾	Y			Y	Y	Y
高駆動	Y	Y		Y	Y	Y
高速	Y	Y		Y	Y	
5V 対応のオープン ドレイン	Y		Y		Y	Y

6.3 信号の説明

				ピン番号	를 (1)			
機能	信号名	64 PM	48 PT、 RGZ	32 RHB	28 DGS28	20 DGS20	ピンの種 類 ⁽²⁾	説明
	A0_0	31	47	31	2	2	I	ADC0 アナログ入力 0
	A0_1	30	46	30	1	1	I	ADC0 アナログ入力 1
	A0_2	26	45	29	28	_	I	ADC0 アナログ入力 2
	A0_3	25	44	28	27	20	I	ADC0 アナログ入力 3
	A0_4	27	_	_	_	_	I	ADC0 アナログ入力 4
	A0_5	23	42	_	_	_	I	ADC0 アナログ入力 5
	A0_6	19	41	_	_	_	I	ADC0 アナログ入力 6
	A0_7	18	40	26	25	18	I	ADC0 アナログ入力 7
ADC	A0_12	7	29	18	17	_	I	ADC0 アナログ入力 12
	A1_0	8	30	19	18	_	I	ADC1 アナログ入力 0
	A1_1	9	31	20	19	_	I	ADC1 アナログ入力 1
	A1_2	10	32	21	20	14	I	ADC1 アナログ入力 2
	A1_3	11	33	22	21	15	I	ADC1 アナログ入力 3
	A1_4	14	36	_	_	_	I	ADC1 アナログ入力 4
	A1_5	15	37	_	_	_	I	ADC1 アナログ入力 5
	A1_6	16	38	-	_	_	I	ADC1 アナログ入力 6
	A1_7	17	39	25	24	_	I	ADC1 アナログ入力 7
BSL	BSL_invoke	11	33	22	21	15	I	ブートローダの呼び出しに使用する入力ピン
DOI ((20)	BSLSCL	34	2	2	5	_	I/O	デフォルトの I ² C BSL クロック
BSL (I ² C)	BSLSDA	33	1	1	4	_	I/O	デフォルトの I ² C BSL データ
DOL (LIADT)	BSLRX	57	19	15	16	12	I	デフォルトの UART BSL 受信
BSL (UART)	BSLTX	56	18	14	15	11	0	デフォルトの UART BSL 送信
CAN	CAN_TX	5 30	27 46	16 30	1	1 13	0	CAN-FD 送信データ
CAN	CAN_RX	6 31	28 47	17 31	2	2	I	CAN-FD 受信データ
	CLK_OUT	7 18 39 49 55 56 63	5 13 17 18 29 40	11 13 14 18 26	14 15 17 25	10 11 18	0	設定可能クロック出力
クロック	HFCLK_IN	46	12	10	13	9	I	デジタル高周波数クロック入力
	HFXIN	45	11	9	12	8	I	高周波数水晶発振器 HFXT の入力
	HFXOUT	46	12	10	13	9	0	高周波水晶発振器 HFXT の出力
	LFCLK_IN	44	10	8	11	_	I	デジタル低周波数クロック入力
	LFXIN	43	9	7	10	_	I	低周波数水晶発振器 LFXT の入力
	LFXOUT	44	10	8	11	_	0	低周波数水晶発振器 LFXT の出力
	ROSC	42	8	6	9	7	I	発振器の精度向上のために使用する外付け抵抗
デバッグ	SWCLK	13	35	24	23	17	I	シリアル ワイヤ デバッグ入力クロック
,,,,,	SWDIO	12	34	23	22	16	I/O	シリアル ワイヤ デバッグ データ入力 / 出力

				ピン番号				
機能	信号名	64 PM	48 PT、 RGZ	32 RHB	28 DGS28	20 DGS20	ピンの種 類 ⁽²⁾	説明
FCC	FCC_IN	5 9 33 45	1 11 27 31	1 9 16 20	4 12 19	8 13	I	周波数クロック カウンタ入力
	GPAMP_IN+	30	46	30	1	1	I	GPAMP 非反転端子入力
汎用アンプ	GPAMP_IN-	11	33	22	21	15	I	GPAMP 反転端子入力
	GPAMP_OUT	18	40	26	25	18	0	GPAMP 出力
	PA0	33	1	1	4	_	I/O	SHUTDOWN からのウェークアップ機能を備え た汎用デジタル I/O
	PA1	34	2	2	5	_	I/O	SHUTDOWN からのウェークアップ機能を備え た汎用デジタル I/O
	PA2	42	8	6	9	7	I/O	汎用デジタル I/O
	PA3	43	9	7	10	_	I/O	汎用デジタル I/O
	PA4	44	10	8	11	_	I/O	汎用デジタル I/O
	PA5	45	11	9	12	8	I/O	汎用デジタル I/O
	PA6	46	12	10	13	9	I/O	汎用デジタル I/O
	PA7	49	13	11	_	_	I/O	汎用デジタル I/O
	PA8	54	16	12	_	_	I/O	汎用デジタル I/O
	PA9	55	17	13	14	10	I/O	汎用デジタル I/O
	PA10	56	18	14	15	11	I/O	SHUTDOWN からのウェークアップ機能を備え た汎用デジタル I/O
	PA11	57	19	15	16	12	I/O	SHUTDOWN からのウェークアップ機能を備え た汎用デジタル I/O
	PA12	5	27	16	_	13	I/O	汎用デジタル I/O
	PA13	6	28	17	_	_	I/O	汎用デジタル I/O
	PA14	7	29	18	17	_	I/O	汎用デジタル I/O
GPIO	PA15	8	30	19	18	_	I/O	汎用デジタル I/O
GPIO	PA16	9	31	20	19	_	I/O	汎用デジタル I/O
	PA17	10	32	21	20	14	I/O	SHUTDOWN からのウェークアップ機能を備え た汎用デジタル I/O
	PA18	11	33	22	21	15	I/O	SHUTDOWN からのウェークアップ機能を備え た汎用デジタル I/O
	PA19	12	34	23	22	16	I/O	汎用デジタル I/O
	PA20	13	35	24	23	17	I/O	汎用デジタル I/O
	PA21	17	39	25	24	_	I/O	汎用デジタル I/O
	PA22	18	40	26	25	18	I/O	汎用デジタル I/O
	PA23	24	43	27	26	19	I/O	汎用デジタル I/O
	PA24	25	44	28	27	20	I/O	汎用デジタル I/O
	PA25	26	45	29	28	_	I/O	汎用デジタル I/O
	PA26	30	46	30	1	1	I/O	汎用デジタル I/O
	PA27	31	47	31	2	2	I/O	汎用デジタル I/O
	PA28	35	3	_	_	_	I/O	SHUTDOWN からのウェークアップ機能を備え た汎用デジタル I/O
	PA29	36	-	-	_	-	I/O	汎用デジタル I/O
	PA30	37	_	-	_	_	I/O	汎用デジタル I/O
	PA31	39	5	_	_	_	I/O	SHUTDOWN からのウェークアップ機能を備え た汎用デジタル I/O

				ピン番り	를 (1)			
機能	信号名	64 PM	48 PT、 RGZ	32 RHB	28 DGS28	20 DGS20	ピンの種 類 ⁽²⁾	説明
	PB0	47	-	-	_	_	I/O	汎用デジタル I/O
	PB1	48	-	_	_	_	I/O	汎用デジタル I/O
	PB2	50	14	_	_	_	I/O	汎用デジタル I/O
	PB3	51	15	-	_	_	I/O	汎用デジタル I/O
	PB4	52	-	_	_	_	I/O	汎用デジタル I/O
	PB5	53	-	_	_	_	I/O	汎用デジタル I/O
	PB6	58	20	_	_	_	I/O	汎用デジタル I/O
	PB7	59	21	_	-	_	I/O	汎用デジタル I/O
	PB8	60	22	_	_	_	I/O	汎用デジタル I/O
	PB9	61	23	_	_	_	I/O	汎用デジタル I/O
	PB10	62	-	_	_	_	I/O	汎用デジタル I/O
	PB11	63	_	_	_	_	I/O	汎用デジタル I/O
	PB12	64	_	_	_	_	I/O	汎用デジタル I/O
GPIO	PB13	1	-	_	_	_	I/O	汎用デジタル I/O
GPIO	PB14	2	24	_	_	_	I/O	汎用デジタル I/O
	PB15	3	25	_	_	_	I/O	汎用デジタル I/O
	PB16	4	26	_	_	_	I/O	汎用デジタル I/O
	PB17	14	36	_	-	_	I/O	汎用デジタル I/O
	PB18	15	37	_	-	_	I/O	汎用デジタル I/O
	PB19	16	38	-	_	_	I/O	汎用デジタル I/O
	PB20	19	41	_	_	_	I/O	汎用デジタル I/O
	PB21	20	-	-	_	_	I/O	汎用デジタル I/O
	PB22	21	-	_	-	_	I/O	汎用デジタル I/O
	PB23	22	_	_	_	_	I/O	汎用デジタル I/O
	PB24	23	42	_	_	_	I/O	汎用デジタル I/O
	PB25	27	-	_	_	_	I/O	汎用デジタル I/O
	PB26	28	-	-	_	_	I/O	汎用デジタル I/O
	PB27	29	_	_	_	_	I/O	汎用デジタル I/O
	12C0_SCL	34 39 57	2 5 19	2 15	5 16	12	I/O	I2C0 シリアル クロック
	I2C0_SDA	33 35 56	1 3 18	1 14	4 15	11	I/O	I2C0 シリアル データ
I ² C	12C1_SCL	8 10 36 44 50 57	10 14 19 30 32	8 15 19 21	11 16 18 20	12 14	I/O	l2C1 シリアル クロック
	I2C1_SDA	9 11 37 43 51 56	9 15 18 31 33	7 14 20 22	10 15 19 21	11 15	I/O	l2C1 シリアル データ

		ピン番号 ⁽¹⁾		, (1)				
機能	信号名	64 PM	48 PT、 RGZ	32 RHB	28 DGS28	20 DGS20	ピンの種 類 ⁽²⁾	説明
	VSS	41	7	5	8	6	Р	グランド電源
	VDD	40	6	4	7	5	Р	電源
電源	VCORE	32	48	32	3	3	Р	安定化コア電源出力
	QFN パッド	_	パッド	パッド	_	_	Р	QFN パッケージの露出サーマル パッド。V _{SS} に接続することを推奨します。
RTC	RTC_OUT	31 55	17 47	13 31	2 14	2 10	0	RTC クロック出力

				ピン番号	- (1)			
機能	信号名	64 PM	48 PT、 RGZ	32 RHB	28 DGS28	20 DGS20	ピンの種 類 ⁽²⁾	説明
	SPI0_CS0	27 42 54	8 16	6 12	9	7	I/O	SPI0 チップ セレクト 0
	SPI0_CS1	23 28 43 58	9 20 42	7	10	-	I/O	SPI0 チップ セレクト 1
	SPI0_CS2	19 25 59	21 41 44	28	27	20	I/O	SPI0 チップ セレクト 2
	SPI0_CS3	2 23 24	24 42 43	27	26	19	I/O	SPI0 チップ セレクト 3
	SPI0_SCK	5 15 46 57	12 19 27 37	10 15 16	13 16	9 12 13	I/O	SPI0 クロック信号入力 – SPI ペリフェラル モ ード クロック信号出力 – SPI コントローラ モード
	SPI0_POCI	6 16 44 56	10 18 28 38	8 14 17	11 15	11	I/O	SPI0 コントローラ入力 / ペリフェラル出力
CDI	SPI0_PICO	7 14 45 55	11 17 29 36	9 13 18	12 14 17	8 10	I/O	SPI0 コントローラ出力 / ペリフェラル入力
SPI	SPI1_CS0	19 30 42 58	8 20 41 46	6 30	1 9	1 7	I/O	SPI1 チップ セレクト 0
	SPI1_CS1	14 29 31	36 47	31	2	2	I/O	SPI1 チップ セレクト 1
	SPI1_CS2	8 15 47	30 37	19	18	_	I/O	SPI1 チップ セレクト 2
	SPI1_CS3	2 26 48	24 45	29	28	_	I/O	SPI1 チップ セレクト 3
	SPI1_SCK	4 10 22 61	23 26 32	21	20	14	I/O	SPI1 クロック信号入力 – SPI ペリフェラル モード クロック信号出力 – SPI コントローラ モード
	SPI1_POCI	2 9 20 59	21 24 31	20	19	-	I/O	SPI1 コントローラ入力 / ベリフェラル出力
	SPI1_PICO	3 11 21 60	22 25 33	22	21	15	I/O	SPI1 コントローラ出力 / ベリフェラル入力
システム	NRST	38	4	3	6	4	I	リセット入力 (アクティブ Low)

				ピン番号	- (1)			
機能	信号名	64 PM	48 PT、 RGZ	32 RHB	28 DGS28	20 DGS20	ピンの種 類 ⁽²⁾	説明
	TIMG0_C0	5 24 45 62	11 27 43	9 16 27	12 26	8 13 19	I/O	汎用タイマ 0 CCR0 キャプチャ入力 / 比較出力
	TIMG0_C1	6 25 46 63	12 28 44	10 17 28	13 27	9 20	I/O	汎用タイマ 0 CCR1 キャプチャ入力 / 比較出力
	TIMG6_C0	17 28 36 45 50 58 62	11 14 20 39	9 25	12 24	8	I/O	汎用タイマ 6 CCR0 キャプチャ入力 / 比較出力
	TIMG6_C1	18 29 37 46 51 59 63	12 15 21 40	10 26	13 25	9	I/O	汎用タイマ 6 CCR1 キャプチャ入力 / 比較出力
タイマ	TIMG7_C0	3 10 24 30 35 43	3 9 25 32 43 46	7 21 27 30	1 10 20 26	1 14 19	I/O	汎用タイマ 7 CCR1 キャプチャ入力 / 比較出力
	TIMG7_C1	4 11 16 25 31 39 42 44 49	5 8 10 13 26 33 38 44 47	6 8 11 22 28 31	2 9 11 21 27	2 7 15 20	I/O	汎用タイマ 7 CCR1 キャプチャ入力 / 比較出力
	TIMG8_C0	3 17 20 24 30 34 36 43 45 49 58 62	2 9 11 13 20 25 39 43 46	2 7 9 11 25 27 30	1 5 10 12 24 26	1 8 19	I/O	汎用タイマ 8 CCR0 キャプチャ入力 / 比較出力

				ピン番号	- (1)			
機能	信号名	64 PM	48 PT、 RGZ	32 RHB	28 DGS28	20 DGS20	ピンの種 類 ⁽²⁾	説明
	TIMG8_C1	4 16 18 21 31 33 37 42 44 46 59 63	1 8 10 12 21 26 38 40 47	1 6 8 10 26 31	2 4 9 11 13 25	2 7 9 18	I/O	汎用タイマ 8 CCR1 キャプチャ入力 / 比較出力
	TIMG8_IDX	2 8 34 49	2 13 24 30	2 11 19	5 18	_	I	汎用タイマ 8 直交エンコーダ インデックス パ ルス入力
	TIMG12_C0	1 7 19 56	18 29 41	14 18	15 17	11	I/O	32 ビット汎用タイマ 0 CCR0 キャプチャ入力 / 比較出力
タイマ (続き)	TIMG12_C1	2 23 26 39	5 24 42 45	29	28	_	I/O	32 ビット汎用タイマ 0 CCR1 キャプチャ入力 / 比較出力
	TIMA0_C0	2 17 33 54 60	1 16 22 24 39	1 12 25	4 24	_	I/O	高度制御タイマ 0 CCR0 キャプチャ入力 / 比較 出力
	TIMA0_C0N	18 55 61	17 23 40	13 26	14 25	10 18	I/O	高度制御タイマ 0 CCR0 キャプチャ入力 / 比較 出力 (反転)
	TIMA0_C1	18 34 43 49 55 61 64	2 9 13 17 23 40	2 7 11 13 26	5 10 14 25	10 18	I/O	高度制御タイマ 0 CCR1 キャプチャ入力 / 比較 出力
	TIMA0_C1N	1 19 23 26 44 55	10 17 41 42 45	8 13 29	11 14 28	10	I/O	高度制御タイマ 0 CCR1 キャプチャ入力 / 比較 出力 (反転)

				ピン番号	- (1)			
機能	信号名	64 PM	48 PT、 RGZ	32 RHB	28 DGS28	20 DGS20	ピンの種 類 ⁽²⁾	説明
	TIMA0_C2	8 14 19 43 47 49 52 56 64	9 13 18 30 36 41	7 11 14 19	10 15 18	11	I/O	高度制御タイマ 0 CCR2 キャプチャ入力 / 比較 出力
	TIMA0_C2N	9 15 46 48 53 57	12 19 31 37	10 15 20	13 16 19	9 12	I/O	高度制御タイマ 0 CCR2 キャプチャ入力 / 比較 出力 (反転)
	TIMA0_C3	1 5 10 23 24 26 28 35 44 50	3 10 14 27 32 42 43 45	8 16 21 27 29	11 20 26 28	13 14 19	I/O	高度制御タイマ 0 CCR3 キャプチャ入力 / 比較 出力
タイマ (続き)	TIMA0_C3N	6 11 25 29 39 51	5 15 28 33 44	17 22 28	21 27	15 20	1/0	高度制御タイマ 0 CCR3 キャプチャ入力 / 比較 出力 (反転)
	TIMA1_C0	8 10 14 28 35 47 50 52 56	3 14 18 30 32 36	14 19 21	15 18 20	11 14	I/O	高度制御タイマ 1 CCR0 キャプチャ入力 / 比較 出力
	TIMA1_C0N	8 23 52 54 58	16 20 30 42	12 19	18	-	1/0	高度制御タイマ 0 CCR3 キャプチャ入力 / 比較 出力 (反転)
	TIMA1_C1	9 11 15 25 29 39 48 51 53 57	5 15 19 31 33 37 44	15 20 22 28	16 19 21 27	12 15 20	I/O	高度制御タイマ 1 CCR1 キャプチャ入力 / 比較 出力

					ピン番号	- (1)						
機能	機能		64 PM	48 PT、 RGZ	32 RHB	28 DGS28	20 DGS20	ピンの種 類 ⁽²⁾	説明			
	-	TIMA1_C1N	9 19 53 55 59	17 21 31 41	13 20	14 19	10	I/O	高度制御タイマ 1 CCR1 キャプチャ入力 / 比較 出力 (反転)			
	-	TIMA_FAL0	22 30 35 46	3 12 46	10 30	1 13	1 9	I	高度制御タイマ 0 フォルト処理入力			
タイマ (続	売き) -	TIMA_FAL1	19 33 45 64	1 11 41	1 9	4 12	8	I	高度制御タイマ1フォルト処理入力			
	-	TIMA_FAL2	27 31 34	2 47	2 31	2 5	2	I	高度制御タイマ2フォルト処理入力			

				ピン番号	- (1)			
機能	信号名	64 PM	48 PT、 RGZ	32 RHB	28 DGS28	20 DGS20	ピンの種 類 ⁽²⁾	説明
	UART0_TX	33 35 47 56	1 3 18	1 14	4 15	11	0	UART0 送信データ
	UART0_RX	34 39 48 57	2 5 19	2 15	5 16	12	1	UART0 受信データ
	UART0_CTS	7 16 27 55	17 29 38	13 18	14 17	10	ı	UART0「送信可」フロー制御入力
	UART0_RTS	8 28 54	16 30	12 19	18	_	0	UART0「送信要求」フロー制御出力
	UART1_TX	10 52 54 58	16 20 32	12 21	20	14	0	UART1 送信データ
UART	UART1_RX	11 53 55 59	17 21 33	13 22	14 21	10 15	1	UART1 受信データ
	UART1_CTS	17 50 60	14 22 39	25	24	_	I	UART1「送信可」フロー制御入力
	UART1_RTS	18 51 61	15 23 40	26	25	18	0	UART1「送信要求」フロー制御出力
	UART2_TX	3 14 17 24	25 36 39 43	25 27	24 26	19	0	UART2 送信データ
	UART2_RX	4 15 18 25	26 37 40 44	26 28	25 27	18 20	1	UART2 受信データ
	UART2_CTS	37 43 50 58	9 14 20	7	10	_	1	UART2「送信可」フロー制御入力
	UART2_RTS	36 44 51 59	10 15 21	8	11	_	0	UART2「送信要求」フロー制御出力

ADVANCE INFORMATION

				ピン番号	- (1)					
機能	信号名	64 PM	48 PT、 RGZ	32 RHB	28 DGS28	20 DGS20	ピンの種 類 ⁽²⁾	説明		
	UART3_TX	7 30 50 64	14 29 46	18 30	1 17	1	0	UART3 送信データ		
UART	UART3_RX	1 6 26 51	15 28 45	17 29	28	_	I	UART3 受信データ		
UART	UART3_CTS	3 5 24 52	25 27 43	16 27	26	13 19	I	UART3「送信可」フロー制御入力		
	UART3_RTS	4 6 25 53	26 28 44	17 28	27	20	0	UART3「送信要求」フロー制御出力		
リファレンス	VREF+	24	43	27	26	19	I/O	リファレンス電圧 (VREF) 電源 - 外部リファレンス入力 / 内部リファレンス出力		
電圧 (3)	VREF-	17	39	25	24	_	I/O	リファレンス電圧 (VREF) 電源グランド - 外部 リファレンス入力 / 内部リファレンス出力		

- (1) -=使用不可
- (2) I = 入力、O = 出力、I/O = 入出力、P = 電源
- (3) VREF+/- を使用して ADC などのアナログ ペリフェラル用の外部電圧リファレンスを取り込む場合、デカップリング コンデンサを VREF+ から VREF- / GND に、外部リファレンス ソースに基づく容量で配置する必要があります。

6.4 未使用ピンの接続

表 6-3 に、未使用ピンの正しい終端を示します。

表 6-3. 未使用ピンの接続

ピン (1)	電位	備考								
PAx および PBx	オープン	対応するピン機能を GPIO (PINCMx.PF = 0x1) に設定し、未使用のピンが Low を出力するように、または内部プルアップまたはプルダウン抵抗をイネーブルにした入力になるように構成します。								
NRST	VCC	NRST はアクティブ Low のリセット信号です。ピンを VCC にプルアップしないと、本デバイスは起動できません。詳細については、セクション 9.1 を参照してください。								

(1) 汎用 I/O と共有されている機能を持つすべての未使用ピンについては、「PAx および PBx」未使用ピンの接続ガイドラインに従う必要があります。

7 仕様

7.1 絶対最大定格

自由気流での動作温度範囲内 (特に記述のない限り)(1)

	,	·	最小値	最大値	単位
VDD	電源電圧	VDD ピンで	-0.3	4.1	V
VI	入力電圧	5V 対応のオープン ドレイン ピンに印加	-0.3	5.5	V
VI	入力電圧	任意の通常耐圧ピンに印加	-0.3	V _{DD} + 0.3 (最大 4.1)	V
	VDD ピンに流れ込む電流 (ソース)	-40°C ≤ T _J ≤ 130°C		80	mA
I _{VDD}	VDD ピンに流れ込む電流 (ソース)	-40°C ≤ T _J ≤ 85°C		100	mA
	VSS ピンから流れ出す電 流 (シンク)	-40°C ≤ T _J ≤ 130°C		80	mA
I _{VSS}	VSS ピンから流れ出す電 流 (シンク)	-40°C ≤ T _J ≤ 85°C		100	mA
	SDIO ピンの電流	SDIO ピンによってシンクまたはソースされる電流		6	mA
	HS_IO ピンの電流	HSIO ピンによってシンクまたはソースされる電流		6	mA
I _{IO}	HDIO ピンの電流	HDIO ピンによってシンクまたはソースされる電流		20	mA
	ODIO ピンの電流	ODIO ピンによってシンクされる電流		20	mA
I _D	サポートされているダイ オード電流	すべてのデバイス ピンのダイオード電流		±2	mA
TJ	接合部温度		-40	130	°C
T _{stg}	保存温度 ⁽²⁾		-40	150	°C

- (1) 「絶対最大定格」の範囲外の動作は、デバイスの恒久的な損傷の原因となる可能性があります。「絶対最大定格」は、これらの条件において、または「推奨動作条件」に示された値を超える他のいかなる条件でも、本製品が正しく動作することを意味するものではありません。「絶対最大定格」の範囲内であっても「推奨動作条件」の範囲外で使用すると、デバイスが完全に機能しない可能性があり、デバイスの信頼性、機能、性能に影響を及ぼし、デバイスの寿命を縮める可能性があります。
- (2) ボード製造時の半田付けでは、現在の JEDEC J-STD-020 仕様に従い、梱包箱またはリール上のデバイス ラベルに記載されている分類を超えないピーク リフロー温度条件で、より高い温度をかけることもできます。

7.2 ESD 定格

			値	単位
V _(ESD) 静電気放電		人体モデル (HBM)、AEC-Q100-002 準拠 ⁽¹⁾	±2000	V
	静電気放電	デバイス帯電モデル (CDM)、AEC Q100-011 準 拠、すべてのピン	±500	V
		デバイス帯電モデル (CDM)、AEC Q100-011 準 拠、コーナー ピン	±750	V

(1) AEC Q100-002 は、HBM ストレス試験を ANSI/ESDA/JEDEC JS-001 仕様に従って実施しなければならないと規定しています。

7.3 推奨動作条件

自由気流での動作温度範囲内 (特に記述のない限り)

		最小値	公称值	最大値	単位
VDD	電源電圧	1.62		3.6	V
VCORE	VCORE ピンの電圧 ⁽²⁾		1.35		V
C _{VDD}	VDD と VSS の間に配置されたコンデンサ ⁽¹⁾		10		μF
C _{VCORE}	VCORE と VSS の間に配置されたコンデンサ ^{(1) (2)}		470		nF
T _A	周囲温度、Q バージョン	-40		125	°C
T _J	最大接合部温度、Q バージョン			130	°C

Copyright © 2024 Texas Instruments Incorporated

資料に関するフィードバック(ご意見やお問い合わせ) を送信

7.3 推奨動作条件 (続き)

自由気流での動作温度範囲内 (特に記述のない限り)

		最小值	公称值	最大値	単位
	MCLK、CPUCLK 周波数、2 フラッシュ ウェイト状態 ⁽³⁾			80	
f _{MCLK} (PD1 bus clock)	MCLK、CPUCLK 周波数、1 フラッシュ ウェイト状態 ⁽³⁾			48	MHz
	MCLK、CPUCLK 周波数、0 フラッシュ ウェイト状態 ⁽³⁾			24	
f _{ULPCLK} (PD0 bus clock)	ULPCLK 周波数			40	MHz

- (1) C_{VDD} と C_{VCORE} は、それぞれ VDD/VSS 間と VCORE/VSS 間に、本デバイスのピンにできる限り近づけて接続します。C_{VDD} と C_{VCORE} には、容量値の誤差が ±20% までの精度の低 ESR コンデンサを使う必要があります。
- (2) VCORE ピンは、C_{VCORE} にのみ接続する必要があります。電圧を供給したり、VCORE ピンに外部負荷を加えたりしないでください。
- (3) ウェイト状態はシステム コントローラ (SYSCTL) によって自動的に管理されるため、MCLK が高速クロック ソース (HFCLK または SYSPLL からソースされる HSCLK) から供給される場合以外は、アプリケーション ソフトウェアで構成する必要はありません。

7.4 熱に関する情報

	熱評価基準(1)	パッケージ	値	単位
R _{θJA}	接合部から周囲への熱抵抗		63.9	°C/W
R _{0JC(top)}	接合部からケース (上面) への熱抵抗		23.8	°C/W
R _{0JB}	接合部から基板への熱抵抗	LOED CA (DM)	35.3	°C/W
Ψ_{JT}	接合部から上面への特性パラメータ	LQFP-64 (PM)	2.2	°C/W
Ψ_{JB}	接合部から基板への特性パラメータ		35	°C/W
R _{0JC(bot)}	接合部からケース (底面) への熱抵抗		該当なし	°C/W
R _{0JA}	接合部から周囲への熱抵抗		30.1	°C/W
R _{0JC(top)}	接合部からケース (上面) への熱抵抗		20.7	°C/W
$R_{\theta JB}$	接合部から基板への熱抵抗	VOEN 40 (DOZ)	12.5	°C/W
Ψ_{JT}	接合部から上面への熱特性パラメータ	VQFN-48 (RGZ)	0.3	°C/W
Ψ_{JB}	接合部から基板への特性パラメータ		12.4	°C/W
R _{0JC(bot)}	接合部からケース (底面) への熱抵抗		4.2	°C/W
R _{0JA}	接合部から周囲への熱抵抗		69.2	°C/W
R _{0JC(top)}	接合部からケース (上面) への熱抵抗		27.4	°C/W
$R_{\theta JB}$	接合部から基板への熱抵抗	LQFP-48 (PT)	32.6	°C/W
Ψ_{JT}	接合部から上面への特性パラメータ	LQFP-46 (PT)	2.6	°C/W
Ψ_{JB}	接合部から基板への特性パラメータ		32.3	°C/W
R _{0JC(bot)}	接合部からケース (底面) への熱抵抗		該当なし	°C/W
$R_{\theta JA}$	接合部から周囲への熱抵抗		32.1	°C/W
R _{0JC(top)}	接合部からケース (上面) への熱抵抗		23.6	°C/W
R _{0JB}	接合部から基板への熱抵抗	VQFN-32 (RHB)	13.0	°C/W
Ψ_{JT}	接合部から上面への熱特性パラメータ	VQFN-32 (RHB)	0.3	°C/W
Ψ_{JB}	接合部から基板への特性パラメータ		13.0	°C/W
R _{0JC(bot)}	接合部からケース (底面) への熱抵抗		3.3	°C/W
$R_{\theta JA}$	接合部から周囲への熱抵抗		78.9	°C/W
R _{0JC(top)}	接合部からケース (上面) への熱抵抗		38.6	°C/W
$R_{\theta JB}$	接合部から基板への熱抵抗	V66OD 36 (DC636)	41.3	°C/W
Ψ_{JT}	接合部から上面への特性パラメータ	VSSOP-28 (DGS28)	3.4	°C/W
Ψ_{JB}	接合部から基板への特性パラメータ		41.0	°C/W
R _{0JC(bot)}	接合部からケース (底面) への熱抵抗		該当なし	°C/W

7.4 熱に関する情報 (続き)

	熱評価基準 ⁽¹⁾	パッケージ	値	単位
$R_{\theta JA}$	接合部から周囲への熱抵抗		91.3	°C/W
R _{θJC(top)}	接合部からケース (上面) への熱抵抗		29.3	°C/W
R _{0JB}	接合部から基板への熱抵抗	V660B 30 (BC630)	48.3	°C/W
Ψ_{JT}	接合部から上面への特性パラメータ	VSSOP-20 (DGS20)	0.7	°C/W
Ψ_{JB}	接合部から基板への特性パラメータ		47.9	°C/W
R _{0JC(bot)}	接合部からケース (底面) への熱抵抗		該当なし	°C/W

(1) 従来および最新の熱評価基準の詳細については、『半導体および IC パッケージの熱評価基準』アプリケーション レポートを参照してください。

7.5 電源電流特性

7.5.1 RUN / SLEEP モード

VDD = 3.3V。すべての入力は、0V または VDD に接続されています。出力は、電流のソースまたはシンクを行いません。すべてのペリフェラルはディセーブルです。

			-40	°C	25	ဇ	85	ဇ	105	5℃	125	5℃	
	パラメータ	MCLK	標準値	最大 値	標準値	最大 値	標準値	最大 値	標準値	最大 値		最大 値	単位
RUN モート	•												
	MCLK=SYSPLL、	80MHz	7.5		7.6		8.0		8.0		8.6		
	SYSPLLREF=SYSOSC、 CoreMark、フラッシュから実行	48MHz	4.8		4.9		5.1		5.2		5.7		
	MCLK=SYSOSC、CoreMark、フラ	32MHz	3.3		3.4		3.7		3.7		4.1		
IDD _{RUN}	ッシュから実行	4MHz	0.6		0.7		0.8		1.0		1.4		mA
IDD _{RUN}	MCLK=SYSPLL、	80MHz	5.9		6.0		6.3		6.4		6.8		IIIA
	SYSPLLREF=SYSOSC、 CoreMark、SRAM から実行	48MHz	3.7		3.8		3.8		4.5		5.0		
	MCLK=SYSOSC、CoreMark、	32MHz	2.5		2.6		2.7		3.0		3.4		
	SRAM から実行	4MHz	0.6		0.6		0.8		0.9		1.0		
IDD _{RUN} 、 MHz あた	MCLK=SYSPLL、 SYSPLLREF=SYSOSC、 CoreMark、フラッシュから実行	80MHz	94		96		99		100		107		µA/MHz
1)	MCLK=SYSPLL、 SYSPLLREF=SYSOSC、While(1)、 フラッシュから実行	80MHz	52	55	53	57	55	61	57	68	64	74	µ <i>А</i> /МП2
SLEEP T-	- K		•										
	MCLK=SYSOSC、	80MHz	2974	3154	3039	3211	3262	3350	3350	3389	3439	4900	
IDD _{SLEEP}	SYSPLLREF=SYSOSC、CPU 停止	48MHz	2025	2174	2075	2330	2262	2437	2337	2998	2778	4000	μA
IDDSLEEP	MCLK=SYSOSC CPU 停止	32MHz	1355	1460	1399	1506	1567	1750	1675	2320	2094	3000	μΑ
	MCLK=SYSOSC、CPU 停止	4MHz	440	513	467	620	662	898	737	1400	1140	2834	

7.5.2 STOP / STANDBY モード

VDD = 3.3V。すべての入力は、0V または VDD に接続されています。出力は、電流のソースまたはシンクを行いません。特に記述のないすべてのペリフェラルはディヤーブルです。

			-40	ဇ	25	က	85	က	105	℃	125	°C	
	パラメータ		ULPCLK 標準 j 値	最大 値	標準値	最大 値	標準値	最大 値	標準値	最大 値	標準値	最大 値	単位
STOP E-	K	,										<u> </u>	
IDD _{STOP0}	SYSOSC=32MHz, USE4MHZSTOP=0, DISABLESTOP=0	4MHz	331	355	338	360	343	362	346	364	357	380	
IDD _{STOP1}	SYSOSC=4MHz, USE4MHZSTOP=1, DISABLESTOP=0	410102	174	196	179	198	185	203	188	206	198	219	μΑ
IDD _{STOP2}	SYSOSC オフ、DISABLESTOP=1、 ULPCLK=LFCLK	32kHz	44	54	46	56	51	61	53	64	62	83	
STANDBY T -F													

7.5.2 STOP / STANDBY モード (続き)

VDD = 3.3V。すべての入力は、0V または VDD に接続されています。出力は、電流のソースまたはシンクを行いません。特に記述のないすべてのペリフェラルはディセーブルです。

			-40	°C	25	ဇ	85	Č	105	℃	125	℃	
	パラメータ	ULPCLK	標準値	最大 値	標準値	最大 値	標準値	最大 値	標準値	最大 値	標準値	最大 値	単位
IDD _{STBY0}	LFCLK = LFXT、STORPCLKSTBY = 0、RTC イネーブル		2	5	2	5	4	10	7	18	16	42	
	LFCLK = LFOSC、 STORPCLKSTBY = 1、RTC イネー ブル	32kHz	1.4	3	1.5	4	3	10	6	17	13	40	μΑ
IDD _{STBY1}	LFCLK = LFXT、STORPCLKSTBY = 1、RTC イネーブル		1.4	3	1.5	4	4	10	6	17	13	40	
	LFCLK = LFXT、STORPCLKSTBY = 1、GPIOA イネーブル		1.4	3	1.5	4	4	10	6	17	13	40	

7.5.3 SHUTDOWN モード

すべての入力は、0V または VDD に接続されています。出力は、電流のソースまたはシンクを行いません。コア レギュレータはパワーダウンされています。

	パラメータ		-40	ဇ	25	င္	85	ဇ	105	5℃	125	°C	
			標準値	最大 値	標準値	最大 値	標準値	最大 値	標準値	最大 値	標準値	最大 値	単位
IDD _{SHDN}	SHUTDOWN モードの電源電流	3.3V	40		80		730		1730		4800		nA

7.6 電源シーケンス

7.6.1 POR および BOR

自由気流での動作温度範囲内 (特に記述のない限り)

	パラメータ	テスト条件	最小値	標準値	最大値	単位
		立ち上がり			0.1	V/µs
dVDD/dt	VDD (電源電圧) のスルーレート	立ち下がり ⁽²⁾			0.01	v/µS
		立ち下がり、STANDBY			0.1	V/ms
V _{POR+}	パワーオン リセット電圧レベル	立ち上がり ⁽¹⁾	1.04	1.30	1.5	V
V _{POR-}	「ハノーオン グセット电圧レベル	立ち下がり ⁽¹⁾	0.99	1.25	1.48	V
V _{HYS, POR}	POR ヒステリシス		30	58	74	mV
V _{BOR0+} ,		コールド スタート、立 ち上がり ⁽¹⁾	1.48	1.54	1.61	
V _{BOR0+}	̄ ブラウンアウト リセット電圧レベル 0 (デフォル	立ち上がり ^{(1) (2)}	1.56	1.58	1.62	V
V _{BOR0} -	へのレベル)	立ち下がり ^{(1) (2)}	1.55	1.57	1.61	V
V _{BOR0} , stby		STANDBY モード (1)	1.54	1.56	1.60	
V _{BOR1+}		立ち上がり ^{(1) (2)}	2.15	2.17	2.23	
V _{BOR1-}	ブラウンアウト リセット電圧レベル 1	立ち下がり ^{(1) (2)}	2.12	2.14	2.19	V
V _{BOR1, STBY}		STANDBY モード (1)	2.06	2.13	2.20	
V _{BOR2+}		立ち上がり ^{(1) (2)}	2.74	2.77	2.83	
V _{BOR2} -	ブラウンアウト リセット電圧レベル 2	立ち下がり ^{(1) (2)}	2.71	2.73	2.80	V
V _{BOR2, STBY}		STANDBY モード (1)	2.68	2.71	2.82	
V _{BOR3+}		立ち上がり ^{(1) (2)}	2.88	2.96	3.04	
V _{BOR3} -	ラウンアウト リセット電圧レベル 3	立ち下がり ^{(1) (2)}	2.85	2.93	3.01	V
V _{BOR3, STBY}		STANDBY T- K (1)	2.80	2.92	3.02	

7.6.1 POR および BOR (続き)

自由気流での動作温度範囲内 (特に記述のない限り)

	パラメータ	テスト条件	最小値	標準値	最大値	単位
V	ブラウンアウト リセットのヒステリシス	レベル 0 (1)		14	18	mV
V _{HYS,BOR}		レベル 1~3 (1)		34	38	IIIV
T _{PD, BOR}	BOR 伝搬遅延	RUN/SLEEP/STOP モード			5	μs
		STANDBY ₹-ド			100	μs

- (1) |dVDD/dt| ≦ 3V/s
- (2) デバイスは RUN、SLEEP、STOP モードで動作しています。

7.6.2 電源ランプ

図 7-1 に、パワーアップ / パワーダウン時の POR-、POR+、BOR0-、BOR0+ の関係を示します。

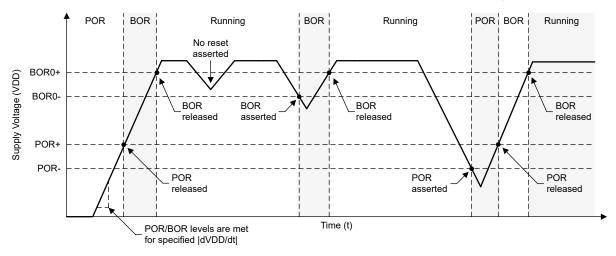


図 7-1. パワー サイクルの POR と BOR の条件

7.7 フラッシュ メモリの特性

自由気流での動作温度範囲内 (特に記述のない限り)

	パラメータ	テスト条件	最小値標準	準値 最大値	単位
電源					
VDD _{PGM/ERASE}	書き込みと消去の電源電圧		1.62	3.6	V
IDD _{ERASE}	消去動作中の VDD からの電源電流	電源電流の差分		10	mA
IDD _{PGM}	書き込み動作中の VDD からの電源電流	電源電流の差分		10	mA
耐久性					
NWEC _(LOWER)	消去 / 書き込みサイクル耐久性 (フラッシュの下位 32KB) ⁽¹⁾		100		k サイクル
NWEC _(UPPER)	消去 / 書き込みサイクル耐久性 (フラッシュの残り) ⁽¹⁾		10		k サイクル
NE _(MAX)	故障に至るまでの全消去動作回数 ⁽²⁾		802		k 回の消去動作
NW _(MAX)	セクタが消去されるまでのワード線あ たりの書き込み動作回数 ⁽³⁾			83	書き込み動作
保持	,		1		
t _{RET_85}	フラッシュ メモリのデータ保持	-40°C <= T _J <= 85°C	60		年
t _{RET_105}	フラッシュ メモリのデータ保持	-40°C <= T _J <= 105°C	11.4		年
書き込みと消去の	ウタイミング	1			

7.7 フラッシュ メモリの特性 (続き)

自由気流での動作温度範囲内 (特に記述のない限り)

	パラメータ	テスト条件	最小値	標準値	最大値	単位
t _{PROG} (WORD, 64)	フラッシュ ワードの書き込み時間 (4) (6)			50	275	μs
t _{PROG} (SEC, 64)	1KB セクタの書き込み時間 ^{(5) (6)}			6.4		ms
t _{ERASE} (SEC)	セクタの消去時間	2k 以下の消去 / 書き込みサ イクル、T _j ≧25℃		4	20	ms
t _{ERASE} (SEC)	セクタの消去時間	10k 以下の消去 / 書き込みサイクル、T _j ≧25℃		20	150	ms
t _{ERASE} (SEC)	セクタの消去時間	10k 未満の消去 / 書き込みサイクル		20	200	ms
t _{ERASE} (BANK)	バンクの消去時間	10k 未満の消去 / 書き込みサイクル		22	220	ms

- (1) EEPROM エミュレーション アプリケーションを可能にするため、下位 32KB のフラッシュ アドレス空間はより優れた消去 / 書き込み耐久性をサポートしています。32KB 以下のフラッシュ メモリを内蔵したデバイスでは、フラッシュ メモリ全体が NWEC_(LOWER) の消去 / 書き込みサイクルをサポートしています。
- (2) 故障に至るまでにフラッシュによってサポートされる消去動作の累積回数。セクタ消去またはバンク消去動作は、1 回の消去動作と 見なします。
- (3) ワード線を消去するまでに、許容されるワード線あたりの書き込み動作の最大回数。同じワード線への追加書き込みが必要な場合、ワード線あたりの書き込み動作の最大回数に達すると、セクタ消去が必要です。
- (4) 書き込み時間は、書き込みコマンドがトリガされてから、フラッシュ コントローラでコマンド完了割り込みフラグがセットされるまでの時間として定義されます。
- (5) セクタ書き込み時間は、最初のワード書き込みコマンドがトリガされてから、最後のワード書き込みコマンドが完了し、フラッシュコントローラで割り込みフラグがセットされるまでの時間として定義されます。この時間には、セクタの書き込み中にソフトウェアが(最初のフラッシュワードの後に)各フラッシュワードをフラッシュコントローラに読み込むために必要な時間が含まれます。
- (6) フラッシュ ワード サイズは 64 データ ビット (8 バイト) です。ECC 付きデバイスの場合、フラッシュ ワード サイズの合計は 72 ビット (64 データ ビット + 8 ECC ビット) です。

7.8 タイミング特性

VDD=3.3V、T_a=25℃ (特に記述のない限り)

	パラメータ	テスト条件	最小値 標準値	最大値 単位
ウェーク	アップ タイミング			
t _{WAKE} , SLEEP1	SLEEP1 から RUN までのウェークアップ時間 ⁽¹⁾		1.5	μѕ
t _{WAKE} , SLEEP2	SLEEP2 から RUN までのウェークアップ時間 ⁽¹⁾		2.1	μѕ
t _{WAKE} , STANDBY0	STANDBY0 から RUN までのウェーク アップ時間 ⁽¹⁾		15.2	μѕ
t _{WAKE} , STANDBY1	STANDBY1 から RUN までのウェーク アップ時間 ⁽¹⁾		15.2	μѕ
t _{WAKE} , STOP0	STOP0 から RUN までのウェークアップ時間 (SYSOSC イネーブル) ⁽¹⁾		12.1	μѕ
t _{WAKE} , STOP1	STOP1 から RUN までのウェークアップ時間 (SYSOSC イネーブル) ⁽¹⁾		13.5	
t _{WAKE} , STOP2	STOP2 から RUN までのウェークアップ時間 (SYSOSC ディセーブル) ⁽¹⁾		12.9	μs
t _{WAKEUP.}	SHUTDOWN から RUN までのウェー	高速ブートがイネーブル	240	
SHDN	クアップ時間 ⁽²⁾	高速ブートがディセーブル	252	μs
非同期高	速クロック要求タイミング			'
t _{DELAY} , SLEEP1	非同期要求のエッジから最初の 32MHz MCLK エッジまでの遅延時間	モードは SLEEP1	0.33	μs
t _{DELAY} , SLEEP2	非同期要求のエッジから最初の 32MHz MCLK エッジまでの遅延時間	モードは SLEEP2	0.93	μs

7.8 タイミング特性 (続き)

VDD=3.3V、T_a=25℃ (特に記述のない限り)

	パラメータ	テスト条件	最小値 標準値 最大値	単位
t _{DELAY,} STANDBY0	非同期要求のエッジから最初の 32MHz MCLK エッジまでの遅延時間	モードは STANDBY0	3.2	μs
t _{DELAY,} STANDBY1	非同期要求のエッジから最初の 32MHz MCLK エッジまでの遅延時間	モードは STANDBY1	3.2	μs
t _{DELAY,} STOP0	非同期要求のエッジから最初の 32MHz MCLK エッジまでの遅延時間	モードは STOP0	0.1	μs
t _{DELAY,} STOP1	非同期要求のエッジから最初の 32MHz MCLK エッジまでの遅延時間	モードは STOP1	2.4	μs
t _{DELAY,} STOP2	非同期要求のエッジから最初の 32MHz MCLK エッジまでの遅延時間	モードは STOP2	0.9	μs
スタート	アップ タイミング			
t _{START} ,	デバイスのリセット / パワーアップか	高速ブートがイネーブル	260	110
RESET	らのコールド スタートアップ時間 ⁽³⁾	高速ブートがディセーブル	308	μs
NRST タ	イミング			
t _{RST,}	BOOTRST を生成するための NRST	ULPCLK ≧ 4MHz	1.5	110
BOOTRST	ピンのパルス長	ULPCLK=32kHz	80	μs
t _{RST, POR}	POR を生成するための NRST ピンの パルス長		1	s

- (1) ウェークアップ時間は、グリッチ フィルタがディセーブル (FILTEREN=0x0)、高速ウェークアップがイネーブル (FASTWAKEONLY=1) の条件で、外部ウェークアップ信号のエッジ (GPIO ウェークアップ イベント) から、ユーザー プログラムの 最初の命令が実行されるまでの時間として測定されます。
- (2) ウェークアップ時間は、外部ウェークアップ信号 (IOMUX ウェークアップ イベント) のエッジから、ユーザー プログラムの最初の命令が実行されるまでの時間として測定されます。
- (3) スタートアップ時間は、VDD が VBOR0- と交差 (コールド スタートアップ) した時刻から、ユーザー プログラムの最初の命令が実行 されるまでの時間として測定されます。

7.9 クロック仕様

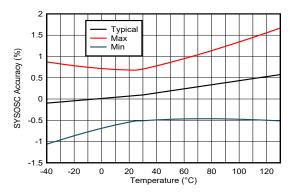
7.9.1 システム発振器 (SYSOSC)

自由気流での動作温度範囲内 (特に記述のない限り)

	パラメータ	テスト条件	最小値	標準値	最大値	単位	
f _{SYSOSC}	出荷時に調整された SYSOSC 周波数	SYSOSCCFG.FREQ=00 (ベース)		32			
	山何時に調整とれた 313030 周放数	SYSOSCCFG.FREQ=01		4			
		SYSOSCCFG.FREQ=10、 SYSOSCTRIMUSER.FREQ=10		24		MHz	
	ユーザー調整された SYSOSC 周波数	SYSOSCCFG.FREQ=10、 SYSOSCTRIMUSER.FREQ=01		16			
		SETUSEFCL=1、T _a = 25°C	-0.41		0.58		
		周波数補正ループ (FCL) がイネーブル	SETUSEFCL=1、-40°C ≦ T _a ≦ 85°C	-0.80		0.93	%
f _{SYSOSC}	で、理想的な ROSC 抵抗を想定した場合 の SYSOSC 周波数精度 ^{(1) (2)}	SETUSEFCL=1、-40°C ≦ T _a ≦ 105°C	-0.80		1.09	70	
		SETUSEFCL=1、-40°C ≦ T _a ≦ 125°C	-0.80		1.30		
		SETUSEFCL=1、 $T_a = 25^{\circ}C$ 、 $\pm 0.1\%$ ± 25 ppm R_{OSC}	-0.5		0.7		
fsysosc	周波数補正ループ (FCL) がイネーブルの ときの SYSOSC 精度、R _{OSC} 抵抗を	SETUSEFCL=1、-40°C \leq T _a \leq 85°C、 \pm 0.1% \pm 25ppm R _{OSC}	-1.1		1.2	%	
	R _{OSC} ピンに配置、出荷時にトリムされた 周波数用 ⁽¹⁾	に配置、出荷時にトリムされた SETUSEFCL=1、-40℃ ≦ T₂ ≦ 105℃、		1.4	70		
		SETUSEFCL=1、-40°C \leq T _a \leq 125°C、 ±0.1% ±25ppm R _{OSC}	-1.1		1.7		

資料に関するフィードバック (ご意見やお問い合わせ) を送信

Copyright © 2024 Texas Instruments Incorporated


7.9.1 システム発振器 (SYSOSC) (続き)

自由気流での動作温度範囲内 (特に記述のない限り)

	パラメータ	テスト条件	最小値	標準値	最大値	単位
f _{sysosc}	内部 ROSC 抵抗使用、周波数補正ループ (FCL) イネーブル時の SYSOSC 周波数精 度 ⁽⁴⁾		-1.4		1.8	%
f _{SYSOSC}	周波数補正ループ (FCL) がディセーブル のときの SYSOSC 精度、32MHz	SETUSEFCL=0, SYSOSCCFG.FREQ=00, -40°C \leq T _a \leq 125°C	-2.6		1.8	%
f _{sysosc}	出荷時に調整された周波数 4MHz の場合、周波数補正ループ (FCL) がディセーブルのときの SYSOSC 精度	SETUSEFCL=0、 SYSOSCCFG.FREQ=01、-40°C \leq T _a \leq 125°C	-2.7		2.3	70
f _{SYSOSC}	ROSC ピンと VSS の間の外付け抵抗 ⁽¹⁾	SETUSEFCL=1		100		kΩ
f _{SYSOSC}	目標精度に達するまでのセトリング タイム ⁽³⁾	SETUSEFCL=1、±0.1% 25ppm の R _{OSC}			30	μs
f _{SYSOSC}	t _{settle} の間の f _{SYSOSC} の追加アンダーシュート精度 ⁽³⁾	SETUSEFCL=1、±0.1% 25ppm の R _{OSC} (1)	-11			%

- (1) SYSOSC 周波数補正ループ (FCL) を使うと、本デバイスの ROSC ピンと VSS との間に接続すべき外部リファレンス抵抗 (R_{OSC}) に よって、SYSOSC の精度を高めることができます。 $\pm 0.1\%$ 25ppm の R_{OSC} に対する精度を示しています。公差の緩い抵抗も使用できます (SYSOSC の精度は低下します)。さまざまな R_{OSC} 精度での SYSOSC 精度の計算方法の詳細については、テクニカル リファレンス マニュアルの「SYSOSC」のセクションを参照してください。FCL をイネーブルしない場合には、 R_{OSC} を実装する必要はありません。
- (2) デバイスの精度のみを表します。最終的な精度を判定するには、使用する ROSC 抵抗の公差と温度ドリフトを、この仕様と組み合わせる必要があります。±0.1% ±25ppm R_{OSC} についての性能が、基準点として示されています。
- (3) SYSOSC がウェークアップするとき (たとえば、低消費電力モードを終了するとき)、FCL がイネーブルなら、SYSOSC は最初に目標周波数 f_{SYSOSC} を、時間 t_{settle,SYSOSC} にわたって、最大 f_{settle,SYSOSC} の追加誤差だけアンダーシュートします。目標の精度はこの時間後に達成されます。
- (4) SYSOSC の周波数補正ループ (FCL) を使うと、内部リファレンス抵抗によって SYSOSC の精度を高めることができます。SYSOSC 精度の計算方法の詳細については、テクニカル リファレンス マニュアルの「SYSOSC」のセクションを参照してください。

7.9.1.1 SYSOSC の標準周波数精度

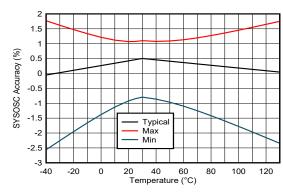


図 7-2. FCL が ON のときの SYSOSC 精度 (32MHz) 図 7-3. FCL が OFF のときの SYSOSC 精度 (32MHz)

FCL ON の精度は、公差 0.1%、25ppm/ $^{\circ}$ C の ROSC 抵抗に基づいています。

7.9.2 低周波数発振器 (LFOSC)

自由気流での動作温度範囲内 (特に記述のない限り)

	パラメータ	テスト条件	最小値	標準値	最大値	単位
f _{LFOSC}	LFOSC 周波数			32768		Hz
	LFOSC 精度	-40°C ≦ T _a ≦ 125°C	-5		5	%
		-40°C ≦ T _a ≦ 85°C	-3		3	%
I _{LFOSC}	LFOSC 消費電流			300		nA

Copyright © 2024 Texas Instruments Incorporated

資料に関するフィードバック(ご意見やお問い合わせ)を送信

7.9.2 低周波数発振器 (LFOSC) (続き)

自由気流での動作温度範囲内 (特に記述のない限り)

	パラメータ	テスト条件	最小値	標準値	最大値	単位
t _{start} , LFOSC	LFOSC スタートアップ時間			1.7		ms

7.9.3 システム フェーズ ロック ループ (SYSPLL)

自由気流での動作温度範囲内 (特に記述のない限り)

	パラメータ	テスト条件	最小値	標準値	最大値	単位
f _{SYSPLLREF}	SYSPLL リファレンス周波数範囲		4		48	MHz
f _{VCO}	VCO 出力周波数		80		400	MHz
f	SYSPLL 出力周波数範囲 ⁽¹⁾	SYSPLLCLK0、SYSPLLCLK1	2.5		200	MHz
† _{SYSPLL}	STSPLL 山刀向放奴靼西(**)	SYSPLLCLK2X	10		800	IVI⊓∠
DC _{PLL}	SYSPLL 出力のデューティ サイクル	f _{SYSPLLREF} = 32MHz、f _{VCO} = 160MHz	45		55	%
littor	SYSPLL RMS サイクル間ジッタ	f - 22MHz f - 160MHz		24		no
Jitter _{SYSPLL}	SYSPLL RMS 周期ジッタ	f _{SYSPLLREF} = 32MHz、f _{VCO} = 160MHz		15.5		ps
I _{SYSPLL}	SYSPLL 消費電流	f _{SYSPLLREF} = 32MHz、f _{VCO} = 160MHz		316		μA
t _{start,} SYSPLL	SYSPLL スタートアップ時間	f _{SYSPLLREF} = 32MHz、f _{VCO} = 160MHz、 ±0.5% 精度		7	18	us

⁽¹⁾ SYSPLL は、デバイス クロック システムでサポートされているより高い出力周波数をサポートする場合があります。SYSPLL 出力周波数を構成するときは、デバイスの最大周波数仕様に違反しないようにしてください。

7.9.4 低周波数クリスタル / クロック

自由気流での動作温度範囲内 (特に記述のない限り)

	パラメータ	テスト条件	最小値	標準値	最大値	単位
低周波数	水晶発振器 (LFXT)		·			
f _{LFXT}	LFXT 周波数			32768		Hz
DC _{LFXT}	LFXT デューティ サイクル		30		70	%
OA _{LFXT}	LFXT 水晶発振余裕度			419		kΩ
C _{L, eff}	内部実効負荷容量 ⁽¹⁾			1		pF
t _{start, LFXT}	LFXT スタートアップ時間			483	640	ms
I _{LFXT}	LFXT 消費電流	XT1DRIVE = 0、LOWCAP = 1		200		nA
低周波数	デジタル クロック入力 (LFCLK_IN)					
f _{LFIN}	LFCLK_IN 周波数 ⁽²⁾	SETUSEEXLF = 1	29491	32768	36045	Hz
DC _{LFIN}	LFCLK_IN デューティ サイクル ⁽²⁾	SETUSEEXLF = 1	40		60	%
LFCLK T	ニタ		·		<u>'</u>	
f _{FAULTLF}	LFCLK モニタ フォルト周波数 ⁽³⁾	MONITOR=1	2800	4200	8400	Hz

- (1) これには、寄生結合およびパッケージ容量 (ピンごとに約 2 pF) が含まれ、C_{LFXIN}×C_{LFXOUT}/(C_{LFXIN}+C_{LFXOUT}) として計算されます。 ここで、C_{LFXIN} および C_{LFXOUT} は、それぞれ LFXIN および LFXOUT における合計容量です。
- (2) デジタル クロック入力 (LFCLK_IN) は、ロジック レベルの方形波クロックを受け入れます。
- (3) LFCLK モニタは、LFXT または LFĆLK_IN の監視に使用できます。最小フォルト周波数を下回る場合には必ずフォルトが発生し、最 大フォルト周波数を超える場合には決してフォルトは発生しません。

7.9.5 高周波数クリスタル / クロック

自由気流での動作温度範囲内 (特に記述のない限り)

パラメータ	テスト条件	最小值	標準値	最大値	単位
高周波数水晶発振器 (HFXT)					

資料に関するフィードバック (ご意見やお問い合わせ) を送信

Copyright © 2024 Texas Instruments Incorporated

7.9.5 高周波数クリスタル / クロック (続き)

自由気流での動作温度範囲内 (特に記述のない限り)

	パラメータ	テスト条件	最小値	標準値	最大値	単位
		HFXTRSEL=00	4		8	
£	HFXT 周波数	HFXTRSEL=01	8.01		16	MHz
f _{HFXT}		HFXTRSEL=10	16.01		32	IVITIZ
		HFXTRSEL=11	32.01		48	
	HFXT デューティ サイクル	HFXTRSEL=00	40		65	
DC _{HFXT}		HFXTRSEL=01	40		60	%
		HFXTRSEL=10	40		60	
		HFXTRSEL=11	40		60	
OA _{HFXT}	HFXT 水晶発振余裕度	HFXTRSEL=00 (4~8MHz の範囲)		2		kΩ
C _{L, eff}	内部実効負荷容量 ⁽¹⁾			1		pF
t _{start, HFXT}	HFXT スタートアップ時間 ⁽²⁾	HFXTRSEL=11、32MHz 水晶振動子		0.5		ms
		f_{HFXT} = 4MHz、 R_m = 300 Ω 、 C_L = 12pF		75		
I _{HFXT}	HFXT 消費電流 ⁽²⁾	f_{HFXT} =48MHz、 R_m =30 Ω 、 C_L =12pF、 C_m =6.26fF、 L_m =1.76mH		600		μΑ
高周波数	デジタル クロック入力 (HFCLK_IN)		•		,	
f _{HFIN}	HFCLK_IN 周波数 ⁽³⁾	USEEXTHFCLK = 1	4		48	MHz
DC _{HFIN}	HFCLK_IN デューティ サイクル ⁽³⁾	USEEXTHFCLK = 1	40		60	%

- (1) これには、寄生結合およびパッケージ容量 (ピンごとに約 2 pF) が含まれ、 $C_{HFXIN} \times C_{HFXOUT}/(C_{HFXIN} + C_{HFXOUT})$ として計算されます。ここで、 C_{HFXIN} および C_{HFXOUT} は、それぞれ HFXIN および HFXOUT における合計容量です。
- (2) HFXT スタートアップ時間 (t_{start, HFXT}) は、HFXT がイネーブルになってから、標準的な水晶振動子の安定した発振までの時間で測定されます。スタートアップ時間は、水晶の周波数および水晶振動子の仕様に依存します。『MSPM0 G シリーズ 80MHz マイクロコントローラ テクニカル リファレンス マニュアル』の「HFXT」セクションを参照してください。RSEL が大きいほど消費電流が増加し、RSEL が大きいほど起動時間が減少します。
- (3) デジタル クロック入力 (HFCLK IN) は、ロジック レベルの方形波クロックを受け入れます。

7.10 デジタル IO

7.10.1 電気的特性

電源電圧が推奨範囲内で、自由気流の動作温度範囲内のとき (特に記述のない限り)。

	パラメータ		テスト条件	最小値	標準値 最大値	単位
		ODIO (1)	VDD≧1.62V	0.7*VDD	5.5	V
		ODIO ()	VDD≧2.7V	2	5.5	V
V _{IH} High レベル入力電圧	High レベル入力電圧	すべての I/O (ODIO とリセッ トを除く)	VDD≧1.62V	0.7*VDD	VDD+0.3	V
		ODIO	VDD≧1.62V	-0.3	0.3*VDD	V
.,		ОВЮ	VDD≧2.7V	-0.3	0.8	V
V _{IL}	Low レベル入力電圧	すべての I/O (ODIO とリセッ トを除く)	VDD≧1.62V	-0.3	0.3*VDD	V
		ODIO		0.05*VDD		V
V _{HYS}	ヒステリシス	すべての I/O (ODIO を除く)		0.1*VDD		V
I _{lkg}	ハイ インピーダンスのリ ーク電流	SDIO ^{(2) (3)}			50 ⁽⁴⁾	nA
R _{PU}	プルアップ抵抗	すべての I/O (ODIO を除く)			40	kΩ
R _{PD}	プルダウン抵抗				40	kΩ

7.10.1 電気的特性 (続き)

電源電圧が推奨範囲内で、自由気流の動作温度範囲内のとき (特に記述のない限り)。

	パラメータ		テスト条件	最小値	標準値	最大値	単位
Cı	入力容量				5		pF
		SDIO	VDD≧2.7V、 $ I_{IO} _{, max}$ =6mA VDD≧1.71V、 $ I_{IO} _{, max}$ =2mA VDD≧1.62V、 $ I_{IO} _{, max}$ =1.5mA -40°C ≦T $_{J}$ ≦25°C	VDD-0.4			
		3010	VDD≧2.7V、 $ I_{IO} _{, max}$ =6mA VDD≧1.71V、 $ I_{IO} _{, max}$ =2mA VDD≧1.62V、 $ I_{IO} _{, max}$ =1.5mA -40°C ≦Tj≦130°C	VDD-0.45			
			$\begin{array}{l} VDD \geqq 2.7V, \;\; DRV=1, \;\; I_{IO} , \\ max = 6mA \\ VDD \trianglerighteq 1.71V, \;\; DRV=1, \;\; I_{IO} , \\ max = 3mA \\ VDD \trianglerighteq 1.62V, \;\; DRV=1, \;\; I_{IO} , \\ max = 2mA \\ -40°C \leqq_{T} \leqq 25°C \end{array}$	VDD-0.4			
V _{OH}	High レベル出力電圧	HSIO	$ \begin{array}{l} \text{VDD} \geqq 2.7 \text{V} \cdot \text{DRV=1} \cdot I_{\text{IO}} , \\ \text{max} = 6\text{mA} \\ \text{VDD} \geqq 1.71 \text{V} \cdot \text{DRV=1} \cdot I_{\text{IO}} , \\ \text{max} = 3\text{mA} \\ \text{VDD} \geqq 1.62 \text{V} \cdot \text{DRV=1} \cdot I_{\text{IO}} , \\ \text{max} = 2\text{mA} \\ -40 ^{\circ}\text{C} \leqq_{Tj} \leqq 130 ^{\circ}\text{C} \\ \end{array} $	VDD-0.4			V
			$\begin{array}{l} VDD \geqq 2.7 V, \; DRV=0, \; I_{IO} , \\ max = 4 mA \\ VDD \trianglerighteq 1.71 V, \; DRV=0, \; I_{IO} , \\ max = 2 mA \\ VDD \trianglerighteq 1.62 V, \; DRV=0, \; I_{IO} , \\ max = 1.5 mA \\ -40 ^{\circ} C \leqq_{Tj} \leqq 25 ^{\circ} C \end{array}$	VDD-0.45			
			$\begin{array}{c} \text{VDD} \geqq 2.7 \text{V} \text{DRV=0} I_{\text{IO}} , \\ \text{max} = 4 \text{mA} \\ \text{VDD} \geqq 1.71 \text{V} \text{DRV=0} I_{\text{IO}} , \\ \text{max} = 2 \text{mA} \\ \text{VDD} \geqq 1.62 \text{V} I_{\text{IO}} , \\ \text{max} = 1.5 \text{mA} \\ \text{-40 °C} \leqq_{\text{Tj}} \leqq 130 °\text{C} \end{array}$	VDD-0.45			
		HDIO	VDD \ge 2.7V、DRV = 1、 $ I_{IO} _{,max}$ = 20mA VDD \ge 1.71V、DRV = 1、 $ I_{IO} _{,max}$ = 10mA	VDD-0.4			
	HD	6mA	VDD ≧ 1.71V、DRV = 0、 I _{IO} _{,max} =	VDD-0.4			

7.10.1 電気的特性 (続き)

電源電圧が推奨範囲内で、自由気流の動作温度範囲内のとき (特に記述のない限り)。

	パラメータ		テスト条件	最小値 標準値 最	大値	単位
		SDIO	VDD≧2.7V、 I _{IO} _{, max} =6mA VDD≧1.71V、 I _{IO} _{, max} =2mA VDD≧1.62V、 I _{IO} _{, max} =1.5mA -40°C ≦T _I ≦25°C		0.4	
		SDIO	VDD≧2.7V、 I _{IO} 、 _{max} =6mA VDD≧1.71V、 I _{IO} 、 _{max} =2mA VDD≧1.62V、 I _{IO} 、 _{max} =1.5mA -40°C ≦T _J ≤130°C	(0.45	
		HSIO	$\begin{array}{l} \text{VDD} \geqq 2.7 \text{V, DRV=1, } I_{IO} , \\ \text{max} = 6 \text{mA} \\ \text{VDD} \trianglerighteq 1.71 \text{V, DRV=1, } I_{IO} , \\ \text{max} = 3 \text{mA} \\ \text{VDD} \trianglerighteq 1.62 \text{V, DRV=1, } I_{IO} , \\ \text{max} = 2 \text{mA} \\ \text{T}_{j} \lessapprox 85 ^{\circ} \text{C} \end{array}$		0.4	
		HSIO	$ \begin{array}{l} \text{VDD} \geqq 2.7 \text{V} \cdot \text{DRV=1} \cdot \ I_{IO} , \\ \text{max} = 6 \text{mA} \\ \text{VDD} \trianglerighteq 1.71 \text{V} \cdot \text{DRV=1} \cdot \ I_{IO} , \\ \text{max} = 3 \text{mA} \\ \text{VDD} \trianglerighteq 1.62 \text{V} \cdot \text{DRV=1} \cdot \ I_{IO} , \\ \text{max} = 2 \text{mA} \\ -40 ^{\circ} \text{C} \leqq_{TJ} \leqq 130 ^{\circ} \text{C} \\ \end{array} $	(0.45	
V _{OL}	V _{OL} Low レベル出力電圧	HSIO	$\begin{array}{l} \text{VDD} \geqq 2.7 \text{V} \cdot \text{DRV=0} \cdot I_{\text{IO}} , \\ \text{max=4mA} \\ \text{VDD} \trianglerighteq 1.71 \text{V} \cdot \text{DRV=0} \cdot I_{\text{IO}} , \\ \text{max=2mA} \\ \text{VDD} \trianglerighteq 1.62 \text{V} \cdot \text{DRV=0} \cdot I_{\text{IO}} , \\ \text{max=1.5mA} \\ \text{Tj} \lessapprox 85 ^{\circ} \text{C} \end{array}$		0.4	V
		HSIO	$\begin{array}{l} \text{VDD} \geqq 2.7 \text{V, DRV=0, } I_{\text{IO}} , \\ \text{max} = 4 \text{mA} \\ \text{VDD} \trianglerighteq 1.71 \text{V, DRV=0, } I_{\text{IO}} , \\ \text{max} = 2 \text{mA} \\ \text{VDD} \trianglerighteq 1.62 \text{V, DRV=0, } I_{\text{IO}} , \\ \text{max} = 1.5 \text{mA} \\ -40 ^{\circ}\text{C} \leqq_{\text{T}} \leqq 130 ^{\circ}\text{C} \end{array}$		0.45	
		HDIO	VDD ≥ 2.7V、DRV = 1、 I _{IO} _{,max} = 20mA VDD ≥ 1.71V、DRV = 1、 I _{IO} _{,max} = 10mA		0.4	
		HDIO	VDD ≥ 2.7V、DRV = 0、 $ I_{IO} _{,max}$ = 6mA VDD ≥ 1.71V、DRV = 0、 $ I_{IO} _{,max}$ = 2mA		0.4	
		ODIO	VDD≧2.7V、I _{OL,max} =8mA VDD≧1.71V、I _{OL,max} =4mA -40°C ≦T _J ≦25°C		0.4	
		ODIO	VDD≧2.7V、I _{OL、max} =8mA VDD≧1.71V、I _{OL、max} =4mA -40°C ≦T _j ≦130°C	(0.45	

- (1) I/O タイプ: ODIO = 5V 許容オープン ドレイン、SDIO = 標準駆動、HSIO = 高速
- (2) リーク電流は、対応するピンに VSS または VDD を印加して計測されます (特に記述のない限り)。
- (3) デジタル ポート ピンのリーク電流は個別に計測されます。ポート ピンは入力として選択され、プルアップ / プルダウン抵抗は無効化されています。
- (4) この値は、SDIO がアナログ入力と多重化されていない場合の値です。SDIO がアナログ入力と多重化されている場合、リーク電流は 最大 100nA になる可能性があります。

7.10.2 スイッチング特性

電源電圧が推奨範囲内で、自由気流の動作温度範囲内のとき (特に記述のない限り)。

	パラメータ		テスト条件	最小値 標準値 最大	直単位
		SDIO	VDD ≧ 1.71V、C _L = 20pF	•	6
		3010	VDD ≧ 2.7V、CL = 20pF	3	2
	ポート出力周波数	ポート出力周波数 HSIO	VDD ≧ 1.71V、DRV = 0、CL = 20pF	•	6
f _{max}			VDD ≧ 1.71V、DRV = 1、CL = 20pF	2	4
			VDD ≧ 2.7V、DRV = 0、CL = 20pF	3	2 MHz
			VDD ≧ 2.7V、DRV = 1、CL = 20pF	4	0
		HDIO	VDD ≧ 1.71V、DRV = 0、CL = 20pF	•	6
			VDD ≧ 2.7V、DRV = 0、CL = 20pF	2	0
		ODIO	VDD ≧ 1.71V、FM ⁺ 、CL = 20pF ~ 100pF		1
t _r 、t _f	出力立ち上がり / 立ち 下がり時間	ODIO を除くす べての出力ポー ト	VDD ≧ 1.71V	0.3/f _m	ax S
t _f	出力立ち下がり時間	ODIO	VDD ≧ 1.71V、FM ⁺ 、CL = 20pF ~ 100pF	20*VDD/5.5 12	0 ns

7.11 アナログ マルチプレクサ VBOOST

自由気流での動作温度範囲内 (特に記述のない限り)

	パラメータ	テスト条件	最小値	標準値	最大値	単位
I _{VBST} VBOO		MCLK/ULPCLK は LFCLK	0.7			
	VBOOST 電流加算器	MCLK/ULPCLK は LFCLK ではなく、 SYSOSC の周波数は 4MHz		10.6		μΑ
t _{START,VBST}	VBOOST スタートアップ時間			12	20	μs

7.12 ADC

7.12.1 電気的特性

電源電圧が推奨範囲内で、自由気流の動作温度範囲内のとき (特に記述のない限り)。すべての代表値は 25℃で測定されており、すべての精度パラメータは 12 ビット分解能モードを使用して測定されています (特に記述のない限り)。

	パラメータ	テスト条件	最小値	標準値	最大値	単位
Vin _(ADC)	アナログ入力電圧範囲(1)	すべての ADC アナログ入力ピンに適用されます	0		VDD	V
		VDD から供給される V _{R+}		VDD		V
V_{R+}	正の ADC リファレンス電圧	外部リファレンス電圧ピン (VREF+) から供給される V _{R+}	1.4		VDD	V
		内部リファレンス電圧 (VREF) から供給される V _{R+}		VREF		V
V _{R-}	負の ADC リファレンス電圧			0		V
F _S	ADC サンプリング周波数	RES = 0x0 (12 ビット モード)			4	
		RES = 0x1 (10 ビット モード)			4	Msps
		RES = 0x2 (8 ビットモード)、SCOMP = 2			5.3	
I _(ADC)	VDD 端子に流れ込む 動作電源電流	F _S = 4MSPS、V _{R+} = VDD		1.5 ⁽²⁾		mA
C _{S/H}	ADC サンプル ホールド容量			3.3		pF
Rin	ADC 入力抵抗			0.5		kΩ
		外部リファレンス電圧 ⁽³⁾	10.9	11.1		
ENOB	有効ビット数	外部リファレンス電圧 ⁽³⁾ 、HW 平均化イネーブル、16 サン プル、2 ビット シフト	12.3	12.5		ビット
		内部リファレンス電圧、V _{R+} = VREF = 2.5V (VRSEL = 1h) ⁽⁵⁾	9.9	10.8		
		内部リファレンス電圧、V _{R+} = VREF = 2.5V (VRSEL = 2h)		9.2		

資料に関するフィードバック(ご意見やお問い合わせ)を送信

Copyright © 2024 Texas Instruments Incorporated

7.12.1 電気的特性 (続き)

電源電圧が推奨範囲内で、自由気流の動作温度範囲内のとき (特に記述のない限り)。すべての代表値は 25℃で測定されており、すべての精度パラメータは 12 ビット分解能モードを使用して測定されています (特に記述のない限り)。

	パラメータ	テスト条件	最小値	原準値	最大值	単位
		外部リファレンス電圧 (3)		68		
SNR	信号対雑音比	外部リファレンス電圧 ⁽³⁾ 、HW 平均化イネーブル、16 サンプル、2 ビット シフト		78		dB
		内部リファレンス電圧、V _{R+} = VREF = 2.5V (VRSEL = 1h) ⁽⁵⁾		66		
		内部リファレンス電圧、V _{R+} = VREF = 2.5V (VRSEL = 2h)		57		
	電源除去比、DC	外部リファレンス電圧 ⁽³⁾ 、VDD = VDD _(min) ~ VDD _(max)		62		
PSRR _{DC}		VDD = VDD _(min) ~ VDD _(max) 内部リファレンス電圧、V _{R+} = VREF = 2.5V		53		dB
		外部リファレンス電圧 ⁽³⁾ 、ΔVDD = 0.1V (1kHz 時)		61		
PSRR _{AC}	電源除去比、AC	ΔVDD = 0.1V (1kHz 時) 内部リファレンス電圧、V _{R+} = VREF = 2.5V		52		dB
T _{wakeup}	ADC ウェークアップ時間	内部リファレンス電圧はオンであると仮定			5	μs
V _{SupplyMon}	電源モニタ分圧器 (VDD/3) の精度	ADC の入力チャネル:電源モニタ ⁽⁴⁾⁽⁶⁾	-1.5		1	%
I _{SupplyMon}	電源モニタ分圧器の消費電流	ADC の入力チャネル:電源モニタ		10		μA

- (1) 有効な変換結果を得るには、選択された ADC リファレンス電圧の範囲内 (V_{R+} ~ V_{R-}) にアナログ入力電圧範囲が含まれている必要があります。
- (2) 内部リファレンス電圧 (VREF) の消費電流は、消費電流パラメータ (I_(ADC)) には含まれません。
- (3) 外部リファレンス電圧のすべての仕様は、V_{R+} = VREF+ = VDD = 3.3V かつ V_{R-} = VREF- = VSS = 0V の条件で、VREF+ ピンの外部容量 1uF として測定されたものです。
- (4) アナログ電源モニタ。チャネル 15 のアナログ入力は切り離されており、分圧器 (VDD/3) と内部的に接続されています。
- (5) 内部リファレンス電圧 VREF を使用してこの ENOB を達成するには、MEMCTL レジスタの VRSEL ビットを外部リファレンス モードに設定する必要があることに注意してください。これにより、REFN が VREF- に、REFP が VREF+ に設定されます。この構成では、VREF- ピンと VREF+ ピンに外部接続はできません。REFN ピンはデバイスのグラウンドに接続してください。
- (6) 外部リファレンス電圧 (VREFSEL = 1) を使用した場合の特性です。

7.12.2 スイッチング特性

電源電圧が推奨範囲内で、自由気流の動作温度範囲内のとき (特に記述のない限り)。

	パラメータ		テスト条件	最小值	標準値	最大值	単位
f _{ADCCLK}	ADC クロック周波数			4		48	MHz
t _{ADC trigger}	ソフトウェア トリガの最小幅			3			ADCCLK サイ クル
t _{Sample}	サンプリング時間 (OPA なし)	12 ビット モート	、 R _S = 50Ω、 C _{pext} = 10pF	62.5			ns
t -	サンプリング時間 (OPA あり) ⁽¹⁾	12 ビット モー	GBW = 0x1、PGA ゲイン = x1	0.22			μs
t _{Sample_PGA}	サンプラフラ時间 (OFA めり) (*)	ド GBW = 0x1、PGA ゲイン = x32	2.6			μs	
t _{Sample_DAC}	DAC を入力として使用したサンプリング 時間 ⁽²⁾			0.5			μs
t _{Sample_GPAMP}	サンプリング時間 (GPAMP あり)			3			μs
t _{Sample_SupplyMon}	サンプリング時間 (電源モニタ (VDD/3) あり)			5			μs

- (1) OPA を備えたデバイスにのみ適用されます。
- (2) DAC を備えたデバイスにのみ適用されます。

7.12.3 直線性パラメータ

電源電圧が推奨範囲内で、自由気流の動作温度範囲内のとき (特に記述のない限り)。すべての代表値は 25°C で測定されており、すべての直線性パラメータは 12 ビット分解能モードを使用して測定されています (特に記述のない限り)。⁽¹⁾

	パラメータ	テスト条件	最小値	標準値	最大值	単位
EI	積分直線性誤差 (INL)	外部リファレンス電圧 ⁽²⁾	-2		2	LSB
E _D	微分直線性誤差 (DNL) ミッシング コードなし	外部リファレンス電圧 ⁽²⁾	-1		1	LSB
Eo	オフセット エラー	内部リファレンス電圧または外部リファレンス電圧 ⁽²⁾	-2		2	mV

7.12.3 直線性パラメータ (続き)

電源電圧が推奨範囲内で、自由気流の動作温度範囲内のとき (特に記述のない限り)。すべての代表値は 25°C で測定されており、すべての直線性パラメータは 12 ビット分解能モードを使用して測定されています (特に記述のない限り)。⁽¹⁾

	パラメータ	テスト条件	最小值	標準値	最大值	単位
E _G	ゲイン誤差	外部リファレンス電圧 ⁽²⁾	-3		3	LSB

- (1) 総合未調整誤差 (TUE) は、次の式を使用して、 E_I 、 E_O 、 E_G から計算できます。TUE = $\sqrt{|E_I|^2 + |E_O|^2 + E_G|^2}$ 注:上記の式が正確であるためには、すべての誤差を同じ単位 (通常は LSB) に変換する必要があります。
- (2) 外部リファレンス電圧のすべての仕様は、 V_{R+} = VREF+ = VDD、 V_{R-} = VSS = 0V、VREF+ ピンの外部容量 1uF として測定されたものです。

7.12.4 代表的な接続図

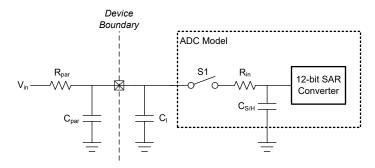


図 7-4. ADC 入力ネットワーク

- 1. R_{in} と C_{S/H} の値については、「ADC 電気的特性」を参照してください。
- 2. C_Iの値については、「デジタル IO 電気的特性」を参照してください。
- 3. Cpar と Rpar は外部 ADC 入力回路の寄生容量および抵抗を表します。

次の式を使用して、ADC変換に必要な最小サンプリング時間(T)を求めます。

- 1. Tau = $(R_{par} + R_{in}) \times C_{S/H} + R_{par} \times (C_{par} + C_I)$
- 2. K = In(2ⁿ / セトリング誤差) In((C_{par} + C_I) / C_{S/H})
- 3. T (最小サンプリング時間) = K × Tau

7.13 温度センサ

自由気流での動作温度範囲内 (特に記述のない限り)

	パラメータ	テスト条件	最小值	標準値	最大値	単位
TS _{TRIM}	出荷時調整温度 ⁽¹⁾	ADC および VREF の構成:RES = 0 (12 ビット モード)、VRSEL = 0h (VDD = 3.3V)、ADC t _{sample} = 12.5uS	27	30	33	°C
TS _c	温度係数	-40°C ≦ T _j ≦ 130°C	-1.9	-1.8	-1.7	mV/°C
t _{SET、TS}	温度センサのセトリング タイム ⁽²⁾	ADC および VREF の構成:RES = 0 (12 ビット モード)、VRSEL = 0h (VDD = 3.3V)、ADC チャネル = 11			12.5	μs

- (1) ユーザー較正により、より高い絶対精度を実現できます。「詳細説明」セクションの「温度センサ」の章を参照してください。
- (2) これは、温度センサの測定に必要な最小 ADC サンプリング時間です。

7.14 VREF

7.14.1 電圧特性

電源電圧が推奨範囲内で、自由気流の動作温度範囲内のとき (特に記述のない限り)。

	パラメータ	テスト条件	最小値	標準値	最大値	単位
VDD	VREF 動作に必要な最低電源電圧	BUFCONFIG = 0	2.7			V
VDD _{min} VF	VREF期IFに必安体取似电까电圧	BUFCONFIG = 1	1.62			v

資料に関するフィードバック (ご意見やお問い合わせ) を送信

Copyright © 2024 Texas Instruments Incorporated

7.14.1 電圧特性 (続き)

電源電圧が推奨範囲内で、自由気流の動作温度範囲内のとき (特に記述のない限り)。

	パラメータ	テスト条件	最小値	標準値	最大值	単位
VREF	リファレンス電圧の出力電圧	BUFCONFIG = 1	1.38	1.4	1.42	V
		BUFCONFIG = 0	2.46	2.5	2.54	V

7.14.2 電気的特性

電源電圧が推奨範囲内で、自由気流の動作温度範囲内のとき (特に記述のない限り)。

	パラメータ		テスト条件	最小値	標準値	最大値	単位
I _{VREF}	VREF の動作電源電流	BUFCONFIG = {0), 1}、無負荷		166	330	μΑ
I _{Drive}	VREF 出力駆動能力 (1)	VREF+ デバイス	ピンでサポートされる駆動能力			100	μΑ
I _{SC}	VREF 短絡電流					100	mA
TC _{VREF}	VREF の温度係数 (バンドギャップ + VRBUF) ⁽²⁾	BUFCONFIG = {1}	BUFCONFIG = {1}			75	ppm/°C
TC _{VREF}	VREF の温度係数 (バンドギャップ + VRBUF) ⁽²⁾	BUFCONFIG = {0}	BUFCONFIG = {0}			75	ppm/°C
TC _{drift}	VREF の長期ドリフト	時間 =1000 時間、	BUFCONFIG = {0, 1}, T = 25°C			300	ppm
DCDD	VPEE 雲頂除土比 DC	VDD = 1.7V ~ VD	Dmax、BUFCONFIG = 1	-57	-63		dB
PSRR _{DC}	VREF 電源除去比、DC	VDD = 2.7V ~ VD	Dmax、BUFCONFIG = 0	-49	-53		ub
V	VREF 出力での RMS ノイズ	BUFCONFIG = 1			500		μVrms
V _{noise}	(0.1Hz ~ 100MHz)	BUFCONFIG = 0			900		μνιτιις
C _{VREF}	VREF+ ピンの推奨 VREF デカップ リング コンデンサ ^{(3) (4) (5)}			0.7	1	1.15	μF
T _{startup}	VREF スタートアップ時間					200	
T _{refresh}	VREF 外部コンデンサのリフレッ シュ時間	BUFCONFIG = {0), 1}、VDD = 2.8V、 $C_{VREF} = 1\mu F$	31.25			μS

- (1) 示された最大出力駆動能力は、デバイスでどのペリフェラルが使用されているかに関係なくサポートされます。
- (2) VREF 出力の温度係数は、TC_{VRBUF} と内部バンドギャップ リファレンスの温度係数の和です。
- (3) 内部リファレンス電圧 VREF を使用する場合、デカップリング コンデンサ (C_{VREF}) が必要であり、VREF+ ピンから VREF-/ GND に接続する必要があります。VREF+/- ピンを使用して外部リファレンスを供給する場合、外部リファレンス ソースに基づいてデカップ リング コンデンサの値を選択する必要があります。
- (4) 0805 以下のパッケージ サイズのセラミック コンデンサを推奨します。許容誤差は最大 ±20% です。
- (5) VREF モジュールは、C_{VREF} が接続されているときのみイネーブルにして、それ以外の場合はイネーブルにしないでください。

7.15 GPAMP

7.15.1 電気的特性

電源電圧が推奨範囲内で、自由気流の動作温度範囲内のとき (特に記述のない限り)。

	パラメータ	テスト条件		最小値	標準値	最大値	単位	
		RRI = 0x0		-0.1		VDD-1		
V _{CM}	同相電圧範囲	RRI = 0x1		1		VDD-0.	V	
		RRI = 0x2		-0.1		VDD-0.		
1	静止電流 (オペアンプ 1 個あたり)	I _O = 0mA、RRI = 0x0			97			
I _q		I _O = 0mA、RRI = 0x1 または 0x2			93		μΑ	
GBW	ゲイン帯域幅積	C _L = 200pF			0.32		MHz	
V	入力オフセット電圧	非反転、ユニティ ゲイン、	CHOP = 0x0		±0.2	±6.5	mV	
V _{OS}	OS 人刀オノセット電圧	$T_A = 25^{\circ}C$, VDD = 3.3V	CHOP = 0x1		±0.08	±0.4	IIIV	
dV _{OS} /dT	カオフセット電圧の温度ドリフト	北京転 フーニィゲノン	CHOP = 0x0		7.7		µV/°C	
uv _{OS} /ui	入力オフセット電圧の温度ドリフト	非反転、ユニティ ゲイン CHOP = 0x1			0.34		μν/ Ο	

Copyright © 2024 Texas Instruments Incorporated

資料に関するフィードバック(ご意見やお問い合わせ)を送信

7.15.1 電気的特性 (続き)

電源電圧が推奨範囲内で、自由気流の動作温度範囲内のとき (特に記述のない限り)。

	パラメータ	テスト第	条件	最小値	標準値	最大値	単位
		0.1V <v<sub>in<(VDD-0.3V)、</v<sub>	T _A = 25°C		±40		
ı	SoC の多重化された I/O ピンの入力バ	VDD=3.3V、CHOP=0x0	T _A = 125°C		±4000		nΛ
I _{bias}	イアス	0.1V <v<sub>in<(VDD-0.3V),</v<sub>	T _A = 25°C		±200		pA
		VDD=3.3V、CHOP=0x1	T _A = 125°C		±4000		
CMRR _{DC}	同相除去比、DC	同相電圧範囲の全範囲	CHOP = 0x0	48	77		- dB
CIVILLIADC			CHOP = 0x1	56	105		
e _n	1 も電圧 ノノブ窓座		f = 1kHz		43		nV/√ Hz
e _n	- 入力電圧ノイズ密度 	非风転、ユニティ ソイン	f = 10kHz		19		IIV/√⊓Z
R _{in}	入力抵抗(1)				0.65		kΩ
<u> </u>	入力容量	同相			4		5.F
C _{in}		差動			2		pF
A _{OL}	開ループ電圧ゲイン、DC	$R_L = 350 k\Omega$, $0.3 < Vo < (VE)$	DD-0.3)	82	90	107	dB
PM	位相マージン	$C_L = 200 pF, R_L = 350 k\Omega$		69	70	72	度
SR	スルーレート	非反転、ユニティ ゲイン、	C _L = 40pF		0.32		V/µs
THDN	全高調波歪 + ノイズ				0.012		%
I _{Load}	出力負荷電流				4		mA
C _{Load}	出力負荷容量					200	pF

(1) ここでの R_{in} は、GPAMP 内のマルチプレクサの入力抵抗を意味します。

7.15.2 スイッチング特性

電源電圧が推奨範囲内で、自由気流の動作温度範囲内のとき (特に記述のない限り)。

パラメータ		テスト条件		最小 値	標準値	最大値	単位
t _{EN}	GPAMP のイネーブル時間	ENABLE = 0x0 ~ 0x1、バンドギャップ リファレンスはオン、0.1%	非反転、ユニティ ゲイン		12	20	μs
t _{disable}	GPAMP のディセーブル 時間				4		ULPCLK サ イクル
t _{SETTLE}	GPAMP のセトリング タイム	C _L = 200pF、Vstep = 0.3V ~ (VDD - 0.3V)、0.1%、ENABLE = 0x1	非反転、ユニティ ゲイン		9		μs

7.16 I2C

7.16.1 I²C のタイミング図

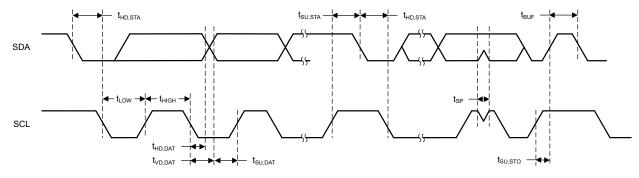


図 7-5. I2C のタイミング図

7.16.2 I2C 特性

自由気流での動作温度範囲内 (特に記述のない限り)

パラメータ		テスト条件	スタンダード		ファスト	モード	高速プラス モード		単位
			最小値	最大値	最小値	最大値	最小値	最大値	
f _{I2C}	I2C 入力クロック周波数	パワー ドメイン 0 の I2C	2	32	8	32	20	32	MHz
f _{SCL}	SCL クロック周波数			0.1		0.4		1	MHz
t _{HD,STA}	(リピート) スタート ホールド時 間		4		0.6		0.26		μs
t _{LOW}	SCL クロック Low 期間		4.7		1.3		0.5		μs
t _{HIGH}	SCL クロック High 期間		4		0.6		0.26		μs
t _{SU,STA}	リピート スタート セットアップ 時間		4.7		0.6		0.26		μs
t _{HD,DAT}	データ ホールド時間		0		0		0		ns
t _{SU,DAT}	データ セットアップ時間		250		100		50		ns
t _{SU,STO}	ストップ セットアップ時間		4		0.6		0.26		μs
t _{BUF}	ストップ コンディションとスタ ート コンディションの間のバス 解放時間		4.7		1.3		0.5		μs
t _{VD;DAT}	データ有効時間			3.45		0.9		0.45	μs
t _{VD;ACK}	データ有効アクノリッジ時間			3.45		0.9		0.45	μs

7.16.3 I2C フィルタ

自由気流での動作温度範囲内 (特に記述のない限り)

	パラメータ	テスト条件	最小値	標準値	最大值	単位
f_{SP}	入力フィルタにより抑制されるスパイク のパルス持続時間	AGFSELx = 0		6		ns
		AGFSELx = 1		14	35	ns
		AGFSELx = 2		22	60	ns
		AGFSELx = 3		35	90	ns

7.17 SPI

7.17.1 SPI

自由気流での動作温度範囲内 (特に記述のない限り)

	パラメータ	テスト条件	最小値	標準値	最大値	単位
SPI			•			
f _{SPI}	SPI クロック周波数	最大クロック速度 = 32MHz、 1.62V < VDD < 3.6V、 コントローラ モード			16	MHz
f _{SPI}	SPI クロック周波数	最大クロック速度 = 32MHz、 1.62V < VDD < 3.6V、 ペリフェラル モード			16	MHz
f _{SPI}	SPI クロック周波数	最大クロック速度 ≧ 32MHz、 1.62V < VDD < 3.6V、 コントローラ モード			16	MHz
f _{SPI}	SPI クロック周波数	最大クロック速度 ≧ 48MHz、 1.62V < VDD < 2.7V、 高速 IO のコントローラ モード			24	MHz
f _{SPI}	SPI クロック周波数	最大クロック速度 ≧ 64MHz、 2.7V < VDD < 3.6V、 高速 IO のコントローラ モード			32	MHz

7.17.1 SPI (続き)

自由気流での動作温度範囲内 (特に記述のない限り)

	パラメータ	テスト条件	最小値	標準値	最大値	単位
f _{SPI}	SPI クロック周波数	最大クロック速度 ≧ 32MHz、 1.62V < VDD < 3.6V、 ペリフェラル モード			16	MHz
f _{SPI}	SPI クロック周波数	最大クロック速度 ≧ 48MHz、 1.62V < VDD < 2.7V、 高速 IO のペリフェラル モード			24	MHz
f _{SPI}	SPI クロック周波数	最大クロック速度 ≧ 64MHz、 2.7V < VDD < 3.6V、 高速 IO のペリフェラル モード			32	MHz
DC _{SCK}	SCK デューティ サイクル		40	50	60	%
コントロー	ラ					
t _{sclK_H/L}	SCLK High または Low 時間		(t _{SPI} /2) - 1	t _{SPI} /2	(t _{SPI} /2) + 1	ns
t _{CS.LEAD}	CS 進み時間、CS アクティブから クロックまで	SPH=0	1 SPI ク ロック			
t _{CS.LEAD}	CS 進み時間、CS アクティブから クロックまで	SPH=1	1/2 SPI クロック			
t _{CS.LAG}	CS 遅れ時間、最後のクロックから CS 非アクティブまで		1 SPI ク ロック			
t _{CS.ACC}	CS アクセス時間、CS アクティブ から PICO データ出力まで				1/2 SPI クロック	
t _{CS.DIS}	CS ディセーブル時間、CS 非アク ティブから PICO 高インピーダン スまで				1 SPI ク ロック	
t _{SU.CI}	POCI 入力データのセットアップ時間 ⁽¹⁾	2.7V < VDD < 3.6V、遅延サンプリングがイ ネーブル	1			ns
t _{su.cı}	POCI 入力データのセットアップ時間 ⁽¹⁾	1.62V < VDD < 2.7V、遅延サンプリングが イネーブル	1			ns
t _{SU.CI}	POCI 入力データのセットアップ時間 ⁽¹⁾	2.7V < VDD < 3.6V、遅延サンプリングなし	29			ns
t _{su.cı}	POCI 入力データのセットアップ時間 ⁽¹⁾	1.62V < VDD < 2.7V、遅延サンプリングな し	37			ns
t _{HD.CI}	POCI 入力データのホールド時間	遅延サンプリングがイネーブル	24			ns
t _{HD.CI}	POCI 入力データのホールド時間	遅延サンプリングなし	0			ns
t _{VALID.CO}	PICO 出力データの有効時間 ⁽²⁾				10	ns
t _{HD.CO}	PICO 出力データのホールド時間 ⁽³⁾		6			ns
ペリフェラ	ル					
t _{CS.LEAD}	CS 進み時間、CS アクティブから クロックまで		11			ns
t _{CS.LAG}	CS 遅れ時間、最後のクロックから CS 非アクティブまで		1			ns
t _{CS.ACC}	CS アクセス時間、CS アクティブ から POCI データ出力まで				26	ns
t _{CS.DIS}	CS ディセーブル時間、CS 非アク ティブから POCI 高インピーダン スまで				26	ns
t _{SU.PI}	PICO 入力データのセットアップ時間		7			ns
t _{HD.PI}	PICO 入力データのホールド時間		0			ns
t _{VALID.PO}	POCI 出力データの有効時間 ⁽²⁾	2.7V < VDD < 3.6V			25	ns

7.17.1 SPI (続き)

自由気流での動作温度範囲内 (特に記述のない限り)

	パラメータ	テスト条件	最小値	標準値	最大值	単位
t _{VALID.PO}	POCI 出力データの有効時間 ⁽²⁾	1.62V < VDD < 2.7V			31	ns
t _{HD.PO}	POCI 出力データのホールド時間 (3)		5			ns

- (1) 遅延サンプリング機能がイネーブルのとき、POCI 入力データのセットアップ時間を完全に補償できます。
- (2) 出力が SCLK クロック エッジを変更した後、次の有効なデータを出力に駆動する時間を規定します。
- (3) 出力が SCLK クロック エッジを変更した後、出力のデータが有効である間の時間を規定します。

7.17.2 SPI タイミング図

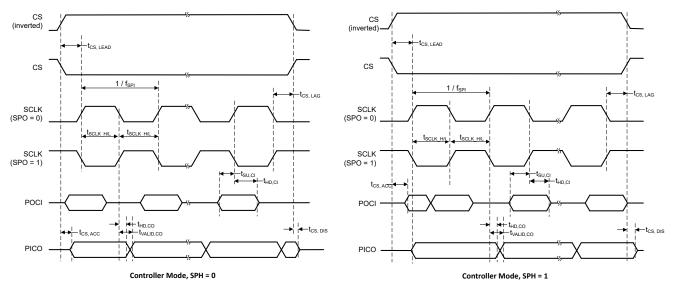


図 7-6. SPI のタイミング図 - コントローラ モード

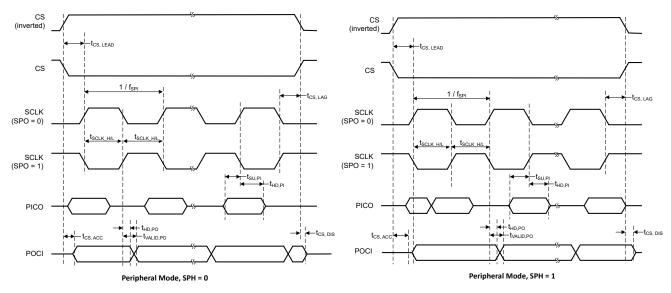


図 7-7. SPI のタイミング図 - ペリフェラル モード

7.18 UART

自由気流での動作温度範囲内 (特に記述のない限り)

	パラメータ	テスト条件	最小値	標準値	最大値	単位
f _{UART}	UART 入力クロック周波数	パワー ドメイン 1 の UART			80	MHz
f _{UART}	UART 入力クロック周波数	パワー ドメイン 0 の UART			40	MHz
f _{BITCLK}	BITCLK クロック周波数 (MBaud のボー レートに等しい)	パワー ドメイン 1 の UART			10	MHz
f _{BITCLK}	BITCLK クロック周波数 (MBaud のボー レートに等しい)	パワー ドメイン 0 の UART			5	MHz
		AGFSELx = 0		6		ns
	入力フィルタにより抑制される	AGFSELx = 1		14	35	ns
t _{SP}	スパイクのパルス持続時間	AGFSELx = 2		22	60	ns
		AGFSELx = 3		35	90	ns

7.19 TIMx

自由気流での動作温度範囲内 (特に記述のない限り)

パラメータ		テスト条件	最小值	標準値	最大値	単位
		パワー ドメイン 1 の TIMx、f _{TIMxCLK} = 80MHz	12.5			ns
t _{res}	タイマ分解能時間	パワー ドメイン 0 の TIMx、f _{TIMxCLK} = 40MHz	25			ns
			1			t _{TIMxCLK}

7.20 TRNG

7.20.1 TRNG 電気的特性

自由気流での動作温度範囲内 (特に記述のない限り)

パラメータ		パラメータ	テスト条件	最小值	標準値	最大値	単位
TRNG _{IACT} TRNG アクティブ電流		TRNG アクティブ電流	TRNG クロック = 20MHz		115		μΑ

7.20.2 TRNG スイッチング特性

自由気流での動作温度範囲内 (特に記述のない限り)

	パラメータ	テスト条件	最小値	標準値	最大値	単位
TRNGCLK _F	TRNG 入力クロック周波数		9.5	10	25	MHz
TRNG _{STARTUP}	TRNG 起動時間			520		μs
TRNG _{LAT32}	ランダムな 32 ビットを生成するため のレイテンシ	デシメーション比 = 4、TRNG クロッ ク = 20MHz		6.4		μs
TRNG _{LAT256}	ランダムな 256 ビットを生成するため のレイテンシ	デシメーション比 = 4、TRNG クロッ ク = 20MHz		51.2		μs

7.21 エミュレーションおよびデバッグ

7.21.1 SWD タイミング

自由気流での動作温度範囲内 (特に記述のない限り)

	パラメータ	テスト条件	最小值	標準値	最大値	単位
f _{SWD}	SWD 周波数				10	MHz

資料に関するフィードバック(ご意見やお問い合わせ)を送信

8 詳細説明

以降のセクションでは、このデータシートのデバイスを構成するすべてのコンポーネントについて説明します。これらのデバイスに内蔵されているペリフェラルは、メモリ マップ レジスタ (MMR) を介してソフトウェアで設定されます。詳細については、『MSPM0 G シリーズ 80MHz マイクロコントローラ テクニカル リファレンス マニュアル』の対応する章を参照してください。

8.1 CPU

CPU サブシステム (MCPUSS) は、Arm Cortex-M0+ CPU、命令プリフェッチ / キャッシュ、システム タイマ、メモリ保護ユニット、割り込み管理機能を実装しています。Arm Cortex-M0+ は、組込みアプリケーションに高性能と低消費電力を提供する、コスト最適化された 32 ビット CPU です。CPU サブシステムの主な特長は次のとおりです。

- Arm Cortex-M0+ CPU は 32kHz~80 MHz のクロック周波数をサポート
 - Armv6-M Thumb 命令セット (リトル エンディアン)、シングル サイクル 32×32 乗算命令付き
 - Arm シングル サイクル IO ポートを経由して、GPÍO レジスタにシングル サイクルでアクセス
- シーケンシャル コード実行を改善するためのプリフェッチ ロジック、4 つの 64 ビット キャッシュ ライン を備えた I キャッシュ
- 24 ビットのダウン カウンタと自動リロード機能を備えたシステム タイマ (SysTick)
- 8 つのプログラマブル領域を持つメモリ保護ユニット (MPU)
- 4 つのプログラム可能な優先レベルとテール チェーンを備えたネスト型ベクタ割り込みコントローラ (NVIC)
- 割り込みレイテンシを短縮するためのジャンプ インデックスを備えた、割り込みソース全体を拡張するため の割り込みグループ

8.2 動作モード

MSPM0G MCU には 5 つのメイン動作モード (電力モード) があり、アプリケーションの要件に基づいてデバイスの消費電力を最適化できます。消費電力を低減するためのモードは次のとおりです。RUN、SLEEP、STOP、STANDBY、SHUTDOWN。CPU は RUN モードではコードをアクティブに実行しています。ペリフェラル割り込みイベントにより、デバイスを SLEEP、STOP、または STANDBY モードから RUN モードにウェークアップできます。SHUTDOWN モードでは、内部コア レギュレータが完全にディセーブルされ、消費電力が最小化されます。また、NRST、SWD、または特定の IO でのロジック レベルの一致によってのみウェークアップが可能です。RUN、SLEEP、STOP、STANDBY の各モードには、複数の構成可能なポリシー オプション (例:RUN.x) も含まれており、性能と消費電力のバランスを確保できます。

性能と消費電力のバランスをさらに高めるために、MSPM0G デバイスには次の 2 つの電力ドメインが実装されています。PD1 (CPU、メモリ、高性能ペリフェラル用) と PD0 (低速、低消費電力ペリフェラル用)。PD1 は、RUN モードと SLEEP モードで常に電源が供給されますが、他のすべてのモードではディセーブルになります。PD0 は、RUN、SLEEP、STOP、STANDBY の各モードで常に電源が供給されます。SHUTDOWN モードでは、PD1 と PD0 の両方がディセーブルになります。

8.2.1 動作モード別の機能 (MSPM0G310x)

各動作モードでサポートされている機能を 表 8-1 に示します。

機能キー:

- EN: その機能は、指定されたモードでイネーブルされます。
- **DIS**: その機能は、指定されたモードでディセーブル (クロックまたは電源のどちらかが遮断) されますが、 その機能の設定は保持されます。
- OPT:その機能は、指定されたモードでは任意であり、イネーブルに設定されている場合はイネーブルのままです。
- NS:その機能は、指定されたモードで自動的にはディセーブルになりませんが、サポートされていません。
- OFF:その機能は、指定されたモードで完全に電源がオフになり、設定情報は保持されません。OFF 状態からウェークアップするときは、アプリケーション ソフトウェアですべてのモジュール レジスタを所望の設定に再構成する必要があります。

表 8-1. 動作モード別のサポートされている機能

		7	RUN	II - -	1 23	SLEEP		STOP		STANDBY		_	
			KUN			JLLLF			3101				×
動作	モード	RUNO	RUN1	RUN2	SLEEP0	SLEEP1	SLEEP2	STOP0	STOP1	STOP2	STANDBY0	STANDBY1	SHUTDOWN
	SYSOSC	EN	EN	DIS	EN	EN	DIS	OPT ⁽¹⁾	EN	DIS	DIS	DIS	OFF
発振器	LFOSC または LFXT		EN (LFOSC または LFXT)						OFF				
	HFXT	OPT	DIS	DIS	OPT	DIS	DIS	DIS	DIS	DIS	DIS	DIS	OFF
	SYSPLL	OPT	DIS	DIS	OPT	DIS	DIS	DIS	DIS	DIS	DIS	DIS	OFF
	CPUCLK	80M	32k	32k				D	IS				OFF
	MCLK から PD1 へ	80M	32k	32k	80M	32k	32k			DIS			OFF
	ULPCLK から PD0 へ	40M	32k	32k	40M	32k	32k	4M ⁽¹⁾	4M	3	2k	DIS	OFF
	ULPCLK から TIMG0、 TIMG8 へ	40M	32k	32k	40M	32k	32k	4M ⁽¹⁾	4M		32k		OFF
クロック	RTCCLK						32 kHz				OFF		
	MFCLK	OPT	D	IS	OPT	D	IS	OI	PT		DIS		OFF
	LFCLK	32k DIS							OFF				
	LFCLK から TIMG0、 TIMG8 へ	32k								OFF			
	LFCLK モニタ						OPT						OFF
	MCLK モニタ					Ol	PT					DIS	OFF
	POR モニタ		EN										
PMU	BOR モニタ		EN							OFF			
T WO	コア レギュレ ータ	高駆動能力						中駆動能力 低駆動能力				動能力	OFF
	CPU		EN					D	IS				OFF
	DMA			OI	PT				DIS (h	リガをサ	ポート)		OFF
コア機能	フラッシュ			E	N					DIS			OFF
	SRAM			E	N					DIS			OFF
	CRC			OI	PT					DIS			OFF
	UART3			OI	PT						OFF		
	SPI0、SPI1			OI	PT			OFF					
DD4 w11=:	AES			OI	PT						OFF		
PD1 ペリフェ ラル	MCAN0	OPT						OFF					
	TIMA0、TIMA1			OI	PT			OFF					
	TIMG6、 TIMG7			OI	PT			OFF					
	TIMG12			OI	PT			OFF					
	1												

表 8-1. 動作モード別のサポートされている機能 (続き)

			RUN			SLEEP			STOP		STANDBY		Z	
動作モード		RUNO	RUN1	RUN2	SLEEPO	SLEEP1	SLEEP2	STOP0	STOP1	STOP2	STANDBY0	STANDBY1	SHUTDOWN	
	TIMG0、 TIMG8		OPT								OFF			
PD0 ペリフェ ラル	RTC		OPT								OFF			
	UARTO, UART1, UART2		OPT OPT ⁽²⁾								OFF			
	I2C0、I2C1	OPT OPT ⁽²⁾								OFF				
	GPIOA、 GPIOB ⁽³⁾	OPT OPT ⁽²⁾							OPT ⁽²⁾	OFF				
	WWDT0、 WWDT1		OPT DIS							OFF				
	TRNG			OPT OFF										
アナログ	ADC0、 ADC1 ⁽³⁾				0	PT				NS (ト	リガをサ	ポート)	OFF	
	GPAMP				0	PT					NS		OFF	
IOMUX および プ	EN							DIS (ウェー ク付き)						
ウェーク ソース 該当なし			f	£意の IR	Q			PD0 IRC)		IOMUX, NRST, SWD			

- (1) RUN1 から STOP0 に遷移した場合 (SYSOSC がイネーブルで、MCLK は LFCLK から供給)、RUN1 のときと同様に SYSOSC はイネーブルに維持され、ULPCLK は 32kHz に維持されます。RUN2 から STOP0 に遷移した場合 (SYSOSC がディセーブルで、MCLK は LFCLK から供給)、RUN2 のときと同様に SYSOSC はディセーブルに維持され、ULPCLK は 32kHz に維持されます。
- (2) STANDBYに STANDBY1のポリシーを使用する場合、TIMG0、TIMG8 および RTC のみがクロック駆動されます。その他の PD0ペリフェラルは、外部アクティビティが発生した際に非同期高速クロック要求を生成できますが、アクティブにクロック供給されません。
- (3) ADCx および GPIO ポート A および B については、デジタル ロジックは PD0 にあり、レジスタ インターフェイスは PD1 にあります。これらのペリフェラルは、PD1 がアクティブな場合には、高速シングルサイクル レジスタ アクセスをサポートし、また、PD0がまだアクティブなときには、STANDBY モードになるまで基本動作もサポートします。

8.3 パワー マネージメント ユニット (PMU)

パワー マネージメント ユニット (PMU) は、本デバイスのための内部的に安定化されたコア電源を生成し、また外部電源 (VDD) の監視を行います。PMU は、PMU 自体とアナログ ペリフェラルで使用されるバンドギャップ基準電圧も内蔵しています。PMU の主な特長は次のとおりです。

- パワーオン リセット (POR) 電源モニタ
- ブラウンアウト リセット (BOR) 電源モニタ、プログラム可能な3 つのスレッショルドを使った早期警告機能付き
- RUN、SLEEP、STOP、STANDBY 動作モードをサポートするコア レギュレータにより、性能と消費電力を 動的に最適化
- パリティ保護されたトリムにより、パワー マネージメント トリムが破損した際、パワーオン リセット (POR) を直ちに生成

詳細については、『*MSPM0 G シリーズ* 8*0MHz マイクロコントローラ テクニカル リファレンス マニュアル*』 『』の「PMU」の章を参照してください。

8.4 クロック モジュール (CKM)

クロック モジュールは以下に示す発振器を備えています。

• **LFOSC**:内部低周波数発振器 (32 kHz)

- SYSOSC: 内部高周波数発振器 (4 MHz または 32 MHz (出荷時に調整)、16 MHz または 24 MHz (ユーザーによる調整))
- LFXT/LFCKIN: 低周波の外部水晶発振器またはデジタル クロック入力 (32kHz)
- HFXT/HFCKIN: 高周波の外部水晶発振器またはデジタル クロック入力 (4~48MHz)
- SYSPLL: 3 出力 (32~80MHz) のシステム フェーズ ロック ループ

プロセッサ、バス、ペリフェラルで使用するために、クロック モジュールによって以下に示すクロックが分配されます。

- MCLK: PD1 ペリフェラルのメイン システム クロック。SYSOSC、LFCLK または HSCLK から生成。RUN および SLEEP モードでアクティブ。
- CPUCLK:プロセッサのクロック (MCLK から生成)。RUN モードでアクティブ。
- ULPCLK: PD0 ペリフェラル用の超低消費電力クロック。RUN、SLEEP、STOP、STANDBY モードでアクティブ。
- MFCLK:ペリフェラル用の 4MHz 固定中周波数クロック。RUN、SLEEP、STOP モードで使用可能。
- MFPCLK: 4MHz 固定中周波数高精度クロック。RUN、SLEEP、STOP モードで使用可能。
- LFCLK:ペリフェラルまたは MCLK 用の 32kHz 固定低周波数クロック。RUN、SLEEP、STOP、 STANDBY モードでアクティブ。
- ADCCLK: ADC のクロック。RUN、SLEEP、STOP モードで使用可能。
- CLK_OUT: クロックを外部に出力するために使用。RUN、SLEEP、STOP、STANDBY モードで使用可能。
- HFCLK: HFXT または HFCLK_IN から生成される高周波数クロック。RUN および SLEEP モードで使用可能。
- HSCLK: HFCLK または SYSPLL から生成される高速クロック。RUN および SLEEP モードで使用可能。
- CANCLK: CAN 機能クロック。HFCLK または SYSPLL から生成。

詳細については、『MSPM0 G シリーズ 80MHz マイクロコントローラ テクニカル リファレンス マニュアル』の「CKM」の章を参照してください。

8.5 DMA

52

ダイレクト メモリ アクセス (DMA) コントローラを使うと、CPU を介さずに、いずれかのメモリ アドレスから 別のメモリ アドレスにデータを移動できます。たとえば、DMA を使って ADC 変換メモリから SRAM にデータを移動できます。DMA を使用すると、ペリフェラルとの間でデータをやりとりするとき、CPU をウェークアップする必要がなく、低消費電力モードのまま維持できるため、システムの消費電力を削減できます。

これらのデバイスの DMA は、以下の主な機能をサポートしています。

- 7つの独立した DMA 転送チャネル
 - 3 つのフル機能チャネル (DMA0、DMA1、DMA2)、繰り返し転送モードをサポート
 - 4つの基本チャネル (DMA3、DMA4、DMA5、DMA6)、シングル転送モードをサポート
- DMA チャネルの優先度を設定可能
- バイト (8 ビット)、ショート ワード (16 ビット)、ワード (32 ビット)、ロング ワード (64 ビット)、またはバイトとワードの混合の転送機能
- 最大 64k のブロック サイズのすべてのデータ タイプの転送をサポートする転送カウンタ
- DMA 転送トリガの選択を設定可能
- 他のチャネルにサービスを提供するためのアクティブ チャネル割り込み
- ・ ピンポン バッファ アーキテクチャのための早期割り込み生成
- 他のチャネルでのアクティビティ完了時のチャネルのカスケード化
- データの再構成をサポートするためのストライド モード (3 相測定アプリケーションなど)

DMA で使用可能なトリガの一覧を 表 8-2 に示します。これらは、DMA メモリ マップ レジスタの DMATCTL.DMATSEL 制御ビットで設定されます。

表 8-2. DMA のトリガの割り当て

TRIGGER 0:12	ソース	TRIGGER 13:24	ソース		
0	ソフトウェア	13	SPI1 パブリッシャ 1		
1	一般サブスクライバ 0 (FSUB_0)	14	SPI1 パブリッシャ 2		

資料に関するフィードバック(ご意見やお問い合わせ)を送信

Copyright © 2024 Texas Instruments Incorporated

表 8-2. DMA のトリガの割り当て (続き)

TRIGGER 0:12	ソース	TRIGGER 13:24	ソース
2	一般サブスクライバ 1 (FSUB_1)	15	UART3 パブリッシャ 1
3	AES パブリッシャ 1	16	UART3 パブリッシャ 2
4	AES パブリッシャ 2	17	UART0 パブリッシャ 1
5	AES パブリッシャ 3	18	UART0 パブリッシャ 2
7	I2C0 パブリッシャ 1	20	UART1 パブリッシャ 2
8	I2C0 パブリッシャ 2	21	UART2 パブリッシャ 1
9	I2C1 パブリッシャ 1	22	UART2 パブリッシャ 2
10	I2C1 パブリッシャ 2	23	ADC0 パブリッシャ 2
11	SPI0 パブリッシャ 1	24	ADC1 パブリッシャ 2
12	SPI0 パブリッシャ 2		

詳細については、『MSPM0 G シリーズ 80MHz マイクロコントローラ テクニカル リファレンス マニュアル』の「DMA」の章を参照してください。

8.6 イベント

イベント マネージャは、1 つのエンティティ (ペリフェラルなど) から別のエンティティ (第 2 のペリフェラル、DMA、CPU など) にデジタル イベントを転送します。イベント マネージャは、静的なルートとプログラマブルなルートの組み合わせを含むイベント ファブリックによって相互接続された一連の定義済みイベント パブリッシャ (ジェネレータ) およびサブスクライバ (レシーバ) によるイベント転送を実装しています。

イベントマネージャによって転送されるイベントには、以下が含まれます。

- 割り込み要求 (IRQ) として CPU に転送されるペリフェラル イベント (静的イベント)
 - 例:CPU に送られる RTC 割り込み
- DMA トリガとして DMA に転送されるペリフェラル イベント (DMA イベント)
 - 例:DMA 転送を要求するための、DMA への UART データ受信トリガ
- ハードウェアでの動作を直接トリガするため、別のペリフェラルに転送されるペリフェラル イベント (汎用イベント)
 - 例:TIMx タイマ ペリフェラルが ADC サブスクライバ ポートに周期的イベントを発行し、ADC がこのイベントを使ってサンプリング開始をトリガする。

詳細については、『MSPM0 G シリーズ 80MHz マイクロコントローラ テクニカル リファレンス マニュアル』の「イベント」の章を参照してください。

表 8-3. 汎用イベント チャネル

汎用ルートは、1:1ルートと1:2スプリッタ ルートのどちらかです。これらのルートでは、イベントを発行しているペリフェラルは、利用可能な複数の汎用ルート チャネルの1つを使ってそのイベントを別の1つのエンティティ (スプリッタルートの場合は複数のエンティティ) に公開するように構成されています。ここでエンティティとは、別のペリフェラル、汎用 DMA トリガイベント、または汎用 CPU イベントです。

CHANID	汎用ルート チャネルの選択	チャネル タイプ
0	汎用イベント チャネルが選択されていない。	該当なし
1	汎用イベント チャネル1が選択されている。	1 : 1
2	汎用イベント チャネル2が選択されている。	1 : 1
3	汎用イベント チャネル3が選択されている。	1 : 1
4	汎用イベント チャネル 4 が選択されている。	1 : 1
5	汎用イベント チャネル 5 が選択されている。	1 : 1
6	汎用イベント チャネル 6 が選択されている。	1 : 1
7	汎用イベント チャネル 7 が選択されている。	1 : 1
8	汎用イベント チャネル8が選択されている。	1 : 1
9	汎用イベント チャネル 9 が選択されている。	1 : 1

表 8-3. 汎用イベント チャネル (続き)

汎用ルートは、1:1ルートと1:2スプリッタ ルートのどちらかです。これらのルートでは、イベントを発行しているペリフェラルは、利用可能な複数の汎用ルート チャネルの1つを使ってそのイベントを別の1つのエンティティ (スプリッタルートの場合は複数のエンティティ) に公開するように構成されています。ここでエンティティとは、別のペリフェラル、汎用 DMA トリガイベント、または汎用 CPU イベントです。

CHANID	汎用ルート チャネルの選択	チャネル タイプ
10	汎用イベント チャネル 10 が選択されている。	1:1
11	汎用イベント チャネル 11 が選択されている。	1:1
12	汎用イベント チャネル 12 が選択されている。	1 : 2 (スプリッタ)
13	汎用イベント チャネル 13 が選択されている。	1 : 2 (スプリッタ)
14	汎用イベント チャネル 14 が選択されている。	1 : 2 (スプリッタ)
15	汎用イベント チャネル 15 が選択されている。	1 : 2 (スプリッタ)

8.7 メモリ

8.7.1 メモリ構成

次の表に、デバイスのメモリ マップの要約を示します。メモリ領域の詳細については、『MSPM0 G シリーズ 80MHz マイクロコントローラ テクニカル リファレンス マニュアル』の「プラットフォーム メモリ マップ」セクションを参照してください。

表 8-4. メモリ構成

メモリ領域	サブ領域	MSPM0G3105	MSPM0G3106	MSPM0G3107
コード (フラッシュ)	ECC 訂正あり	32KB-8B ⁽¹⁾ 0x0000.0000 ~ 0x0000.7FF8	64KB-8B ⁽¹⁾ 0x0000.0000 ~ 0x0000.FFF8	128KB-8B ⁽¹⁾ 0x0000.0000 ~ 0x0001.FFF8
	ECC 訂正なし	0x0040.0000 ~ 0x0040.7FF8	0x0040.0000 ~ 0x0040.FFF8	0x0040.0000 ~ 0x0041.FFF8
	パリティ チェックあり	0x2010.0000 ~ 0x2010.3FFF	0x2010.0000 ~ 0x2010.7FFF	0x2010.0000 ~ 0x2010.7FFF
SRAM (SRAM)	チェックなし	0x2020.0000 ~ 0x2020.3FFF	0x2020.0000 ~ 0x2020.7FFF	0x2020.0000 ~ 0x2020.7FFF
	パリティ コード	0x2030.0000 ~ 0x2030.3FFF	0x2030.0000 ~ 0x2030.7FFF	0x2030.0000 ~ 0x2030.7FFF
	ペリフェラル	0x4000.0000 ~ 0x40FF.FFFF	0x4000.0000 ~ 0x40FF.FFFF	0x4000.0000 ~ 0x40FF.FFFF
	フラッシュ ECC 訂正あり	0x4100.0000 ~ 0x4100.8000	0x4100.0000 ~ 0x4101.0000	0x4100.0000 ~ 0x4102.0000
	フラッシュ ECC 訂正な し	0x4140.0000 ~ 0x4140.8000	0x4140.0000 ~ 0x4141.0000	0x4140.0000 ~ 0x4142.0000
	フラッシュ ECC コード	0x4180.0000 ~ 0x4180.8000	0x4180.0000 ~ 0x4181.0000	0x4180.0000 ~ 0x4182.0000
ペリフェラル	構成 NVM (NONMAIN) ECC 訂正あり	512 バイト 0x41C0.0000~ 0x41C0.0200	512 バイト 0x41C0.0000~ 0x41C0.0200	512 バイト 0x41C0.0000~ 0x41C0.0200
	構成 NVM (NONMAIN) ECC 訂正なし	0x41C1.0000 ~ 0x41C1.0200	0x41C1.0000 ~ 0x41C1.0200	0x41C1.0000 ~ 0x41C1.0200
	構成 NVM (NONMAIN) ECC コード	0x41C2.0000 ~ 0x41C2.0200	0x41C2.0000 ~ 0x41C2.0200	0x41C2.0000 ~ 0x41C2.0200
	FACTORY、訂正あり	0x41C4.0000 ~ 0x41C4.0080	0x41C4.0000 ~ 0x41C4.0080	0x41C4.0000 ~ 0x41C4.0080
	FACTORY、訂正なし	0x41C5.0000 ~ 0x41C5.0080	0x41C5.0000 ~ 0x41C5.0080	0x41C5.0000 ~ 0x41C5.0080
	FACTORY ECC ⊐−ド	0x41C6.0000 ~ 0x41C6.0080	0x41C6.0000 ~ 0x41C6.0080	0x41C6.0000 ~ 0x41C6.0080

表 8-4. メモリ構成 (続き)

メモリ領域 サブ領域		MSPM0G3105	MSPM0G3106	MSPM0G3107
サブシステム		0x6000.0000 ~ 0x7FFF.FFF	0x6000.0000 ~ 0x6000.0000 ~ 0x7FFF.FFFF 0x7FFF.FFFF	
シス	テム PPB	0xE000.0000 ~ 0xE00F.FFFF	0xE000.0000 ~ 0xE00F.FFFF	0xE000.0000 ~ 0xE00F.FFFF

(1) フラッシュ メモリの最初の 32KB (アドレス 0x0000.0000~0x0000.8000) の書き込み / 消去サイクルは最大 100000 回です。

8.7.2 ペリフェラル・ファイル・マップ

表 8-5 に、使用可能なペリフェラルと、各ペリフェラルのレジスタ・ベース・アドレスの一覧を示します。

表 8-5. ペリフェラルのまとめ

ペリフェラル名	ベース・アドレス	サイズ
VREF	0x40030000	0x2000
WWDT0	0x40080000	0x2000
WWDT1	0x40082000	0x2000
TIMG0	0x40084000	0x2000
TIMG8	0x40090000	0x2000
RTC	0x40094000	0x2000
GPIO0	0x400A0000	0x2000
GPIO1	0x400A2000	0x2000
SYSCTL	0x400AF000	0x3000
DEBUGSS	0x400C7000	0x2000
EVENT	0x400C9000	0x3000
NVMNW	0x400CD000	0x2000
I2C0	0x400F0000	0x2000
I2C1	0x400F2000	0x2000
UART1	0x40100000	0x2000
UART2	0x40102000	0x2000
UART0	0x40108000	0x2000
MCPUSS	0x40400000	0x2000
MATHACL	0x40410000	0x2000
WUC	0x40424000	0x1000
IOMUX	0x40428000	0x2000
DMA	0x4042A000	0x2000
CRC	0x40440000	0x2000
AES	0x40442000	0x2000
TRNG	0x40444000	0x2000
SPI0	0x40468000	0x2000
SPI1	0x4046A000	0x2000
UART3	0x40500000	0x2000
CAN-FD	0x40508000	0x8000
ADC0	0x4000000	0x1000
ADC1	0x40002000	0x1000
ADC0 ⁽¹⁾	0x40556000	0x1000
ADC1 ⁽¹⁾	0x40558000	0x1000
TIMA0	0x40860000	0x2000
TIMA1	0x40862000	0x2000

表 8-5. ペリフェラルのまとめ (続き)

ペリフェラル名	ベース・アドレス	サイズ
TIMG6	0x40868000	0x2000
TIMG7	0x4086A000	0x2000
TIMG12	0x40870000	0x2000

(1) ADC0 および ADC1 メモリ・マップ・レジスタのエイリアス領域

8.7.3 ペリフェラルの割り込みベクタ

表 8-6 に、このデバイス内の各ペリフェラルの IRQ 番号と割り込みグループ番号を示します。

表 8-6. 割り込みベクタ番号

ペリフェラル名	NVIC IRQ	グループ IIDX		
WWDT0	0	0		
WWDT1	0	1		
DEBUGSS	0	2		
NVMNW	0	3		
EVENT SUB PORT0	0	4		
EVENT SUB PORT1	0	5		
SYSCTL	0	6		
GPIO0	1	0		
GPIO1	1	1		
TRNG	1	5		
TIMG8	2	-		
UART3	3	-		
ADC0	4	-		
ADC1	5	-		
CAN-FD	6	-		
SPI0	9	-		
SPI1	10	-		
UART1	13	-		
UART2	14	-		
UART0	15	-		
TIMG0	16	-		
TIMG16	17	-		
TIMA0	18	-		
TIMA1	19	-		
TIMG7	20	-		
TIMG12	21	-		
I2C0	24	-		
I2C1	25	-		
AES	28	-		
RTC	30	-		
DMA	31	-		

8.8 フラッシュ メモリ

実行可能なプログラム コードとアプリケーション データを格納するため、1 バンクの不揮発性フラッシュ メモリを備えています。

フラッシュの主な特長は次のとおりです。

- ハードウェア ECC 保護 (エンコードおよびデコード)、シングル ビット誤り訂正およびダブル ビット誤り検 出機能付き
- 推奨電源電圧範囲全体にわたって、インサーキットでの書き込み/消去動作をサポート
- 1KB の小さなセクタ サイズ (1KB の最小消去分解能)

フラッシュ メモリの下位 32KB で最大 100,000 回の書き込み / 消去サイクル、残りのフラッシュ メモリで最大 10,000 回の書き込み / 消去サイクルをサポート (32KB のデバイスでは、フラッシュ メモリ全体で100,000 サイクルをサポート)

フラッシュ メモリの詳細な説明については、『テクニカル リファレンス マニュアル』の「NVM」の章を参照してください。

8.9 SRAM

MSPM0Gxx MCU には、低消費電力の高性能 SRAM が搭載されており、デバイスでサポートされている CPU 周波数範囲全体にわたってゼロ ウェイト状態でのアクセスに対応します。また、MSPM0Gxx MCU は、ハードウェア パリティ付きで最大 32KB の SRAM も備えています。SRAM は、コードに加えて、呼び出しスタック、ヒープ、グローバル データなどの揮発性情報を格納するために使用できます。SRAM の内容は、RUN、SLEEP、STOP、STANDBY 動作モードでは完全に保持され、SHUTDOWN モードでは失われます。書き込み保護メカニズムが搭載されているため、アプリケーションが SRAM の一部に意図しない変更を加えることを防止できます。書き込み保護は、実行可能コードを SRAM に配置するときに役立ちます。CPU または DMA によってコードが意図せず上書きされることに対してある程度の保護を提供するからです。SRAM にコードを配置すると、ゼロ待機状態動作と低消費電力を実現することで、重要なループの性能を向上できます。

8.10 GPIO

汎用入出力 (GPIO) ペリフェラルを使用することにより、デバイス ピンとの間でデータを読み書きできます。 ポート A およびポート B GPIO ペリフェラルを使用することで、これらのデバイスは最大 60 本の GPIO ピン をサポートします。

GPIO モジュールの主な特長は次のとおりです。

- CPU からの 0 待機状態の MMR アクセス
- ソフトウェアでのリード モディファイ ライト構造を必要とせずに、複数のビットのセット、クリア、トグルが可能
- 「ウェークアップ機能付きの標準」駆動機能を持つ GPIO により、デバイスを SHUTDOWN モードからウェークアップ可能
- 任意の GPIO ポートによる、STOP および STANDBY モードからの低消費電力ウェークアップを可能にする 「FastWake」機能
- ユーザー制御の入力フィルタリング

詳細については、『MSPM0 G シリーズ 80MHz マイクロコントローラ テクニカル リファレンス マニュアル』の「GPIO」の章を参照してください。

8.11 IOMUX

IOMUX ペリフェラルは IO パッド構成を可能にし、デバイス ピンを出入りするデジタル データの流れを制御します。IOMUX の主な特長は次のとおりです。

- IO パッド構成レジスタにより、プログラム可能な駆動強度、速度、プルアップまたはプルダウンなどを実現
- デジタル ピン多重化により、複数のペリフェラル信号を同じ IO パッドに接続可能
- PINCM レジスタを使って、ピンの機能と能力をユーザー設定可能

詳細については、『MSPM0 G シリーズ 80MHz マイクロコントローラ テクニカル リファレンス マニュアル』の「IOMUX」の章を参照してください。

8.12 ADC

これらのデバイスの 12 ビット アナログ / デジタル コンバータ (ADC) モジュール ADC0 および ADC1 は、いずれもシングルエンド入力で高速な 12 ビット変換をサポートし、同時サンプリング動作を実現しています。

ADC の主な特長は次のとおりです。

- 12 ビットの出力分解能、4Msps、11 ビットを超える ENOB
- ハードウェア平均化により、250ksps で 14 ビットの実効分解能を実現
- 個別の結果ストレージ レジスタを備えた合計最大 17 の外部入力チャネル
- 温度センシング、電源監視、アナログ信号チェーンのための内部チャネル

58 資料に関するフィードバック(ご意見やお問い合わせ)を送信

Copyright © 2024 Texas Instruments Incorporated

- ソフトウェアで選択可能なリファレンス電圧:
 - 内部リファレンス電圧、1.4V および 2.5V に設定可能 (VREF+ および VREF- ピンにデカップリング コンデンサが必要)
 - MCU 電源電圧 (VDD)
 - 外部リファレンス電圧、VREF+ および VREF- ピンを経由して ADC に供給
- RUN、SLEEP、STOP の各モードで動作

表 8-7. ADC チャネル割り当て

2011/2011/14					
CHANNEL [0:7]	信号	·名 ⁽²⁾	CHANNEL 19.451	信号名	(1) (2)
CHANNEL[0:7]	ADC0	ADC1	CHANNEL[8:15]	ADC0	ADC1
0	A0_0	A1_0	8	A1_7 ⁽³⁾	A0_7 ⁽³⁾
1	A0_1	A1_1	9	-	-
2	A0_2	A1_2	10	-	-
3	A0_3	A1_3	11	温度センサ	-
4	A0_4	A1_4	12	A0_12	温度センサ
5	A0_5	A1_5	13		
6	A0_6	A1_6	14	GPAMP 出力	GPAMP 出力
7	A0_7	A1_7	15	電源 / バッテリ モニ タ	電源 / バッテリ モニ タ

- (1) 信号名が斜体で記載された信号は、完全に SoC 内部の信号です。 これらの信号は、内部ペリフェラルの相互接続に使用されます。
- (2) デバイスのアナログ接続の詳細については、セクション 8.26 を参照してください。
- (3) 各 ADC のチャネル 8 は、反対側の ADC でサンプリングできることに注意してください。各 ADC のチャネル 8 は、反対側の ADC のチャネル Ax_7 をサンプリングします。すべての ADC チャネルは、専用のデバイス ピンで利用できます。

詳細については、『MSPM0 G シリーズ 80MHz マイクロコントローラ テクニカル リファレンス マニュアル』の「ADC」の章を参照してください。

8.13 温度センサ

温度センサは、デバイス温度に対して直線的に変化する電圧を出力します。温度センサの出力は、温度からデジタルへの変換を可能にするため、ADC 入力チャネルの1つに内部的に接続されています。

温度センサのユニットごとの 1 点キャリブレーション値は、ファクトリ定数メモリ領域に格納されています。このキャリブレーション値は、工場調整温度 (TS_{TRIM}) において VDD = 3.3V として 12 ビット モードで測定された温度センサ値に対応する ADC 変換結果 (ADC コード形式) を表します。上記の測定において、ADC および VREF の構成は次のとおりです。RES = 0 (12 ビット モード)、VRSEL = 0h (VDD)、ADC t_{Sample} = 12.5 μ s。このキャリブレーション値を温度センサの温度係数 (TS_c) と組み合わせて使用することで、本デバイスの温度を推定できます。出荷時調整値を使って本デバイスの温度を推定する方法については、『MSPMO~G~シリーズ80MHz~マイクロコントローラ テクニカル リファレンス マニュアル』『』の「温度センサ」のセクションを参照してください。

8.14 VREF

これらのデバイスの共有リファレンス電圧モジュール (VREF) には、構成可能なリファレンス電圧バッファが含まれており、ユーザーはオンボードのアナログ ペリフェラルに安定したリファレンス電圧を供給できます。 また、より高い精度が必要なアプリケーション向けに、外部リファレンスの取り込みもサポートしています。

VREF の主な特長は次のとおりです。

- ユーザー選択可能な 1.4V および 2.5V の内部リファレンス
- 内部リファレンスは、フルスピード ADC の動作をサポート
- VREF+/- デバイス ピンでの外部リファレンス取り込みをサポート
- 適切な動作のために、VREF+/- ピンにデカップリング コンデンサを配置する必要があります。詳細については、「VREF」仕様セクションを参照してください

詳細については、『MSPM0 G シリーズ 80MHz マイクロコントローラ テクニカル リファレンス マニュアル』の「VREF」の章を参照してください。

8.15 GPAMP

汎用アンプ (GPAMP) ペリフェラルは、レール ツー レールの入力と出力を備えたチョッパ安定化汎用オペアンプです。

GPAMP は、以下の機能をサポートしています。

- ソフトウェアで選択可能なチョッパ安定化
- ・ レール ツー レール入出力
- プログラム可能な内部ユニティ ゲイン帰還ループ

詳細については、『*MSPM0 G シリーズ 80MHz マイクロコントローラ テクニカル リファレンス マニュアル*』 『』の「ADC」の章を参照してください。

8.16 TRNG

TRNG (真性乱数生成器) は、内部回路を利用して 32 ビットの乱数を生成します。この TRNG は、FIPS-140-2 準拠のシステムを構築するために、決定論的乱数発生器 (DRNG) へのソースとして使用することを意図しています。TRNG の主な特長は次のとおりです。

- 32 ビットの乱数の生成
- 32 × 4 = 128 TRNG クロック サイクルごとに、新しい 32 ビット数値を生成可能
- ・ 健全性テスト内蔵
- RUN および SLEEP モードで使用可能

詳細については、『MSPM0 G シリーズ 80 MHz マイクロコントローラ テクニカル リファレンス マニュアル』の「TRNG」の章を参照してください。

8.17 AES

高度暗号化規格 (AES) アクセラレータを備えており、AES (FIPS PUB 197) の暗号化および復号動作が CPU からオフロードされます。主な特長:

- 128 ビットおよび 256 ビットの暗号化キーをサポート
- オンザフライでのキー拡張
- 復号用のオフライン キー生成
- シャドウ レジスタにすべてのキー長の初期キーを格納
- ECB、CBC、OFB、CFB 暗号モードのための DMA サポート
- ・ AES 準備完了割り込み生成
- RUN および SLEEP モードで使用可能

詳細については、『MSPM0 G シリーズ 80 MHz マイクロコントローラ テクニカル リファレンス マニュアル』の「AES」の章を参照してください。

8.18 CRC

巡回冗長検査 (CRC) モジュールは入力データ シーケンスのシグネチャを提供します。CRC モジュールの主な特長は次のとおりです。

- CRC16-CCITT に基づく 16 ビット CRC をサポート
- CRC32-ISO3309 に基づく 32 ビット CRC をサポート
- ・ ビット リバーサルをサポート

詳細については、『*MSPM0 G シリーズ* 80*MHz マイクロコントローラ テクニカル リファレンス マニュアル*』 『』の「CRC」の章を参照してください。

8.19 **UART**

UART ペリフェラル (UART0、UART1、UART2、UART3) には、次の主な機能があります。

- スタート、ストップ、およびパリティ用の標準非同期通信ビット
- プログラマブルなシリアル インターフェイス
 - 5、6、7、または8データビット

60 資料に関するフィードバック(ご意見やお問い合わせ)を送信

Copyright © 2024 Texas Instruments Incorporated

- 偶数パリティ ビット、奇数パリティ ビット、スティック パリティ ビット、およびパリティなしビット の生成 / 検出
- 1または2ストップビットの生成
- 改行の検出
- 入力信号のグリッチ フィルタ
- プログラマブルなボーレート生成 (16/8/3 倍オーバーサンプリング機能付き)
- ローカル相互接続ネットワーク (LIN) モードのサポート
- 独立した送信および受信 FIFO による DAM データ転送のサポート
- 送信および受信ループバック モード動作をサポート
- サポートされているプロトコルの詳細については、表 8-8 を参照してください

表 8-8. UART の機能

UART の機能	UART0 (拡張)	UART1 および 2 (メイン)	UART3 (メイン)
停止およびスタンバイ モードでアクティブ	あり	あり	-
送信 FIFO と受信 FIFO を分離	あり	あり	あり
ハードウェア フロー制御をサポート	あり	あり	あり
9 ビット構成をサポート	あり	あり	あり
LIN モードをサポート	あり	-	-
DALI をサポート	あり	-	-
IrDA をサポート	あり	-	-
ISO7816 スマート カードをサポート	あり	-	-
マンチェスター符号化をサポート	あり	-	-

詳細については、『MSPM0 G シリーズ 80MHz マイクロコントローラ テクニカル リファレンス マニュアル』の「UART」の章を参照してください。

8.20 I2C

これらのデバイスの I^2 C (Inter-Integrated Circuit Interface) ペリフェラルは、バス上のその他の I^2 C でバイスとの双方向データ転送を行い、次の主な機能をサポートしています。

- ・ 複数の 7 ビット ターゲット アドレスによる 7 ビットおよび 10 ビット アドレッシング モード
- ・ マルチ コントローラ トランスミッタ / レシーバ モード
- 設定可能クロック ストレッチング付きターゲット レシーバ / トランスミッタ モード
- 標準モード (Sm) をサポート (最大 100kbit/s のビット レート)
- 高速モード (Fm) をサポート (最大 400kbit/s のビット レート)
- 高速プラス モード (Fm+) をサポート (最大 1Mbit/s のビット レート)
 - オープン ドレイン IO (ODIO) およびハイ ドライブ IO (HDIO) にのみ対応
- 独立した送信および受信 FIFO による DMA データ転送のサポート
- PEC、ARP、タイムアウト検出、ホスト サポートにより SMBus 3.0 をサポート
- アドレス一致で低消費電力モードからウェークアップ
- 入力信号のグリッチを抑制するためのアナログおよびデジタル グリッチ フィルタをサポート
- 8 エントリの送信および受信 FIFO

詳細については、『*MSPM0 G シリーズ 80MHz マイクロコントローラ テクニカル リファレンス マニュアル*』 『』の「I2C」の章を参照してください。

8.21 SPI

これらのデバイスのシリアル ペリフェラル インターフェイス (SPI) ペリフェラルは、以下の主な機能をサポートしています。

- コントローラ モードとペリフェラル モードの両方で、ULPCLK/2 のビット レートと最大 32Mbits/s をサポート。 1
- コントローラまたはペリフェラルとして構成可能

- コントローラとペリフェラルの両方に対応する構成可能なチップ セレクト
- ・ プログラマブルなクロック プリスケーラおよびビット レート
- データ フレーム サイズを 4 ビット~16 ビット (コントローラ モード)、7 ビット~16 ビット (ペリフェラルモード) にプログラム可能
- PACKEN 機能をサポート、2 つの 16 ビット FIFO エントリを 32 ビット値にパックして CPU 性能を向上
- DMA データ転送をサポートする送信および受信 FIFO (エントリごとに 16 ビットの 4 エントリ)
- テキサス・インスツルメンツ モード、Motorola モード、National Microwire 形式をサポート

詳細については、『MSPM0~G~シリーズ80MHz~マイクロコントローラ テクニカル リファレンス マニュアル』『』の「SPI」の章を参照してください。

8.22 CAN-FD

コントローラ エリア ネットワーク (CAN) コントローラは、CAN2.0A、CAN2.0B、または CAN-FD バスとの通信を可能にし、最大 5Mbit/s のビット レートをサポートする ISO 11898-1:2015 規格に準拠しています。CAN-FD ペリフェラルの主な特長は次のとおりです。

- 64 バイトの CAN-FD フレームを完全にサポート
- ECC 付きの専用 1KB メッセージ SRAM
- 構成可能な送信 FIFO、送信キュー、イベント FIFO (最大 32 個の素子)
- 最大 32 個の送信専用バッファと 64 個の受信専用バッファ
- 2 つの構成可能な受信 FIFO (それぞれ最大 64 個の素子)
- 最大 128 個のフィルタ素子
- 2つの割り込みライン
- パワーダウンとウェークアップをサポート
- ・ タイムスタンプ カウンタ

詳細については、『MSPM0 G シリーズ 80MHz マイクロコントローラ テクニカル リファレンス マニュアル』の「CAN-FD」の章を参照してください。

8.23 WWDT

ウィンドウ付きウォッチドッグ・タイマ (WWDT) は、本デバイスの動作 (特にコードの実行) を監視するために使えます。WWDT は、アプリケーション・ソフトウェアが規定された時間の範囲内にウォッチドッグを正常にリセットしなかった場合に、リセットまたは割り込みを生成するために使用できます。WWDT の主な特長は次のとおりです。

- ・ 25 ビット・カウンタ
- ・ プログラマブルなクロック分周回路
- ソフトウェアで選択可能な8つのウォッチドッグ・タイマ期間
- ソフトウェアで選択可能な8つのウィンドウ・サイズ
- SLEEP モードに入った際の WWDT の自動停止をサポート
- ウォッチドッグ機能を必要としないアプリケーションのためのインターバル・タイマ・モード

詳細については、『MSPM0 L シリーズ 32MHz マイクロコントローラ・テクニカル・リファレンス・マニュアル』の「WWDT」の章を参照してください。

8.24 RTC

62

リアルタイム クロック (RTC) は、32kHz の入力クロック ソース (通常は低周波数の水晶振動子) で動作し、CPU への割り込み用の複数のオプションを備えたタイム ベースをアプリケーションに提供します。RTC の主な特長は次のとおりです。

- 秒、分、時、曜日、日、月、年のカウンタ
- バイナリまたは BCD フォーマット
- うるう年の取り扱い

¹ HSIO ピンの SPI 信号のみが、16Mbit/s を超えるデータ レートをサポートしています。HSIO ピンについては、「ピン配置図」セクションを参照してください。

- 分、時、曜日、日に基づいてカスタマイズ可能な1つのアラーム割り込み
- ・ 1分ごと、1 時間ごと、深夜 12 時、または正午にウェークアップするインターバル アラーム割り込み
- インターバル アラーム割り込みによる 4096、2048、1024、512、256、128Hz の周期的なウェークアップ
- インターバル アラーム割り込みによる 64、32、16、8、4、2、1、0.5Hz の周期的なウェークアップ
- 水晶振動子オフセット誤差の較正 (最大 ±240ppm)
- 温度ドリフトの補償 (最大 ±240ppm)
- キャリブレーション用に RTC クロックをピンに出力

詳細については、『MSPM0 G シリーズ 80MHz マイクロコントローラ テクニカル リファレンス マニュアル』の「RTC」の章を参照してください。

8.25 タイマ (TIMx)

これらのデバイスのタイマ ペリフェラルは、以下の主な機能をサポートしています。具体的な設定については表 8-9 を参照してください。

汎用タイマ (TIMGx) 特有の機能には以下が含まれます。

- 16 ビット タイマおよび 32 ビット タイマ、アップ、ダウン、またはアップダウンのカウント モードと反復 リロード モード付き
- 選択可能 / 構成可能なクロック ソース
- ・ カウンタ クロック周波数を分周するための 8 ビット プログラマブル プリスケーラ
- 以下のための2つの独立した CC チャネル
 - 出力の比較
 - 入力のキャプチャ
 - PWM 出力
 - ワンショット モード
- シャドウ CC レジスタ、TIMG6、TIMG7、TIMG12 で利用可能
- シャドウ ロード レジスタ、TIMG6、TIMG7 で利用可能
- 位置決めと移動量検出のための直交エンコーダ インターフェイス (QEI) のサポート、TIMG8 で利用可能
- 同一電力ドメイン内の異なる TIMx インスタンス間の同期とクロス トリガをサポート
- 割り込み / DMA トリガ生成とクロス ペリフェラル (ADC など) トリガ機能をサポート
- ホール センサ入力のためのクロス トリガ イベント ロジック (TIMG8)

高度制御タイマ (TIMAx) 特有の機能には以下が含まれます。

- 16 ビット タイマ、アップ、ダウン、またはアップダウンのカウント モードと反復リロード モード付き
- 選択可能 / 構成可能なクロック ソース
- カウンタ クロック周波数を分周するための 8 ビット プログラマブル プリスケーラ
- カウンタで所定のサイクル数が経過した後にのみ割り込みまたはイベントを生成する、リピート カウンタ
- 以下のための最大 4 つの独立した CC チャネル
 - 出力の比較
 - 入力のキャプチャ
 - PWM 出力
 - ワンショット モード
- キャプチャ / 比較イベント用の内部の5番目と6番目のCCチャネル
- データ保存および CC レジスタ用のシャドウ レジスタ、TIMA0 および TIMA1 で利用可能
- 相補出力 PWM
- デッドバンド挿入をプログラム可能な非対称 PWM
- フォルト状況が発生したときに、ユーザー定義による安全な状態の出力信号を確保するためのフォルト処理 メカニズム
- 同一電力ドメイン内の異なる TIMx インスタンス間の同期とクロス トリガをサポート
- 割り込みおよび DMA トリガ生成とクロス ペリフェラル (ADC など) トリガ機能をサポート
- 内部イベント用の2つの追加キャプチャ/比較チャネル

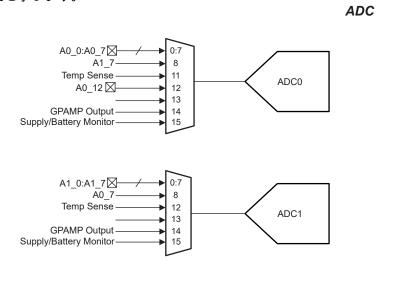
表 8-9. TIMx の構成

タイマ名	パワー ド メイン	分解能	プリスケーラ	リピート カ ウンタ	キャプチャ / 比 較チャネル	位相口一 ド	シャドウロ ード	シャドウ CC	デッドバンド	フォルト	QEI
TIMG0	PD0	16 ビット	8 ビット	_	2	_	-	-	-	-	_
TIMG6	PD1	16 ビット	8 ビット	_	2	_	あり	あり	_	-	-
TIMG7	PD1	16 ビット	8 ビット	_	2	_	あり	あり	-	-	_
TIMG8	PD0	16 ビット	8 ビット	_	2	_	_	-	-	-	あり
TIMG12	PD1	32 ビット	_	_	2	_	_	あり	_	-	-
TIMA0	PD1	16 ビット	8 ビット	8ビット	4	あり	あり	あり	あり	あり	_
TIMA1	PD1	16 ビット	8 ビット	8ビット	2	あり	あり	あり	あり	あり	-

表 8-10. TIMx クロス トリガ マップ (PD1)

TSEL.ETSEL の選択	TIMA0	TIMA1	TIMG6	TIMG7	TIMG12	
0	TIMA0.TRIG0	TIMA0.TRIG0	TIMA0.TRIG0	TIMA0.TRIG0	TIMA0.TRIG0	
1	TIMA1.TRIG0	TIMA1.TRIG0	TIMA1.TRIG0	TIMA1.TRIG0	TIMA1.TRIG0	
2	TIMG6.TRIG0	TIMG6.TRIG0	TIMG6.TRIG0	TIMG6.TRIG0	TIMG6.TRIG0	
3	TIMG7.TRIG0	TIMG7.TRIG0	TIMG7.TRIG0	TIMG7.TRIG0	TIMG7.TRIG0	
4	TIMG12.TRIG0	TIMG12.TRIG0	TIMG12.TRIG0	TIMG12.TRIG0	TIMG12.TRIG0	
5	TIMG8.TRIG0	TIMG8.TRIG0	TIMG8.TRIG0	TIMG8.TRIG0	TIMG8.TRIG0	
6~15	予約済み					
16	イベント サブスクライバ ポート 0 (FSUB0)					
17	イベント サブスクライバ ポート 1 (FSUB1)					
18~31			予約済み			

表 8-11. TIMx クロス トリガ マップ (PD0)


TSEL.ETSEL の選択	TIMG0	TIMG8	
0	TIMG0.TRIG0	TIMG0.TRIG0	
1	TIMG8.TRIG0	TIMG8.TRIG0	
2~15	予約済み		
16	イベント サブスクライバ ポート 0 (FSUB0)		
17	イベント サブスクライバ ポート 1 (FSUB1)		
18~31	予約済み		

詳細については、『MSPM0 G シリーズ 80MHz マイクロコントローラ テクニカル リファレンス マニュアル』の「TIMx」の章を参照してください。

8.26 デバイスのアナログ接続

図 8-1 に、本デバイスの内部アナログ接続を示します。

GPAMP

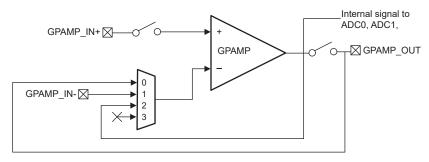


図 8-1. アナログ接続

8.27 入力/出力の回路図

IOMUX は、デジタル IO で使用するペリフェラル機能の選択を管理します。また、出力ドライバ、入力パス、SHUTDOWN モードからのウェークアップ ロジックの制御機能も備えています。詳細については、『MSPMO G シリーズ 80MHz マイクロコントローラ テクニカル リファレンス マニュアル』の「IOMUX」の章を参照してください。

図 8-2 に、フル機能 IO ピンのミクスト シグナル IO ピン スライスの回路図を示します。すべてのピンに対して、アナログ機能、ウェークアップ ロジック、駆動強度制御、プルアップまたはプルダウン抵抗が利用可能であるとは限りません。特定のピンでサポートされている機能の詳細については、デバイスごとのデータシートを参照してください。

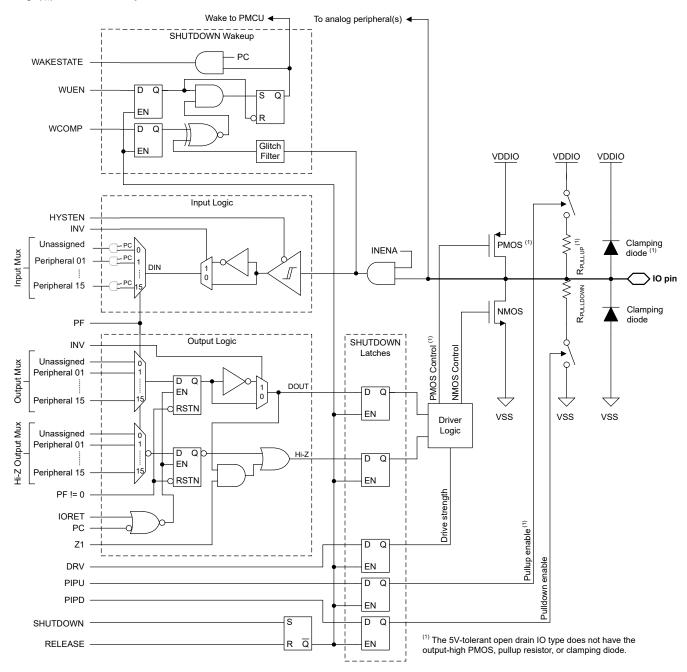


図 8-2. 入力 / 出力の回路図 (上位セット)

8.28 シリアル ワイヤ デバッグ インターフェイス

本デバイス内の各種デバッグ機能を利用できるように、Arm 互換シリアル ワイヤ デバッグ ポート (SW-DP) を利用したシリアル ワイヤ デバッグ (SWD) 2 線式インターフェイスが備わっています。MSPM0 デバイスが備えるデバッグ機能の詳細な説明については、テクニカル リファレンス マニュアルの「デバッグ」の章を参照してください。

表 8-1	12. シリアル ワイヤラ	アバッグ ピンの要件と機能
		AND WARE

デバイス信号	方向	SWD 機能
SWCLK	入力	デバッグ プローブからのシリアル ワイヤ クロッ ク
SWDIO	入力 / 出力	双方向 (共有) シリアル ワイヤ データ

8.29 ブートストラップ ローダ (BSL)

ブートストラップ ローダ (BSL) を使用すると、デバイスの構成も、デバイス メモリのプログラミングも、UART または I2C シリアル インターフェイスを介して行うことができます。BSL によるデバイス メモリへのアクセスと構成は、256 ビットのユーザー定義パスワードで保護されており、必要に応じて、デバイス構成の中で BSL を完全に無効化できます。量産プログラミング用に BSL を使用できるように、 テキサス・インスツルメンツ出荷時、BSL はデフォルトで有効化されています。

BSL を使用するには、最低 2 本のピンが必要です。それは、BSLRX および BSLTX 信号 (UART の場合) または BSLSCL および BSLSDA 信号 (I^2 C の場合) です。さらに、1 本または 2 本の追加ピン (BSL_invoke と NRST) を、外部ホストによるブートローダの制御された呼び出しのために使うこともできます。

有効化されている場合、BSL は次の方法で起動 (開始) されます。

- BSL_invoke ピンの状態が、定義された BSL_invoke のロジック レベルと一致している場合、ブート プロセス中に BSL が呼び出されます。本デバイスの高速ブート モードが有効化されている場合、この呼び出しチェックは省略されます。外部ホストは、呼び出し条件をアサートし、 NRST ピンにリセット パルスを印加して BOOSTRST をトリガすることによって、本デバイスが BSL を実行するように指示できます。その後、本デバイスは再起動プロセス中に呼び出し条件を検証し、呼び出し条件が期待されるロジック レベルと一致している場合、BSL を開始します。
- リセット ベクタとスタック ポインタがプログラミングされていない場合、BSL はブート プロセス中に自動 的に呼び出されます。したがって、 テキサス・インスツルメンツから出荷されたブランク デバイスは、ブート プロセス中に BSL を呼び出します。BSL_invoke ピンにハードウェア呼び出し条件を与える必要はありません。そのため、シリアル インターフェイス信号のみで量産プログラミングが可能です。
- 実行時にアプリケーション ソフトウェアから BSL を呼び出すためには、BSL エントリ コマンドを使用して SYSRST を発行することもできます。

表 8-13. BSL ピンの要件と機能

デバイス信号	接続	BSL 機能
BSLRX	UART に必要	UART の受信信号 (RXD)、入力
BSLTX	UART に必要	UART の送信信号 (TXD)、出力
BSLSCL	I2C に必要	I ² C の BSL クロック信号 (SCL)
BSLSDA	I2C に必要	I ² C の BSL データ信号 (SDA)
BSL_invoke	オプション	ブート時に BSL を開始するために使用されるアクティブ High のデジタル入力
NRST	オプション	リセットのトリガとその後の呼び出し信号 (BSL_invoke) のチェックのために使用されるアク ティブ Low のリセット ピン

BSL の機能とコマンド セットの詳細な説明については、『MSPM0 ブートローダ ユーザー ガイド』を参照してください。

8.30 デバイス ファクトリ定数

すべてのデバイスは、アプリケーション ソフトウェア用に、デバイスの機能を説明する読み出し専用データと、工場から提供された調整情報とを、メモリ内に割り当てられた FACTORY 領域に格納しています。 『MSPM0 G シリーズ 80MHz マイクロコントローラ テクニカル リファレンス マニュアル』の「ファクトリ 定数」セクションを参照してください。

表 8-14. DEVICEID

DEVICEID アドレスは 0x41C4.0004、PARTNUM はビット 12~27、MANUFACTURER はビット 1~11 です。

デバイス	DEVICEID.PARTNUM	DEVICEID.MANUFACTURER
MSPM0G3105	0xBB88	0x17
MSPM0G3106	0xBB88	0x17
MSPM0G3107	0xBB88	0x17

表 8-15. USERID

USERID アドレスは 0x41C4.0008、PART はビット 0~15、VARIANT はビット 16~23 です。

デバイス	PART	VARIANT
M0G3107QPMRQ1	0x4E2F	0x51
M0G3107QPTRQ1	0x4E2F	0xC7
M0G3107QRGZRQ1	0x4E2F	0x8A
M0G3107QRHBRQ1	0x4E2F	0x9A
M0G3107QDGS28RQ1	0x4E2F	0x67
M0G3107QDGS20RQ1	0x4E2F	0xFD
M0G3106QPMRQ1	0x54C7	0x08
M0G3106QPTRQ1	0x54C7	0x3F
M0G3106QRGZRQ1	0x94AD	0xE6
M0G3106QRHBRQ1	0x94AD	0x20
M0G3106QDGS28RQ1	0x94AD	0x03
M0G3106QDGS20RQ1	0x94AD	0x6F
M0G3105QPMRQ1	0x1349	0xD0
M0G3105QPTRQ1	0x1349	0xEF
M0G3105QRGZRQ1	0x1349	0x70
M0G3105QRHBRQ1	0x1349	0x01
M0G3105QDGS28RQ1	0x1349	0x1B
M0G3105QDGS20RQ1	0x1349	0xFB

8.31 識別

リビジョンおよびデバイス識別

ハードウェア リビジョンとデバイスの識別値は、メモリ内に割り当てられた FACTORY 領域に格納されています (「デバイス ファクトリ定数」セクションを参照)。この領域は、アプリケーション ソフトウェア用に、デバイスの機能を説明する読み出し専用データと、工場から提供された調整情報とを提供します。詳細については、『MSPM0 G シリーズ 80MHz マイクロコントローラ テクニカル リファレンス マニュアル』の「ファクトリ定数」の章を参照してください。

デバイス リビジョンおよび識別情報は、デバイス パッケージの上面マーキングの一部としても記載されています。デバイスごとのエラッタ シートに、これらのマーキングが記載されています (セクション 10.4 を参照)。

9 アプリケーション、実装、およびレイアウト

9.1 代表的なアプリケーション

注

以下のアプリケーション情報は、TIの製品仕様に含まれるものではなく、TIではその正確性または完全性を保証いたしません。個々の目的に対する製品の適合性については、お客様の責任で判断していただくことになります。お客様は自身の設計実装を検証しテストすることで、システムの機能を確認する必要があります。

9.1.1 回路図

テキサス・インスツルメンツは、 $10\mu F$ と $0.1\mu F$ の低 ESR セラミック デカップリング コンデンサを VDD ピンと VSS ピンの間に接続するとともに、これらのコンデンサを分離する電源ピンにできる限り近づけて配置し(数 mm 以内)、ループ面積を最小限に抑えることをおすすめします。ほとんどのアプリケーションでは $10\mu F$ のバルク デカップリング コンデンサが推奨値ですが、PCB の設計とアプリケーションの要件に基づいて、必要に応じてこの容量を調整することもできます。たとえば、より値の大きいコンデンサを使用することもできますが、電源レールの立ち上がり時間に影響を及ぼす可能性があります。

デバイスが RESET 状態から開放されてブート プロセスを開始するには、NRST RESET ピンを VDD (電源レベル) にプルアップする必要があります。ほとんどのアプリケーションでは、外部の 47kΩ プルアップ抵抗を10nF プルダウン コンデンサに接続し、NRST ピンを他のデバイスまたはデバッグ プローブで制御できるようにすることをおすすめします。

SYSOSC 周波数補正ループ (FCL) 回路では、公差 0.1%、温度係数 (TCR) は 25ppm/°C 以内の外付け 100kΩ 抵抗を、ROSC ピンと VSS の間に取り付けます。この抵抗はリファレンス電流を確立し、補正ループを通して SYSOSC 周波数を安定させます。この抵抗が必要なのは、FCL 機能を使用して高精度を実現する場合で、SYSOSC FCL がイネーブルになっていない場合は必要ありません。FCL モードを使用しない場合、PA2 ピンをデジタル入出力ピンとして使用できます。

VCORE ピンには 0.47µF のタンク コンデンサが必要で、デバイスのグランドとの距離を最小限に抑えてデバイスの近くに配置する必要があります。他の回路は VCORE ピンに接続しないでください。

5V 対応のオープン ドレイン (ODIO) では、オープン ドレイン IO はローサイド NMOS ドライバのみを実装し、ハイサイド PMOS ドライバを実装しないので、I2C および UART 機能に High を出力するためプルアップ抵抗が必要です。5V 対応のオープン ドレイン IO はフェイルセーフで、VDD が供給されていない場合でも電圧が存在する可能性があります。

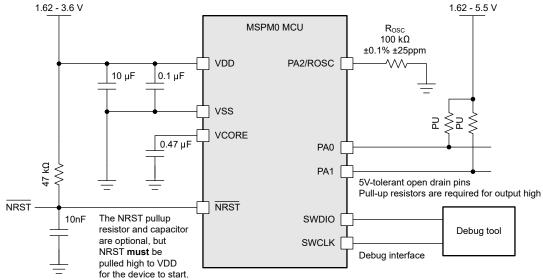


図 9-1. 基本アプリケーションの回路図

10 デバイスおよびドキュメントのサポート

テキサス・インスツルメンツでは、幅広い開発ツールを提供しています。デバイスの性能の評価、コードの生成、ソリューションの開発を行うためのツールとソフトウェアを以下で紹介します。

10.1 入門と次のステップ

MSP 低消費電力マイクロコントローラ、および開発に役立つツールやライブラリの詳細については、テキサス・インスツルメンツの「Arm Cortex-M0+ MCUs」ページを参照してください。

10.2 デバイス命名規則

製品開発サイクルの段階を示すために、 テキサス・インスツルメンツは MSP MCU デバイスとサポート ツールのすべての型番に接頭辞を割り当てています。.MSP MCU 商用ファミリの各番号には、MSP、X のいずれかの接頭辞があります。M0、XM0 のいずれかの接頭辞があります。これらの接頭辞は、製品開発の進展段階を表します。段階には、エンジニアリング プロトタイプ (XM0) から、完全認定済みの量産デバイス (M0) までがあります。

X または XMS - 実験段階のデバイスで、最終製品の電気的特性を表しているとは限りません。

M0 - 完全に認定済みの量産版デバイスです。

XまたはXMS - デバイスは、以下の免責事項付きで出荷されます。

「開発中の製品は、社内での評価用です」。MSP デバイスの特性は完全に明確化されており、デバイスの品質と信頼性が十分に示されています。 テキサス・インスツルメンツの標準保証が適用されます。プロトタイプ デバイス (X) は、標準的な製品版デバイスに比べて故障率が大きいと予測されます。これらのデバイスは、予測される最終使用時の故障率が未定義であるため、 テキサス・インスツルメンツはそれらのデバイスを量産システムで使用しないよう推奨しています。認定済みの量産デバイスのみを使用する必要があります。

テキサス・インスツルメンツのデバイスの命名規則には、デバイス ファミリ名の接尾辞も含まれます。この接尾辞は、温度範囲、パッケージ タイプ、配布形式を示しています。デバイス名の各部の読み方を、図 10-1 に示します。

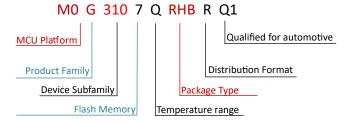


図 10-1. デバイス命名規則

表 10-1. デバイス命名規則

MCU プラットフォーム	M0M0 = Arm ベース 32 ビット M0+ XM0 = 実験段階のシリコン Arm ベース 32 ビット M0+	
製品ファミリ	G = 80MHz の周波数	
デバイス サブファミリ	310 = CAN-FD、2x ADC	
フラッシュ メモリ	5 = 32KB 6 = 64KB 7 = 128KB	
温度範囲	Q = -40℃~125℃、AEC-Q100 認定済み	
パッケージ タイプ	「デバイス比較」 セクションおよび https://www.ti.com/packaging を参照してください	
配布形式	R = 大型リール	
認証	Q1=車載アプリケーション向けに認定済み	

各種パッケージ タイプの MSP デバイスの注文可能な部品番号については、このデータシートの末尾にあるパッケージ注文情報または ti.com を参照するか、 テキサス・インスツルメンツの販売代理店にお問い合わせください。

10.3 ツールとソフトウェア

設計キットと評価モジュール

MSPM0 LaunchPad (LP) ボード: LP-MSPM0G3507 業界で最も優れたアナログ機能を内蔵し、コストを最適化した汎用 MSPM0 MCU ファミリの開発をただちに開始できます。すべてのデバイス ピンと機能が見えるようなります。複数の内蔵回路、すぐに使用できるソフトウェア デモ、オンボード XDS110 デバッグ プローブ (プログラミング、デバッグ、EnergyTrace 用) が含まれています。 LP エコシステムには、機能を拡張するための多数の BoosterPack スタッカブル プラグイン モジュールが含まれています。

組込みソフトウェア

MSPM0 ソフトウェア 開発キット (SDK)

ソフトウェア ドライバ、ミドルウェア ライブラリ、資料、ツール、すべての MSPMO デバイスのための使いやすく簡単なユーザー体験を実現するサンプル コードが含まれています。

ソフトウェア開発ツー ル

TI デベロッパー ゾー

Web ブラウザ上で評価と開発を開始できます。インストールは不要です。クラウド ツールには、ダウンロード可能なオフライン バージョンもあります。

TI Resource Explorer

TI SDK へのオンライン ポータル。CCS IDE または TI クラウド ツールからアクセス

できます。

SysConfig

デバイスとペリフェラルの構成、システム競合の解消、構成コードの生成、ピン多重化設定の自動化のための直感的な GUI。CCS IDE、TI Cloud Tools からアクセスできます。スタンドアロン バージョンもあります。(オフライン バージョン)

MSP Academy

さまざまなトピックを網羅するトレーニング モジュールを使用して MSPM0 MCU プラットフォームについて学習するための優れた出発点です。TIRex の一部です。

GUI Composer

特定の MSPM0 機能の評価を簡素化する GUI。

IDE およびコンパイラ ツールチェーン

Code Composer Studio™ (CCS) Code Composer Studio は、TI のマイクロコントローラおよびプロセッサ向けの統合 開発環境 (IDE) です。CCS は、組み込みアプリケーションの開発とデバッグに必要 な一連のツールで構成されています。CCS は完全に無料で使用でき、Eclipse および Theia フレームワークで利用できます。

IAR Embedded Workbench® IDE

Arm 向け IAR Embedded Workbench は、MSPM0 向けの組込みアプリケーションの構築とデバッグに適した包括的な開発ツールチェーンを提供します。付属の IAR C/C++ コンパイラは、アプリケーション向けに高度に最適化されたコードを生成します。 C-SPY デバッガは、ソース レベルおよび逆アセンブリ レベルのデバッグ用の完全統合型デバッガであり、複雑なコードおよびデータ ブレークポイントをサポートしています。

Keil® MDK IDE

Arm Keil MDK は、MSPM0 向けの組込みアプリケーションの構築とデバッグに適した、デバッガおよび C/C++コンパイラの包括的なツールチェーンです。Keil MDK には、ソース レベルおよび逆アセンブリ レベルのデバッグに適した統合型デバッガが含まれています。MDK は CMSIS に完全準拠しています。

TI Arm-Clang

TI Arm Clang は、Code Composer Studio IDE に含まれています。

GNU Arm Embedded Toolchain

MSPM0 SDK は、オープン ソースの Arm GNU ツールチェーンを使用した開発をサポ ートしています。Arm GCC は、Code Composer Studio IDE (CCS) でサポートされて います。

10.4 ドキュメントのサポート

ドキュメントの更新についての通知を受け取るには、www.tij.co.jp のデバイス製品フォルダを開いてください。 [通知]をクリックして登録すると、変更されたすべての製品情報に関するダイジェストを毎週受け取ることがで きます。 変更の詳細については、修正されたドキュメントに含まれている改訂履歴をご覧ください。

以下のドキュメントでは、MSPM0 MCU について記載しています。これらのドキュメントは、インターネット 上の www.ti.com から入手可能です。

テクニカル リファレンス マニュアル

ズ 80MHz マイクロ ニュアル』

『MSPM0 G シリー このマニュアルは、MSPM0G デバイス ファミリのモジュールおよびペリフェラルに ついて解説しています。それぞれの説明は、モジュールまたはペリフェラルを一般的な コントローラ テクニ 意味で示しています。すべてのデバイスについて、すべてのモジュールまたはペリフェ カル リファレンス マーラルのすべての特長や機能を示しているわけではありません。さらに、モジュールやペー リフェラルは、異なるデバイスに対して、全く同じように実装されているとは限りませ ん。ピンの機能、内部信号の接続、および動作パラメータはデバイスによって異なりま

10.5 サポート・リソース

テキサス・インスツルメンツ E2E™ サポート・フォーラムは、エンジニアが検証済みの回答と設計に関するヒ ントをエキスパートから迅速かつ直接得ることができる場所です。既存の回答を検索したり、独自の質問をし たりすることで、設計で必要な支援を迅速に得ることができます。

す。詳細については、デバイス固有のデータシートを参照してください。

リンクされているコンテンツは、各寄稿者により「現状のまま」提供されるものです。これらはテキサス・イ ンスツルメンツの仕様を構成するものではなく、必ずしもテキサス・インスツルメンツの見解を反映したもの ではありません。テキサス・インスツルメンツの使用条件を参照してください。

10.6 商標

LaunchPad[™], Code Composer Studio[™], TI E2E[™], and テキサス・インスツルメンツ E2E[™] are trademarks of Texas Instruments.

Arm® and Cortex® are registered trademarks of Arm Limited.

すべての商標は、それぞれの所有者に帰属します。

10.7 静電気放電に関する注意事項

この IC は、ESD によって破損する可能性があります。テキサス・インスツルメンツは、IC を取り扱う際には常に適 切な注意を払うことを推奨します。正しい取り扱いおよび設置手順に従わない場合、デバイスを破損するおそれがありま

ESD による破損は、わずかな性能低下からデバイスの完全な故障まで多岐にわたります。精密な IC の場合、パラメータ がわずかに変化するだけで公表されている仕様から外れる可能性があるため、破損が発生しやすくなっています。

10.8 用語集

テキサス・インスツルメンツ用語集 この用語集には、用語や略語の一覧および定義が記載されています。

11 改訂履歴

資料番号末尾の英字は改訂を表しています。その改訂履歴は英語版に準じています。

(Changes from OCTOBER 24, 2023 to JANUARY 16, 2024	Page
•	• ドキュメント全体から 24 ピン VQFN オプションに関連する情報を削除	5
•	• 絶対最大定格表の注を変更	27

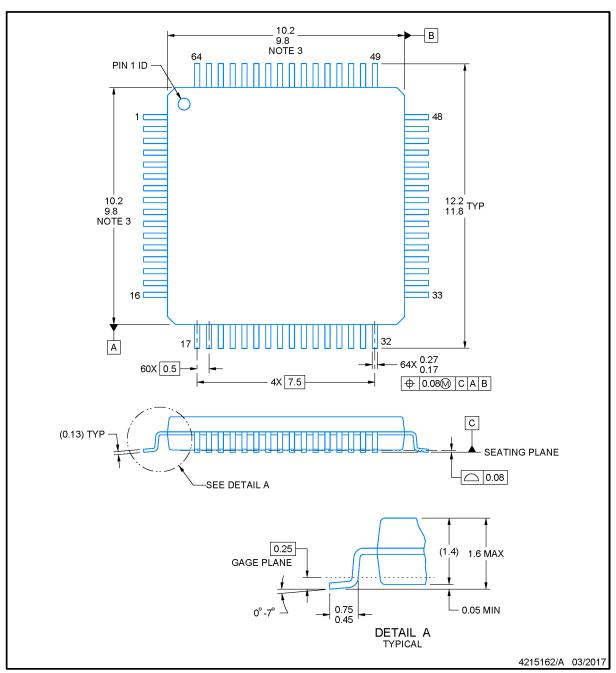
•	^デ バイス命名規則を更新7	′1
---	--------------------------	----

English Data Sheet: SLASF86

12 メカニカル、パッケージ、および注文情報

以降のページには、メカニカル、パッケージ、および注文に関する情報が記載されています。この情報は、指定のデバイスに使用できる最新のデータです。このデータは、予告なく、このドキュメントを改訂せずに変更される場合があります。本データシートのブラウザ版を使用されている場合は、画面左側の説明をご覧ください。

PM0064A



PACKAGE OUTLINE

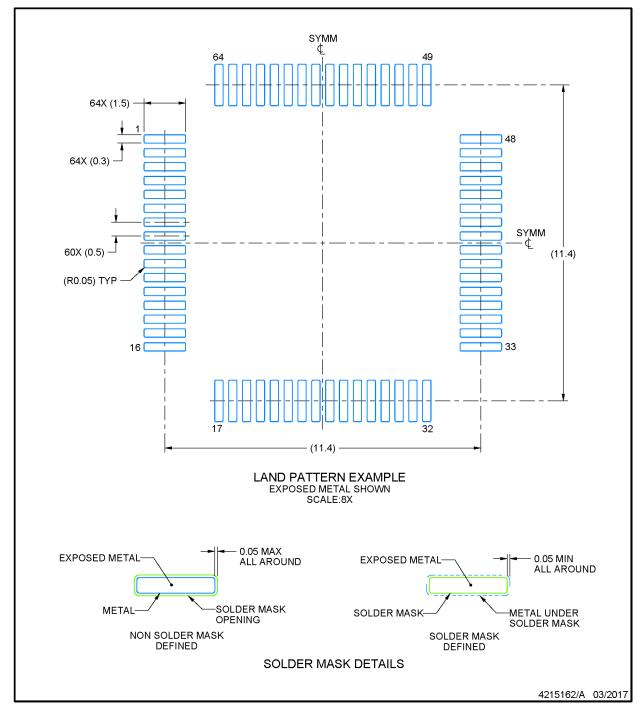
LQFP - 1.6 mm max height

PLASTIC QUAD FLATPACK

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing
- All linear dimensions are in minimeters. Any dimensions in paromassis at a set of the per ASME Y14.5M.
 This drawing is subject to change without notice.
 This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side.

 4. Reference JEDEC registration MS-026.



EXAMPLE BOARD LAYOUT

PM0064A

LQFP - 1.6 mm max height

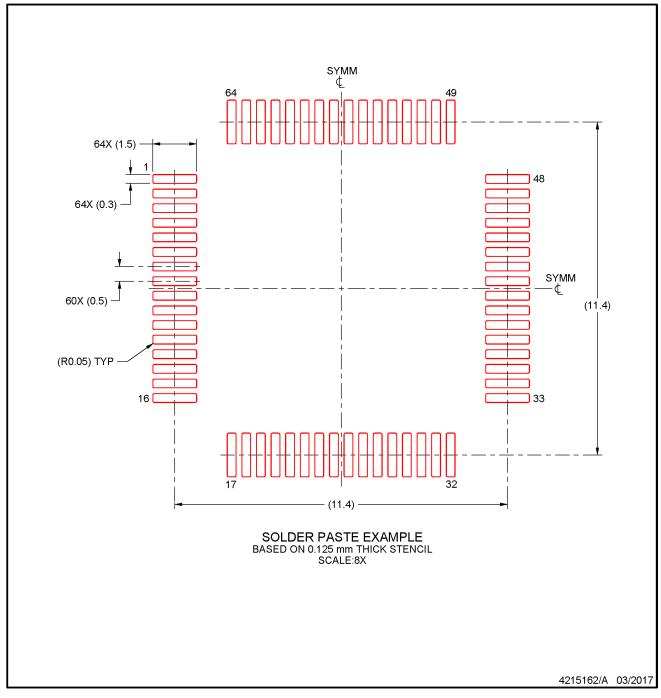
PLASTIC QUAD FLATPACK

NOTES: (continued)

5. Publication IPC-7351 may have alternate designs.

6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

7. For more information, see Texas Instruments literature number SLMA004 (www.ti.com/lit/slma004).



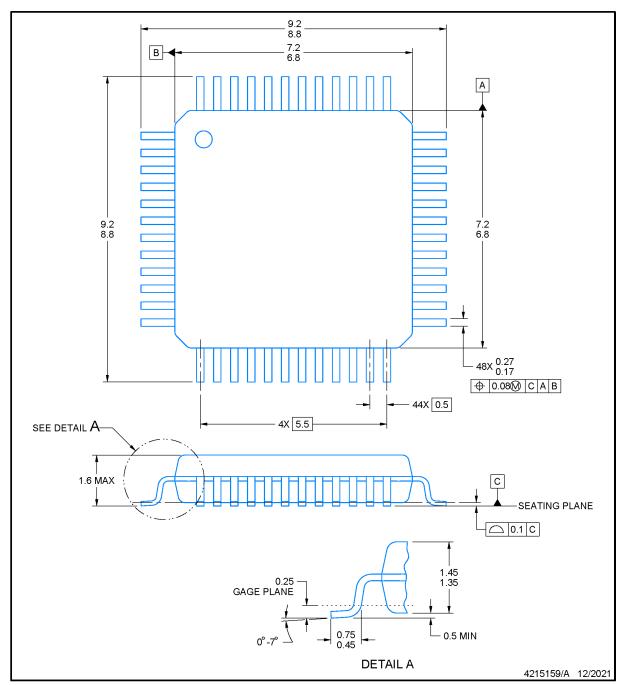
EXAMPLE STENCIL DESIGN

PM0064A

LQFP - 1.6 mm max height

PLASTIC QUAD FLATPACK

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.



PT0048A

PACKAGE OUTLINE

LQFP - 1.6 mm max height

LOW PROFILE QUAD FLATPACK

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing All linear dimensions are in minimeters. Any dimensions in parenties are for reference only per ASME Y14.5M.
 This drawing is subject to change without notice.
 Reference JEDEC registration MS-026.
 This may also be a thermally enhanced plastic package with leads conected to the die pads.

EXAMPLE BOARD LAYOUT

PT0048A

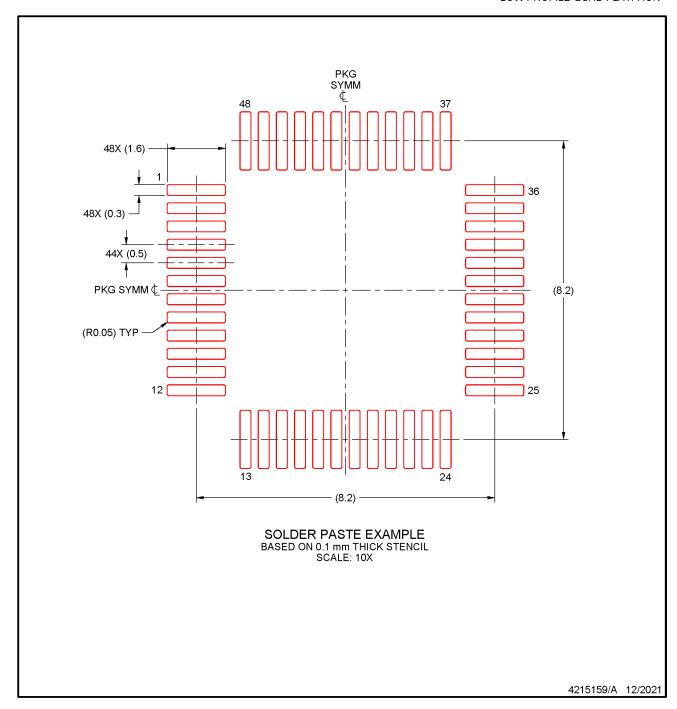
LQFP - 1.6 mm max height

LOW PROFILE QUAD FLATPACK

NOTES: (continued)

5. Publication IPC-7351 may have alternate designs.

6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



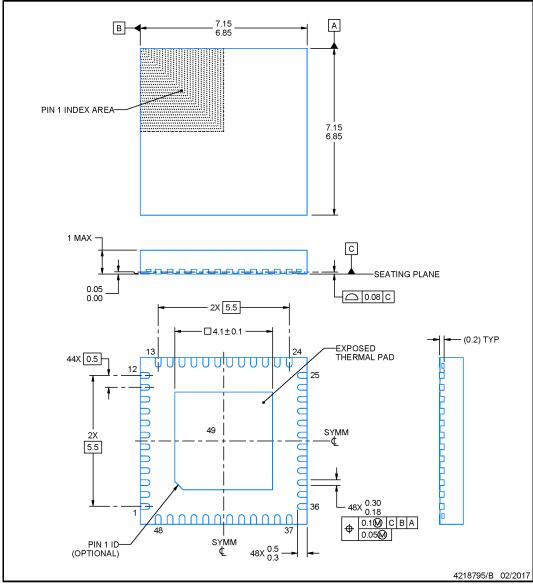
EXAMPLE STENCIL DESIGN

PT0048A

LQFP - 1.6 mm max height

LOW PROFILE QUAD FLATPACK

- 7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 8. Board assembly site may have different recommendations for stencil design.


RGZ0048B

PACKAGE OUTLINE

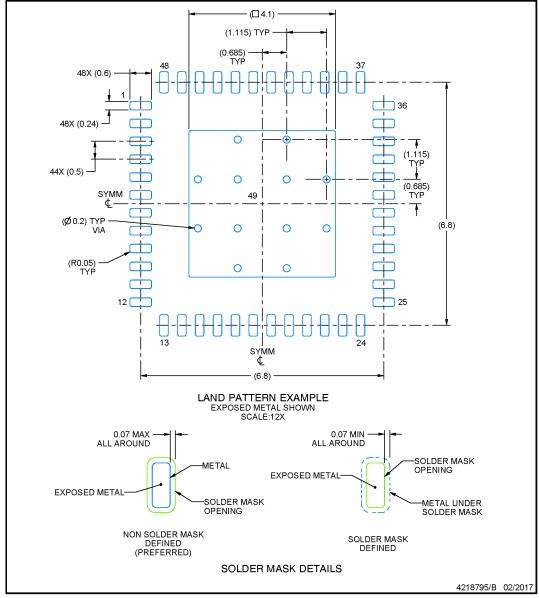
VQFN - 1 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

NOTES:

- All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 This drawing is subject to change without notice.
 The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.

English Data Sheet: SLASF86



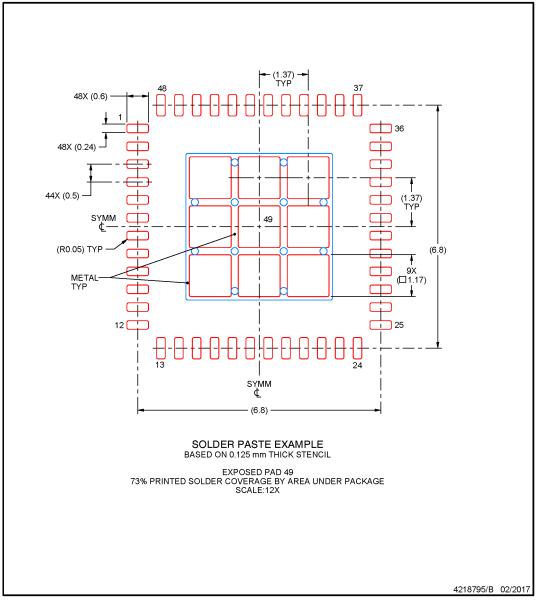
EXAMPLE BOARD LAYOUT

RGZ0048B

VQFN - 1 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

- 4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
- S. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.



EXAMPLE STENCIL DESIGN

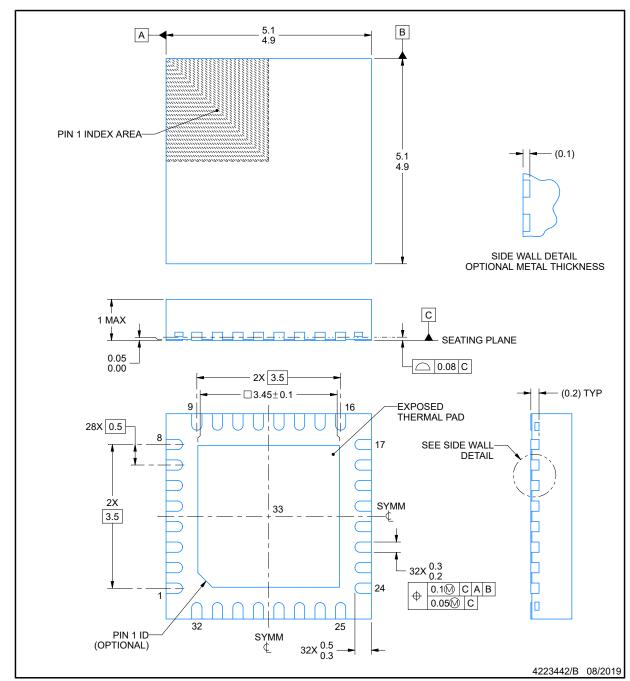
RGZ0048B

VQFN - 1 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.



RHB0032E

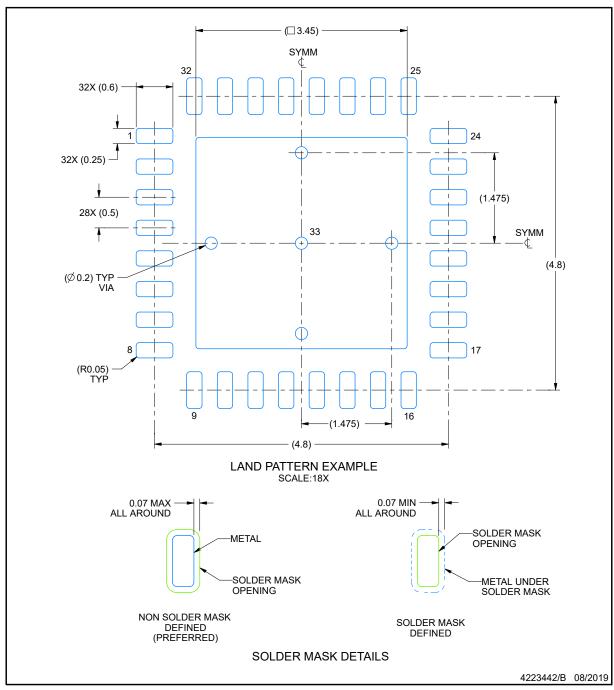
PACKAGE OUTLINE

VQFN - 1 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 This drawing is subject to change without notice.
- 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.



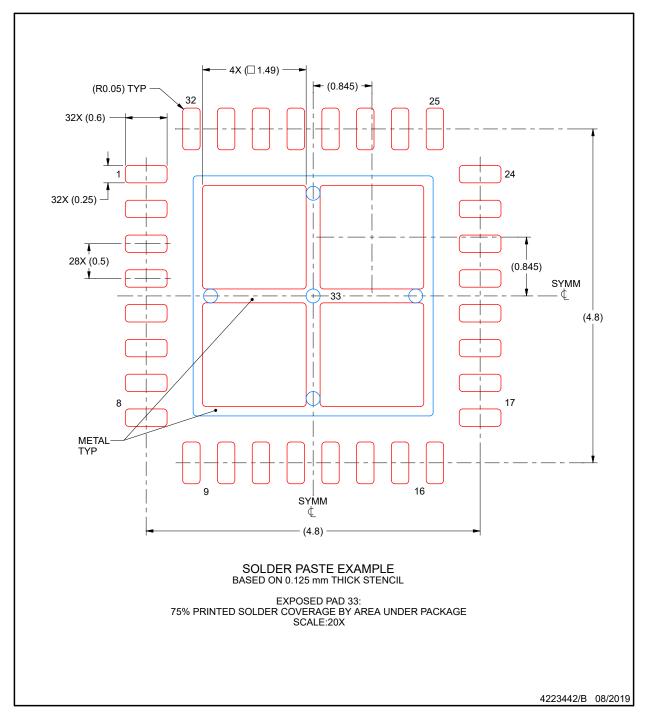
EXAMPLE BOARD LAYOUT

RHB0032E

VQFN - 1 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

- This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
- Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.



EXAMPLE STENCIL DESIGN

RHB0032E

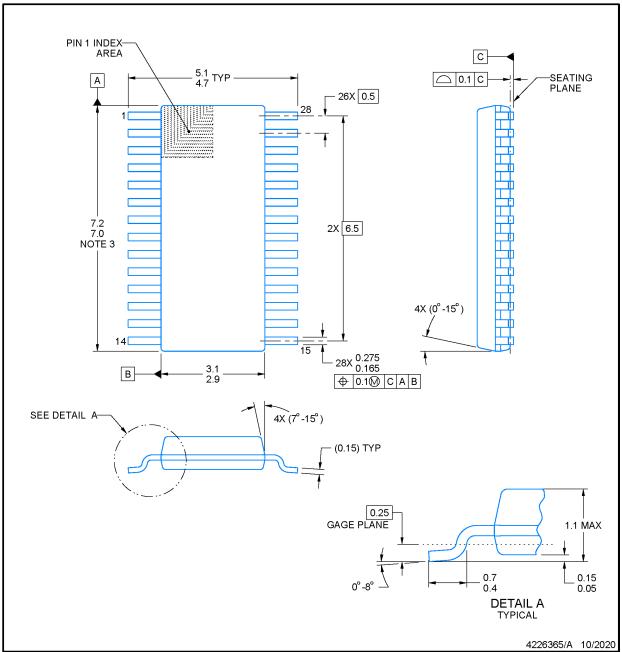
VQFN - 1 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

DGS0028A



PACKAGE OUTLINE

VSSOP - 1.1 mm max height

SMALL OUTLINE PACKAGE

NOTES:

PowerPAD is a trademark of Texas Instruments.

- All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.
- 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side.
- 4. No JEDEC registration as of September 2020.
- 5. Features may differ or may not be present.

English Data Sheet: SLASF86

EXAMPLE BOARD LAYOUT

DGS0028A

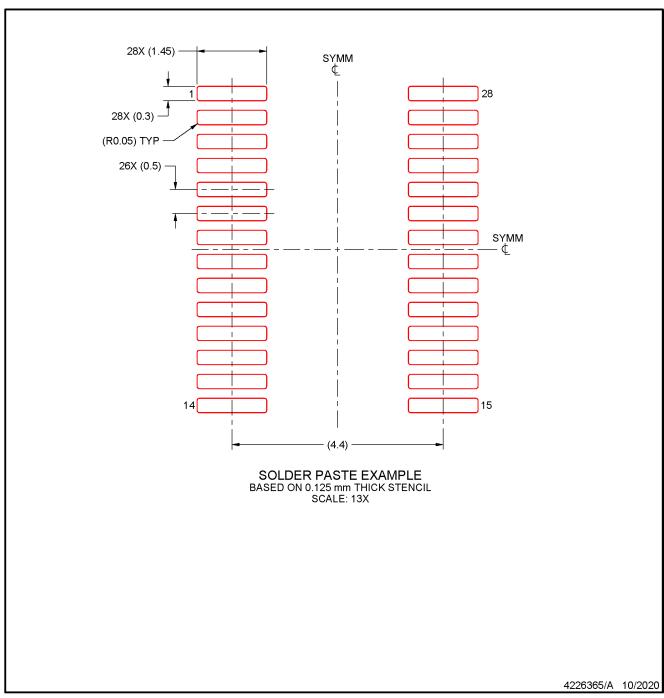
VSSOP - 1.1 mm max height

SMALL OUTLINE PACKAGE SYMM 28X (1.45) 28 28X (0.3) (R0.05) TYP 26X (0.5) SYMM 15 (4.4)LAND PATTERN EXAMPLE SCALE: 13X METAL SOLDER MASK-METAL UNDER SOLDER MASK **OPENING** SOLDER MASK **OPENING** EXPOSED METAL 0.05 MAX 0.05 MIN EXPOSED METAL **ALL AROUND** ALL AROUND SOLDER MASK NON-SOLDER MASK **DEFINED DEFINED** (PREFERRED) **SOLDER MASK DETAILS**

NOTES: (continued)

- 6. Publication IPC-7351 may have alternate designs.
- 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.
- 8. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature numbers SLMA002 (www.ti.com/lit/slma002) and SLMA004 (www.ti.com/lit/slma004).
- 9. Size of metal pad may vary due to creepage requirement.
- 10. Vias are optional depending on application, refer to device data sheet. It is recommended that vias under paste be filled, plugged or tented.

4226365/A 10/2020



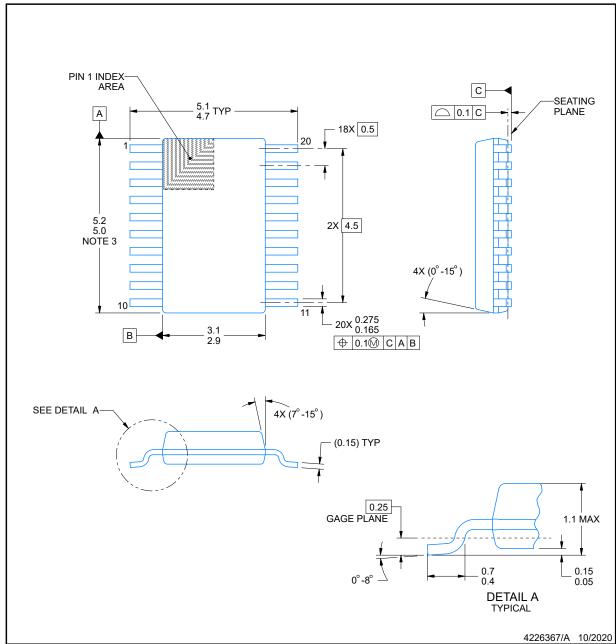
EXAMPLE STENCIL DESIGN

DGS0028A

VSSOP - 1.1 mm max height

SMALL OUTLINE PACKAGE

- 11. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 12. Board assembly site may have different recommendations for stencil design.



DGS0020A

PACKAGE OUTLINE

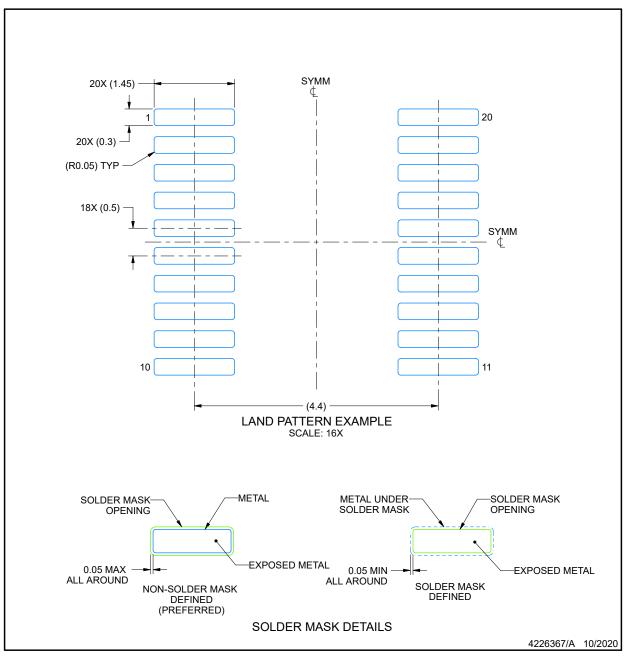
VSSOP - 1.1 mm max height

SMALL OUTLINE PACKAGE

NOTES:

PowerPAD is a trademark of Texas Instruments.

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 2. This drawing is subject to change without notice.
- 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side.
- 4. No JEDEC registration as of September 2020.
- 5. Features may differ or may not be present.



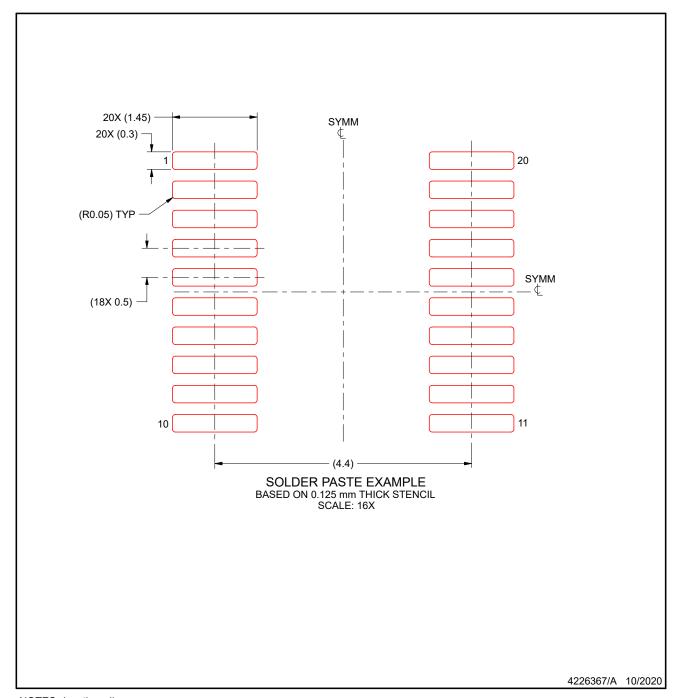
EXAMPLE BOARD LAYOUT

DGS0020A

VSSOP - 1.1 mm max height

SMALL OUTLINE PACKAGE

- 6. Publication IPC-7351 may have alternate designs.
- Solder mask tolerances between and around signal pads can vary based on board fabrication site.
 This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature numbers SLMA002 (www.ti.com/lit/slma002) and SLMA004 (www.ti.com/lit/slma004).
- 9. Size of metal pad may vary due to creepage requirement.
- 10. Vias are optional depending on application, refer to device data sheet. It is recommended that vias under paste be filled, plugged or tented.



EXAMPLE STENCIL DESIGN

DGS0020A

VSSOP - 1.1 mm max height

SMALL OUTLINE PACKAGE

^{11.} Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

^{12.} Board assembly site may have different recommendations for stencil design.

www.ti.com 10-May-2024

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
							(6)				
M0G3107QPMRQ1	ACTIVE	LQFP	PM	64	1000	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	M0G3107Q	Samples
M0G3107QPTRQ1	ACTIVE	LQFP	PT	48	1000	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	M0G3107Q	Samples
XM0G3107QDGS20RQ1	ACTIVE	VSSOP	DGS	20	5000	TBD	Call TI	Call TI	-40 to 125		Samples
XM0G3107QDGS28RQ1	ACTIVE	VSSOP	DGS	28	1	TBD	Call TI	Call TI	-40 to 125		Samples
XM0G3107QPMRQ1	ACTIVE	LQFP	PM	64	1000	TBD	Call TI	Call TI	-40 to 125		Samples
XM0G3107QPTRQ1	ACTIVE	LQFP	PT	48	1000	TBD	Call TI	Call TI	-40 to 125		Samples
XM0G3107QRGERQ1	ACTIVE	VQFN	RGE	24	3000	TBD	Call TI	Call TI	-40 to 125		Samples
XM0G3107QRGZRQ1	ACTIVE	VQFN	RGZ	48	3000	TBD	Call TI	Call TI	-40 to 125		Samples
XM0G3107QRHBRQ1	ACTIVE	VQFN	RHB	32	3000	TBD	Call TI	Call TI	-40 to 125		Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

PACKAGE OPTION ADDENDUM

www.ti.com 10-May-2024

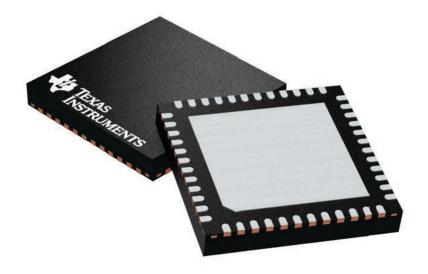
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF MSPM0G3107-Q1:

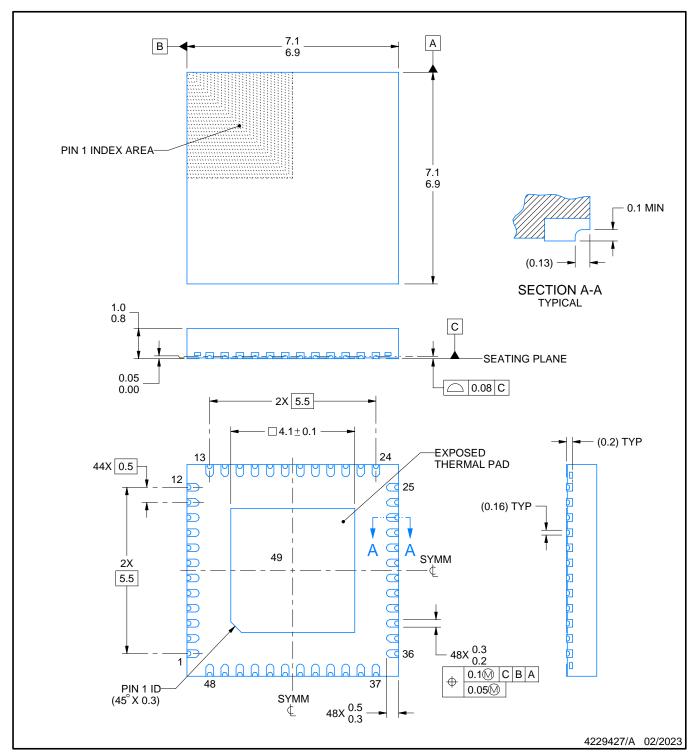

Catalog: MSPM0G3107

NOTE: Qualified Version Definitions:

Catalog - TI's standard catalog product

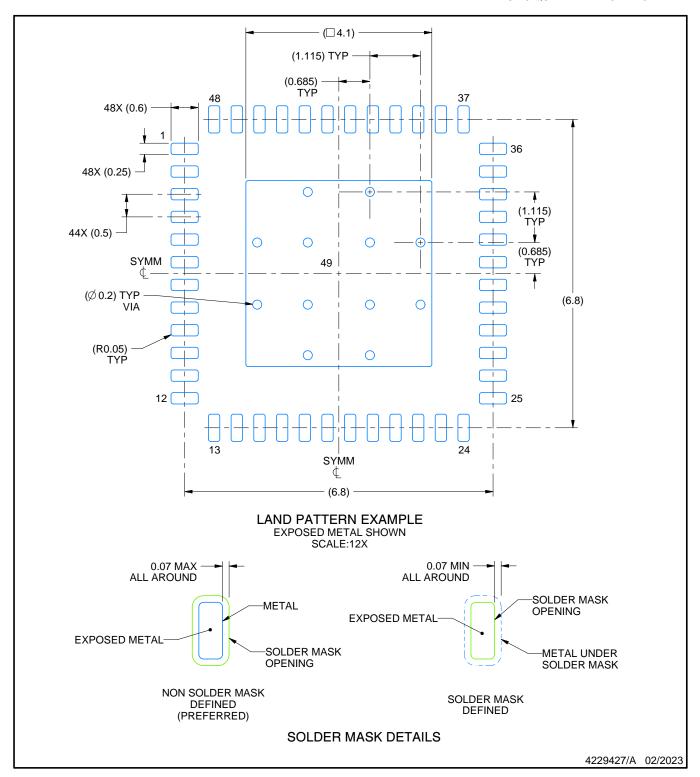
7 x 7, 0.5 mm pitch

PLASTIC QUADFLAT PACK- NO LEAD



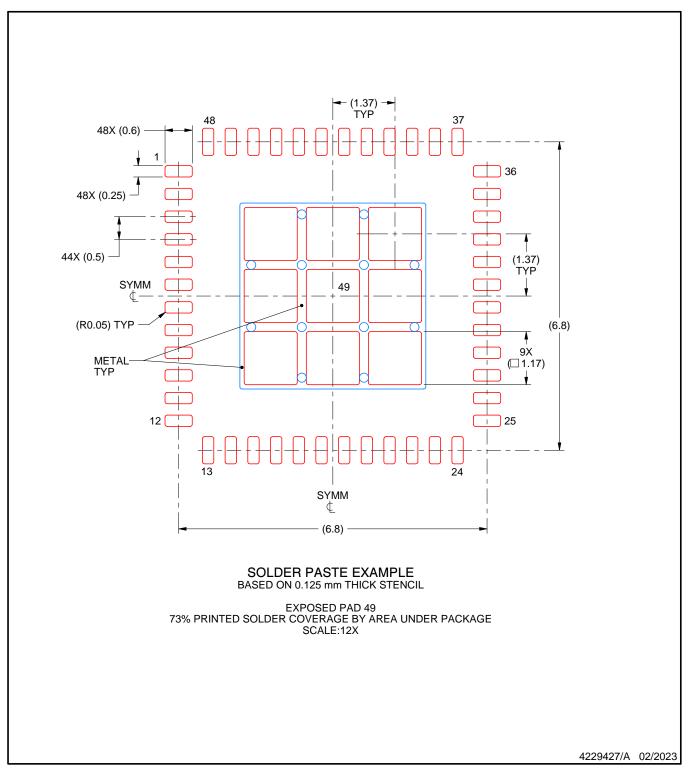
Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

4224671/A

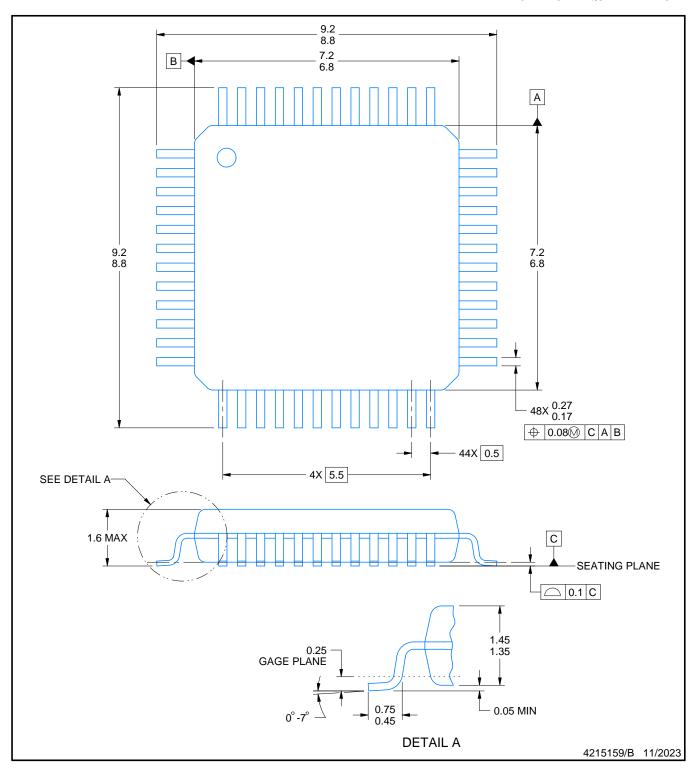


NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

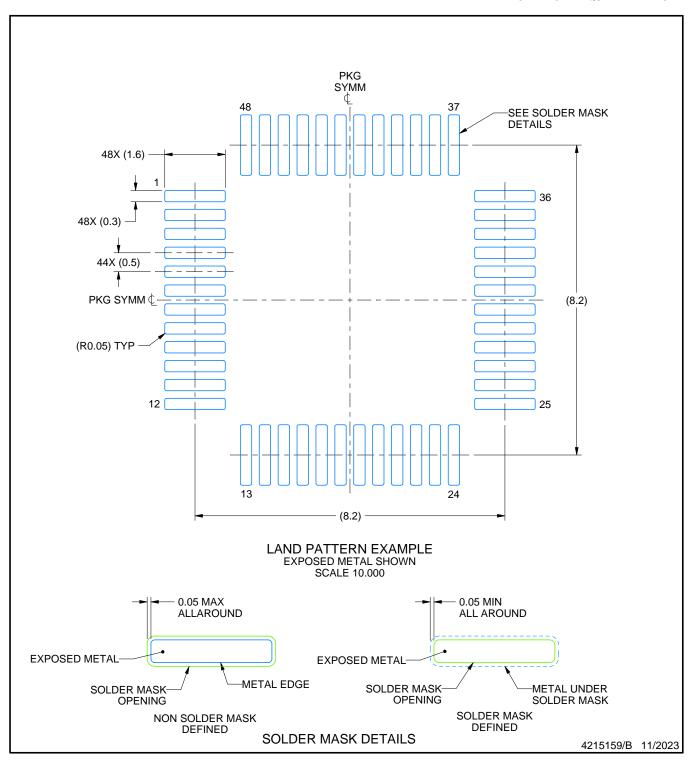

 2. This drawing is subject to change without notice.
- 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.

- 4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
- Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.


NOTES: (continued)

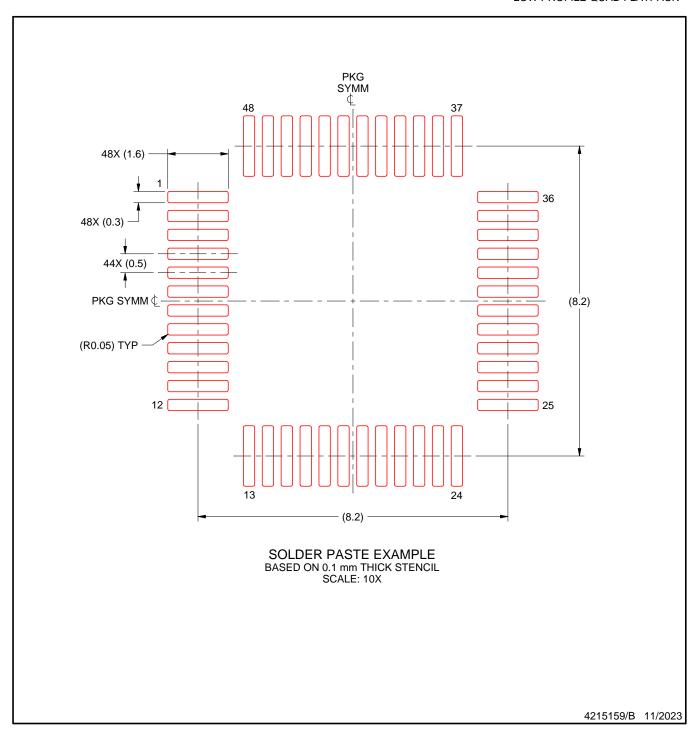
Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

LOW PROFILE QUAD FLATPACK

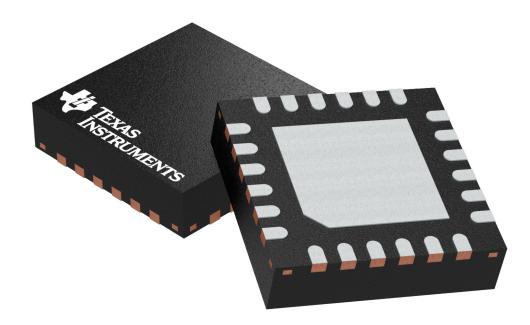


NOTES:

- All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 This drawing is subject to change without notice.
 Reference JEDEC registration MS-026.
 This may also be a thermally enhanced plastic package with leads conected to the die pads.

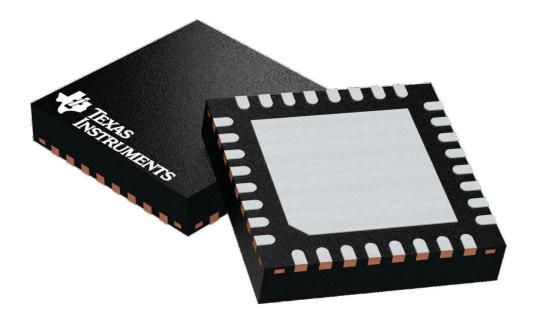

LOW PROFILE QUAD FLATPACK

- 5. Publication IPC-7351 may have alternate designs.
- 6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



LOW PROFILE QUAD FLATPACK

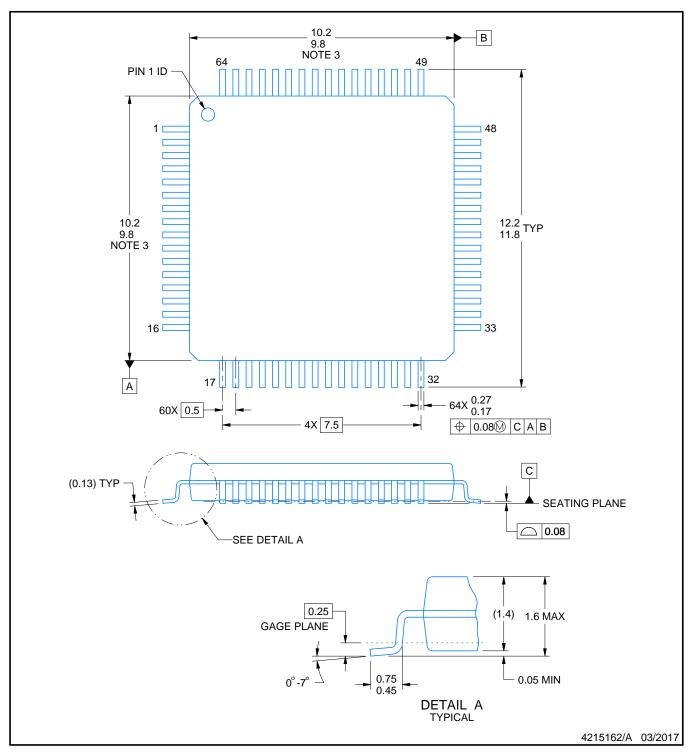
- 7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 8. Board assembly site may have different recommendations for stencil design.


Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

4204104/H

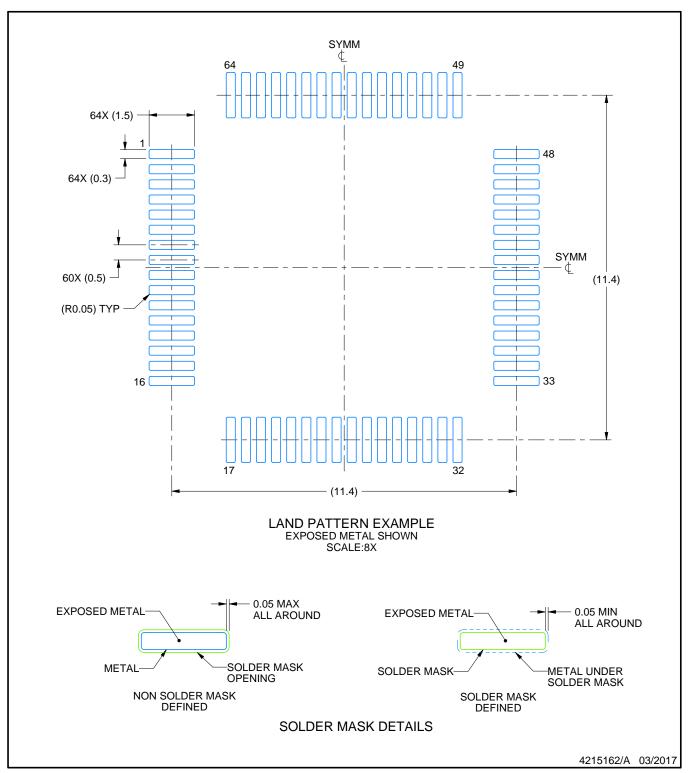
5 x 5, 0.5 mm pitch

PLASTIC QUAD FLATPACK - NO LEAD


Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

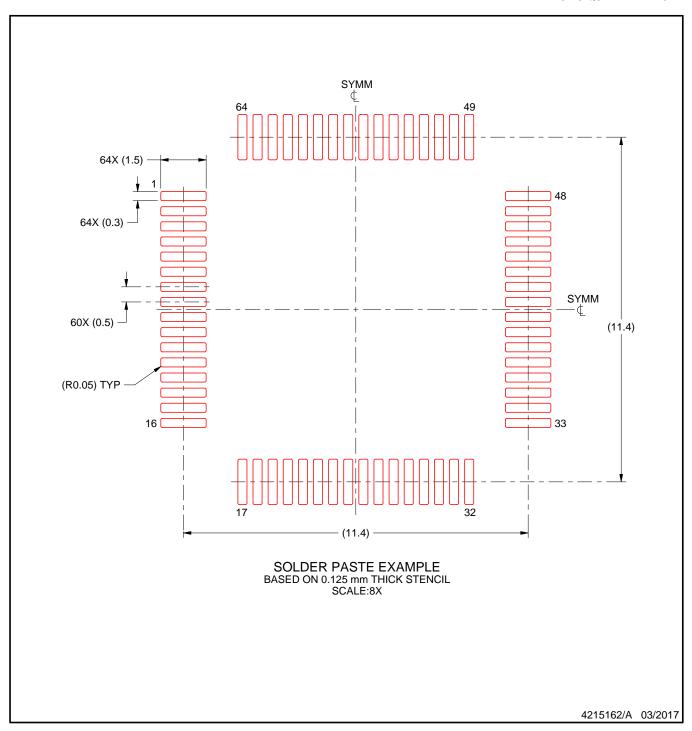
4224745/A

PLASTIC QUAD FLATPACK



NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.
- 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side.
- 4. Reference JEDEC registration MS-026.


PLASTIC QUAD FLATPACK

- 5. Publication IPC-7351 may have alternate designs.
- 6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.
 7. For more information, see Texas Instruments literature number SLMA004 (www.ti.com/lit/slma004).

PLASTIC QUAD FLATPACK

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

重要なお知らせと免責事項

TI は、技術データと信頼性データ (データシートを含みます)、設計リソース (リファレンス・デザインを含みます)、アプリケーションや設計に関する各種アドバイス、Web ツール、安全性情報、その他のリソースを、欠陥が存在する可能性のある「現状のまま」提供しており、商品性および特定目的に対する適合性の黙示保証、第三者の知的財産権の非侵害保証を含むいかなる保証も、明示的または黙示的にかかわらず拒否します。

これらのリソースは、TI 製品を使用する設計の経験を積んだ開発者への提供を意図したものです。(1) お客様のアプリケーションに適した TI 製品の選定、(2) お客様のアプリケーションの設計、検証、試験、(3) お客様のアプリケーションに該当する各種規格や、その他のあら ゆる安全性、セキュリティ、規制、または他の要件への確実な適合に関する責任を、お客様のみが単独で負うものとします。

上記の各種リソースは、予告なく変更される可能性があります。これらのリソースは、リソースで説明されている TI 製品を使用するアプリケーションの開発の目的でのみ、TI はその使用をお客様に許諾します。これらのリソースに関して、他の目的で複製することや掲載することは禁止されています。TI や第三者の知的財産権のライセンスが付与されている訳ではありません。お客様は、これらのリソースを自身で使用した結果発生するあらゆる申し立て、損害、費用、損失、責任について、TI およびその代理人を完全に補償するものとし、TI は一切の責任を拒否します。

TIの製品は、TIの販売条件、または ti.com やかかる TI 製品の関連資料などのいずれかを通じて提供する適用可能な条項の下で提供されています。TI がこれらのリソースを提供することは、適用される TI の保証または他の保証の放棄の拡大や変更を意味するものではありません。

お客様がいかなる追加条項または代替条項を提案した場合でも、TIはそれらに異議を唱え、拒否します。

郵送先住所:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2024, Texas Instruments Incorporated